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Abstract. Androgens play an important role during the development of both normal prostate epi-
thelium and prostate cancer and variants of genes involved in androgen metabolism may be related 
to an increased risk of prostate disease. Cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17A1) 
is a key regulatory enzyme in the steroidogenic pathway; it catalyses both 17α-hydroxylase and 
17,20-lyase activities and is essential for the production of both androgens and glucocorticoids. In 
this review, we focus on the structure and enzymatic activity of CYP17A1 and the mechanism of 
modulation of CYP17A1 activities. We discuss the relationship between common genetic variations 
in CYP17A1 gene and prostate cancer risk and the main effects of these variations on the prediction 
of susceptibility and clinical outcomes of prostate cancer patients. The mechanism of action, the 
efficacy and the clinical potential of CYP17A1 inhibitors in prostate cancer are also summarized.
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Introduction

Prostate cancer (PCa) is the second most common cancer-
related cause of death in men worldwide and is caused in its 
aetiology by numerous genetic and environmental factors 
(Nelson and Lepor 2003). It is estimated that 161,360 new 
PCa cases will be diagnosed and that 26,730 deaths will occur 
in the United States in 2017 (Siegel et al. 2017). Epidemiologi-
cal data demonstrate that the incidence and mortality rate 
of PCa varies in different countries and regions and, hence, 

the influence of racial or ethnic differences varies (DeSantis 
et al. 2016; Torre et al. 2016; Siegel et al. 2017). With early 
diagnosis, radical prostatectomy and/or radiation therapy 
are potentially curative. For advanced or metastatic PCa, 
hormonal therapies, reducing androgen levels by surgical 
or chemical castration or by inhibiting the androgen recep-
tor protein, are employed (Rove et al. 2012; Zhuang and 
Johnson 2016). Despite technological advancements, the 
management of PCa has become progressively more com-
plex and controversial for both early and late-stage disease. 
The limitations and potential harm associated with the use 
of prostate-specific antigen (PSA) as a  diagnostic marker 
have stimulated significant investigation of numerous novel 
biomarkers that demonstrate various capacities to detect PCa 
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and that can decrease unnecessary biopsies (Cabarkapa et 
al. 2016; Sharma et al. 2017). 

Genetic alterations in the testosterone metabolism 
pathway are expected to alter hormonal homeostasis and 
probably influence PCa development and progression 
(Henríquez-Hernández et al. 2015). Several genes have been 
identified as risk factors contributing to PCa. One of them 
is the gene for cytochrome P450 17α-hydroxylase/17,20-
lyase (CYP17A1), a pivotal enzyme for androgen synthesis. 
CYP17A1 catalysis leads to either steroid precursors of glu-
cocorticoids (e.g. cortisol) that regulate immune response 
or androgens (e.g. testosterone) that drive the development 
and maintenance of male characteristics or are converted 
to oestrogens in females (Auchus and Miller 1999; Pandey 
and Miller 2005; Yoshimoto and Auchus 2015). Mutations in 
CYP17A1 gene cause 17α-hydroxylase deficiency, a rare form 
of congenital adrenal hyperplasia, and sexual infantilism 
(Costa-Santos et al. 2004). The discovery that the CYP17A1 
gene is polymorphic has prompted the investigation of the 
role of gene variants in the aetiology of diseases and condi-
tions in which oestrogens or androgens play an important 
role, notably breast cancer, polycystic ovary syndrome, 
endometrial cancer and PCa (Sharp et al. 2004). 

This review aims to summarize the recent gains in our 
comprehension of the role of CYP17A1 in PCa and of the 
mechanisms regulating and modifying its activity. We ex-
plore the influence of CYP17A1 gene polymorphisms in PCa 
development and progression and the effects of established 
CYP17A1 inhibitors, such as ketoconazole, abiraterone 
acetate, galeterone and VT-464, which are agents currently 
at various stages of development.

CYP17A1 structure, function and mechanism of action

CYP17A1 (EC 1.14.99.9) is a  membrane-bound dual-
function monooxygenase that possesses 17α-hydroxylase 
and 17,20-lyase activities. According to the structural model 
of CYP17A1, it is composed of 508 amino acids, with 4 im-
portant structural domains, includ ing a substrate-binding 
domain, a  catalytic activity area, a  haem-binding region 
and a redox-part ner binding site (Auchus and Miller 1999; 
Auchus 2001). It is localized to the endoplasmic reticulum 
in the adrenal glands, testicular Leydig cells and ovarian 
thecal cells and lies at the crossroads of sex steroid and 
glucocorticoid synthesis (Missaghian et al. 2009). Human 

Figure 1. Testosterone synthesis 
and enzymatic activity of CYP17A1. 
Inhibitors of CYP17A1 in the path-
way are also indicated. Androgen 
synthesis requires two key cy-
tochrome P450 enzymes (CYP11A1 
and CYP17A1) and two hydrox-
ysteroid dehydrogenases (3βHSD 
and 17βHSD). CYP17A1 catalyzes 
two essential reactions in andro-
gen biosynthesis. The first one is 
the conversion of pregnenolone to 
17α-hydroxypregnenolone and pro-
gesterone to 17α-hydroxyprogesterone 
through its 17α-hydroxylase ac-
tivity. The second reaction in an-
drogen biosynthesis is conversion 
of 17α-hydroxypregnenolone to 
DHEA and 17α-hydroxyprogesterone 
to androstenedione through its 
17,20-lyase activity. Ketoconazole 
is a weak and nonspecific CYP17A1 
inhibitor. AA inhibits both the 
17α-hydroxylase and 17,20-lyase 
activity of CYP17A1. Orteronel and 
galeterone have increased speci-
ficity for 17,20-lyase relative to 
17α-hydroxylase. VT-464 has higher 

specificity for the 17,20-lyase reaction over 17α-hydroxylase. AA, abiraterone acetate; 3βHSD, 3β-hydroxysteroid dehydrogenase; 17βHSD3, 
17β-hydroxysteroid dehydrogenase 3; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone.



489CYP17A1 and prostate cancer

CYP17A1 is known to catalyse at least 13 different reactions 
with endogenous substrate and even some minor activi-
ties are physiologically important (Yoshimoto and Auchus 
2015). The 17α-hydroxylase activity of CYP17A1 is required 
for the hydroxylation of pregnenolone and progesterone 
at the C17 position to generate 17α-hydroxypregnenolone 
and 17α-hydroxyprogesterone. Its second enzymatic activ-
ity follows with the cleavage of the C17-C20 bond of either 
17α-hydroxypregnenolone or 17α-hydroxyprogesterone to 
form dehydroepiandrosterone (DHEA) and andostenedione, 
respectively (Fig. 1) (Auchus 2001; Pandey and Miller 2005; 
Yoshimoto and Auchus 2015). In human adrenal steroido-
genesis, CYP17A1 is the qualitative regulator that deter-
mines the class of steroids synthesized in various cell types: 
in its absence, mineralocorticoids are produced; if only its 
17α-hydroxylase activity is present, glucocorticoids are pro-
duced; if both its 17α-hydroxylase and 17,20-lyase activities 
are present, precursors of sex steroids are produced (Pandey 
and Miller 2005; Yoshimoto and Auchus 2015). 

The reaction mechanism for each activity is thought to 
involve the formation of distinct iron–oxygen complexes. For 
the hydroxylation mechanism, the oxo-intermediate, Fev=O, is 
considered to be the active catalytic oxygen-bound CYP17A1 
complex (Atkinson and Ingold 1993). Possible candidates for 
the acyl-carbon bond cleavage have been suggested, namely 
both the iron-peroxo, FeIII-OOH, and iron-oxo, Fev=O species 
(Lee-Robichaud et al. 1995; Akhtar et al. 2005).

Previous observations have shown that the following fac-
tors contribute to the regulation of the ratio of 17,20-lyase 
activity to 17 α-hydroxylase activity: (a) the input of two 
electrons from NADPH of NADPH-cytochrome P450 re-
ductase (P-450-red) to CYP17A1 (Auchus and Miller 1999). 
(b) The presence of cytochrome b5. Two general mechanisms 
have been proposed to explain the enhanced action of cy-
tochrome b5 in CYP17A1 catalysis. The first mechanism 
implies that, during the reductive stages of CYP17A1, the 
second electron for the completion of the catalytic cycle can 
be derived from cytochrome b5, an alternative redox partner 
to the conventional P-450-red (Estabrook 1999). A second 
model suggests that cytochrome b5 serves as an allosteric 
modulator that can increase 17,20-lyase activity by acting as 
an allosteric effector on the CYP17A1–P450-red complex, 
facilitating electron transfer from P450-red to CYP17A1 or 
promoting the facile breakdown of the CYP17A1-substrate 
intermediate in the catalytic cycle (Storbeck et al. 2013). 
(c) Phosphorylation of the serine/threonine residues of the 
CYP17A1 protein increases 17,20-lyase activity but does not 
affect 17α-hydroxylase activity (Zhang et al. 1995; Biason-
Lauber et al. 1997; Miller and Tee 2015). The activities of 
CYP17A1 have been hypothesized to be differentially regu-
lated by protein phosphorylation based on the differential 
expression of protein kinases and/or phosphatases in various 
cell types or at various times during in development, thus 

determining the pattern of steroid hormones produced 
(Pandey and Miller 2005).

Notably, CYP17A1 has been shown to have additional 
properties, namely by metabolizing xenobiotics and catalys-
ing the formation of a third class of active steroids, the 16-ene 
steroids. However, the overall functional effect of the 16-ene 
steroids in normal physiology is still poorly understood 
(Vasaitis et al. 2011).

CYP17A1 gene 

The human CYP17A1 gene is localized to chromosom-
e10q24.3, spans 6.6 kb and contains eight exons and seven 
introns (Picado-Leonard and Miller 1987). An identical 
2.1  kb mRNA is transcribed from this gene in the both 
the adrenals and the gonads (Chung et al. 1987; Fan at al. 
1992; Auchus 2017). The expression level of CYP17A1 is 
regulated by adrenocorticotropic hormone (ACTH) in the 
adrenals and by gonadotropic hormone in the testes and 
ovaries (Yanase et al. 1991; Porubek 2013). The expression 
of CYP17A1 mRNA has been shown to be absolutely de-
pendent on cAMP stimulation. Initial studies with reporter 
gene constructs to define ACTH-dependent transcription 
of the human CYP17A1 gene have revealed that both basal 
and cAMP-responsive elements lie within the first upstream 
63 bp of the CYP17A1 promoter and that a  second basal 
element lies between -184 and -206 bp in the CYP17A1 
promoter (Rodriguez et al. 1997). Subsequently, Sewer and 
co-workers have shown that the binding of transcription 
factor steroidogenic factor-1 (SF-1) to this region and its 
dephosphorylation play an integral role for ACTH/cAMP-
mediated steroidogenic CYP17A1 gene expression (Sewer 
and Waterman 2002; Sewer et al. 2002). 

Several other transcription factors regulate CYP17A1 
gene expression, cell differentiation, and tumorigenesis in 
diverse cell types, including the gonads and adrenals (Lin et 
al 2001; Gilep et al. 2011). The ability of these factors to in-
crease CYP17A1 mRNA expression requires the formation of 
higher order coregulatory complexes, many of which contain 
enzymatic activities that post-translationally modify both the 
transcription factors and histones (Sewer and Jagarlapudi 
2009). One of these is the GATA family of transcription 
factors. GATA1–3 are primarily involved in haematologi-
cal development, whereas GATA4 and GATA6 have been 
implicated in human CYP17A1 expression. GATA6 is highly 
expressed in the adrenal cortex and the stimulatory actions 
of GATA6 on CYP17A1 transcription are independent of 
DNA binding but occur through the interaction of GATA6 
with specificity protein 1 (Sp1) (Kiiveri et al. 2004; Sewer 
and Jagarlapudi 2009). 

GATA4 plays a role in the differentiation and/or steroido-
genic function of gonadal somatic cells, including fetal and 
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adult Leydig cells (Viger et al. 1998; Ketola et al. 1999, 2002). 
The silencing of GATA4 in mLTC-1 cells (murine primary 
Leydig cells) and primary adult Leydig cells has been shown 
to lead to the decreased expression of genes in the androgen 
biosynthetic pathway including CYP17A1. In mLTC-1 cells, 
this is accompanied by the reduced production of sex steroid 
precursors (Schrade et al. 2015). Adrenal transcription of the 
CYP17A1 gene is also controlled by transcription factors Sp1 
and Sp3 (binding to the -127/-184 bp site) and nuclear factor 
NF-1C proteins (binding to the -107/-185 bp or the -178/-
152 bp sites) (Lin et al. 2001). Another transcription factor 
that regulates the expression of the human CYP17A1 gene is 
SET (also known as TAF-1β, I2PP2A and INHAT). It is an 
evolutionarily conserved transcription factor that participates 
in the early ontogenesis of the gonadal system, that regulates 
CYP17A1 gene transcription in Leydig cells, and that might 
also activate other genes expressed in immature oocytes, thus 
playing a role in oocyte development (Xu et al. 2013).

Moreover, epigenetics provides an additional layer of 
gene regulation through DNA methylation and histone tail 
modifications. Initial studies of CpG methylation came from 
studies of bovine and rodent adrenals (Hornsby et al. 1992). 
Missaghian et al. (2009) have shown that, in rodent adrenals, 
methylation of the CYP17A1 promoter region is correlated 
with the silencing of gene expression and the production 
of corticosterone as the main glucocorticoid. The absence 
of a CpG island in the human CYP17A1 gene suggests that 
the direct epigenetic regulation of the CYP17A1 promoter is 
more essential in rodents and, therefore, that the expression 
of CYP17A1 in humans is driven by the above-mentioned 
complex interaction of transcription factors (Martinez-
Arguelles and Papadopoulos 2010). 

CYP17A1 gene polymorphisms

Single nucleotide polymorphisms (SNPs) are the most 
common form of human genetic polymorphisms that can 
contribute to an individual’s susceptibility and progression 
to cancer. Although many factors can contribute to the un-
derlying biology and clinical course of PCa, genetic variation 
in androgen biosynthesis is thought most likely to influence 
the eventual outcome of the disease (Sissung et al. 2014).

CYP17A1 rs743572 gene polymorphism 

Genetic variation in CYP17A1 has been studied extensively 
in relation to PCa. Most of these studies have focused on 
rs743572 gene polymorphism (denoted T34C or A1/A2), 
located 34 bp upstream from the initiation of translation 
and downstream from the transcription start site (Fig. 2). 
The variant creates a recognition site for the MspAI restric-
tion enzyme (Sharp et al. 2004). Studies that have reported 
a relationship between CYP17A1 gene polymorphism and 
the risk of PCa have been contradictory in terms of which 
allele is associated with the increased risk for PCa. Some 
case-control studies have reported an elevated risk for PCa 
being related to the A1/A2 or A2/A2 genotype (Lunn et al 
1999; Gsur et al. 2000; Haiman et al. 2001; Kittles et al. 2001; 
Yamada et al. 2001; Sobti et al. 2008; Souiden et al. 2011), 
whereas other studies indicate an association between PCa 
and the A1/A1 genotype (Wadelius et al. 1999; Habuchi et 
al. 2000). Further studies have reported no difference in the 
distribution of the various alleles among healthy controls and 
PCa patients (Chang et al. 2001; Latil et al. 2001; Standford et 
al. 2002; dos Santos et al. 2002; Madigan et al 2003; Hamada 
et al. 2007; Sivonova et al. 2012; Cai et al. 2012; Karimpur-
Zahmatkesh et al. 2013; Ersekerci et al. 2015; Han et al. 2015; 
Henríquez-Hernández et al. 2015).

Differences also exist in the association between the 
rs743572 polymorphism and PCa risk in different ethnicities. 
Meta-analyses have suggested that variants within CYP17A1 
play a role in susceptibility to PCa among African-Americans 
but not in Caucasian or Asian populations (Ntais et al. 2003; 
Wang et al. 2011; Taioli et al. 2013; Wang et al. 2015). The 
reasons for the large ethnic differences might be explain 
by the observation that African-Americans experience 
earlier puberty, higher serum levels of total testosterone 
and a higher incidence of PCa (Loukola et al. 2004). Most 
recently, Brureau et al. (2016) have found that the A2 allele 
and the A2/A2 genotype are not associated with a significant 
risk of PCa in two different populations of African ancestry, 
namely an Afro-Caribbean population from the French West 
Indies and a native African population from the Democratic 
Republic of Congo.

The A2 allele is thought to enhance promoter activity 
(through creating an additional Sp1-binding site – CCACC 

Figure 2. Human CYP17A1 gene 
with designated SNPs. Black blocks 
mark coding exons (Ex1-8), white 
blocks mark 5´ and 3´ UTRs, and 
connecting lines between blocks 
are introns. 
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box) resulting in an increased rate of transcription and, thus, 
an increased production of androgens and oestrogens that 
might affect PCa risk (Stanford et al. 2002). A few studies 
have shown an association of the A2 allele with higher levels 
of plasma testosterone (Zmuda et al. 2001; Kakinuma et al. 
2004) but this observation is again contradictory (Lunn et 
al. 1999; Allen et al. 2001; Haiman et al. 2001).

Similarly no consistent results have been observed relating 
age, clinical variables (Gleason pathological grade, tumour-
node-metastasis (TNM) stage, serum PSA levels and serum 
levels of sex hormones) and family history with rs743572. 
A  few epidemiologic studies have determined a  positive 
association between this polymorphism and the Gleason 
score/clinical stage and serum PSA levels (Sobti et al. 2006, 
2008) but many more conclusions are negative (Haiman et 
al. 2001; Stanford et al. 2002; Madigan et al. 2003; Mononem 
et al. 2006; Okugi et al. 2006; Hamada et al. 2007; Wright 
et al. 2010; Risio et al. 2011; Souiden et al. 2011; Sivonova 
et al. 2012; Yamada et al. 2013; Han et al. 2015; Henríquez-
Hernández et al. 2015; Brureau et al. 2016; Song et al. 2016). 
Some of the studies suggest that the CYP17A1 gene is a risk 
factor for PCa in males of advanced age (Souiden et al. 2011; 
Song et al. 2016). Hamada et al. (2007) have reported that the 
CYP17A1 polymorphism is a potential prognostic predictor 
for survival in patients with androgen-independent disease, 
because patients who carry the CYP17A1 variant A2 allele 
have a longer survival time than patients who do not carry 
this variant.

Other CYP17A1 gene polymorphisms

To date, several other CYP17A1 gene polymorphisms in 
various gene locations (in the intron regions, in the pro-
moter region, in the coding regions of the exon and in the 
5’ untranslated region (UTR) region of the exon) have been 
studied, mainly together with rs743572 (Fig. 2). A family-
based study of Loukola et al. (2004) has found no association 
between 14 SNPs in CYP17A1 and PCa in a total case-control 
sample of 1117 brothers from 506 sibships. A family-based 
study by Douglas et al. (2005) has shown a 2-fold increased 
risk of PCa in individuals with the common SNP rs619824. 
Modest but significant positive associations were observed 
between PCa and two SNPs (rs2486758 and rs6892); this 
seemed to be stronger among aggressive PCa. Moreover, 
the variant allele for rs2486758 SNP was found to be associ-
ated with a 7% increase in PCa risk (Setiavan et al. 2007). 
A contemporary study by Lindström et al. (2006) showed 
that carriers of one allele of the rs2486758 SNP located in 
the promoter region of CYP17A1 were at a 15% higher risk 
of developing PCa. 

Yamada et al. (2013) observed significant association of 
the rs6162, rs6163 and rs1004467 CYP17A1 polymorphisms 

with the risk of progression to castration-resistant PCa 
(CRPC) after initial hormonal therapy for PCa in the Japa-
nese population. They also assumed that rs6162 and rs6163 
exhibited their functions in coordination with rs743572 as 
a haplotype. An association was also seen between genotypes 
and haplotype distributions of patients and a control group 
in the Korean population in the analysis of Han et al. (2015). 
They found that haplotype-2 of CYP17A1 was significantly 
associated with PCa susceptibility, whereas rs17115149 and 
haplotype-4 of CYP17A1 showed a significant association 
with the histological aggressiveness associated with Gleason 
scores.

Significant associations have also been seen between the 
rs6162, rs6163 and rs743572 genotypes and PCa status in 
African-American men. Interestingly, Sarma et al. (2008) 
have observed a strongly decreased risk for PCa in heterozy-
gotes for these three CYP17A1 SNPs. Another large study 
has evaluated the association of eight genetic variants of 
CYP17A1 in 2,452 samples (886 cases and 1,566 controls) 
of non-Hispanic Caucasian, Hispanic Caucasian or African-
American origin. In African-Americans, the association with 
PCa risk remained significant for rs104467 and rs17115144 
and, in non-Hispanic Caucasians, a significant increase in 
risk for PCa has been reported for rs10883782 (Beuten et 
al. 2009). 

The relationship was studied between three CYP17A1 
SNPs (rs10883783, rs17115100 and rs743572) and PCa-
specific survival and progression outcomes. No genetic as-
sociation with disease progression was identified. However, 
men with the variant A allele in rs10883783 had a 56% risk 
reduction in PCa-specific survival (Wright et al. 2010).

GWAS

Although the use of genome-wide association studies 
(GWAS), next-generation sequencing, whole-exome se-
quencing and RNA sequencing has allowed the comprehen-
sive analysis of PCa genomes, it has also given an indication 
of the complexity and heterogeneous nature of PCa (Sissung 
et al. 2014). GWAS have emerged as a new approach for iden-
tifying less penetrant cancer susceptibility alleles that might 
be associated with the initiation and progression of cancer.

GWAS of PCa have identified approximately 100 different 
SNPs associated with PCa risk in various racial populations 
(Gudmundsson et al. 2009; Schumacher et al. 2011; Eeles 
et al. 2013; Al Olama et al. 2014; Dluzniewski et al. 2015; 
Hoffmann et al. 2015; Panagiotou et al. 2015; Kim et al. 2016; 
Hofmann et al. 2017). In some of the GWAS, attempts have 
been made to evaluate the associations between specific 
PCa risk SNPs, disease aggressiveness and survival (Schu-
macher et al. 2011; Al Olama et al. 2014; Berndt et al. 2015; 
Szulkin et al. 2015). The large GWAS of PSA by Hoffman et 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Henr%C3%ADquez-Hern%C3%A1ndez LA%5BAuthor%5D&cauthor=true&cauthor_uid=25960412
https://www.ncbi.nlm.nih.gov/pubmed/?term=Henr%C3%ADquez-Hern%C3%A1ndez LA%5BAuthor%5D&cauthor=true&cauthor_uid=25960412
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al. (2017) in 28,503 Kaiser Permanente whites and 17,428 
men from replication cohorts detected 40 independent SNPs 
associated with PSA levels: seven common independent 
SNPs at kallikrein-related peptidase-3 and kallikrein-related 
peptidase 2 (KLK3-KLK2), five SNPs in or near SLC45A3 
(prostein) and a novel SNPs associated with PSA levels in 
genes in pathways involved in cellular signalling, growth 
and differentiation. Additionally, results from other GWAS 
and linkage analyses have reported risk loci associated with 
aggressive disease among familial cases (Gudmundsson et al. 
2008; Liu et al. 2011; Nam et al. 2011; Teerlink et al. 2016). 
Thus, GWAS are a part of multi-omic approaches (including 
proteomics, metabolomics and epigenomics) in pursuit of 
precision medicine and provide opportunities to gain new 
perspectives regarding the genetic architecture of PCa by 
identifying new candidate genes and targets. 

CYP17A1 inhibitors

More than half century ago, Huggins and Hodges provided 
clinical evidence that prostate morphogenesis occurs under 
the control of androgens and is modulated by oestrogens 
(Huggins et al. 1941). Nowadays, androgen and its androgen 
receptor (AR) are accepted to be key factors for the develop-

ment of not only normal prostate, but also PCa (Heinlein and 
Chang 2004; Fujimoto 2016). This explains the high response 
rate of PCa patients to androgen deprivation therapy (ADT). 
However, after an initial response to ADT, most patients 
experience cancer progression to metastatic CRPC, which 
is defined by rising PSA and/or clinical progression despite 
systemic androgen depletion (Damber and Aus 2008; Chang 
et al. 2014; Attard et al. 2016). CRPC occurs because of the 
reactivation of the androgen axis either by adaptive intra-
tumoral androgen biosynthesis (Locke et al. 2008; Cai et al. 
2011) or by changes in the AR (e.g. AR gene amplification 
and mutation) (Taplin et al. 1999; Shi et al. 2002). 

Therapeutic CYP17A1 inhibition for the treatment of 
PCa and other androgen-dependent diseases has been envi-
sioned for over 50 years (Fig. 3; Arth et al. 1971). Generally, 
CYP17A1 inhibitors have been structurally categorized as 
steroidal or non-steroidal. The steroidal inhibitors are similar 
in structure to the natural substrates of CYP17A1, pregne-
nolone or progesterone and often involve the modification 
of the substrate’s D-ring at the C17 position (Vasaitis et al. 
2011). An early developed compound, ketoconazole, is an 
antifungal with weak and nonspecific CYP17A1 inhibitory 
properties and has been extensively used for the ‘off-label’ 
treatment of advanced CRPC (Fig. 1; Yap et al. 2008). It has 
typically been used at high dosage (800–1200 mg/d) for PCa 

Figure 3. Schematic view 
of the CYP17A1 inhibitors 
targeting the androgen 
receptor signalling path-
way. The biological action 
of androgens is mediated 
through the AR. In pros-
tate tissue, DHT is the pri-
mary ligand for the AR and 
is synthesized from T  by 
5α-reductase. Androgen 
binding to the AR induces 
conformational changes in 
the AR leading to dimeri-
zation and dissociation 
from nuclear chaperones, 
with subsequent translo-
cation of the AR into the 
nucleus. Nuclear AR binds 
to androgen responsive el-
ements (AREs) in the DNA 
with resultant transcrip-
tional activity inducing 
cellular proliferation. The 

CYP17A1 inhibitors with a steroidal structure display antiandrogenic effects by inhibiting the intracellular biosynthesis of androgens (T, 
DHT, DHEA) in the testes, adrenals and prostate cancer cells from cholesterol. In addition to affecting androgen synthesis, some CYP17A1 
inhibitors are also able to directly bind to AR and block its activity as a ligand-dependent transcription factor. AA, abiraterone acetate; 
AR, androgen receptor; ARE, androgen response element; DHEA, dehydroepiandrosterone; DHT, dihydrotestosterone; T, testosterone.
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treatment, lowering not only testosterone levels, but also the 
levels of adrenal steroids, androstenedione and DHEA (De 
Coster et al. 1996). However, high doses of ketoconazole 
have been associated with significant potential side-effects 
including hepatotoxicity, gastrointestinal toxicity and adre-
nal insufficiency (Vasaitis et al. 2011). Ketoconazole leads 
to a decrease in serum PSA by ≥ 50% in 27% of patients, 
whereas anti-androgen withdrawal causes a PSA response 
in 11% of patients (Small et al. 2004).

By 2011, the United States Food and Drug Administra-
tion (FDA) had approved abiraterone acetate (AA), the first 
specific inhibitor of CYP17A1 (Fig. 1). AA and its metabo-
lite, abiraterone, are selective inhibitors of 17α-hydroxylase 
and 17,20-lyase (Vasaitis et al. 2011). Recently, a more ac-
tive form of AA, namely Δ4 abiraterone, has been shown 
to block 17β-hydroxysteroid dehydrogenase and steroid 
5α reductase, which are required for dihydrotestosterone 
synthesis, in addition to CYP17A1 enzymes (Li et al. 2015). 
It induces PSA declines of ³ 50% in 29–62% of patients, 
achieves overall survival benefits in both docetaxel refrac-
tory and chemotherapy-naıve patients, delays and reduces 
skeletal-related events and palliates pain (Ryan et al. 2013). 
In the COU-AA-301 and COU-AA-302 registration trials, 
abiraterone demonstrated overall survival benefits in post-
docetaxel and pre-docetaxel settings (Lorente et al. 2015; 
Fizazi et al. 2016). The suppression of 17α-hydroxylase leads 
to reduced cortisol synthesis and compensatory overproduc-
tion of mineralocorticoids. Increased mineralocorticoid 
levels result in some adverse events, such as hypokalaemia, 
fluid retention, hypertension and cardiac disorders; however, 
these toxicities are largely abrogated by the co-administration 
of low-dose glucocorticoids (Attrard et al. 2009). Abiraterone 
is currently approved in combination with prednisone for 
the treatment of metastatic CRPC in men both prior to and 
after treatment with docetaxel (de Bono et al. 2011; Ryan 
et al. 2013). Although abiraterone represents a significant 
therapeutic advance, tumours ultimately become resistant 
and progress. Furthermore, abiraterone-resistant tumours 
are also frequently resistant to subsequent treatment with 
enzalutamide, a  recently developed AR antagonist that 
otherwise confers a survival benefit that is similar to that of 
abiraterone for CRPC (Brasso et al. 2015).

One additional drug with abiraterone-like properties is 
orteronel (TAK-700) (Fig. 1). It is a nonsteroidal selective 
inhibitor of 17,20-lyase. In preclinical studies, orteronel more 
potently inhibited 17,20-lyase relative to 17α-hydroxylase, 
up to 5.4-fold, with minimal effect on other CYP drug-
metabolizing enzymes (Yamaoka et al. 2012). Preliminary 
results from phase I/II studies found a 63% PSA response 
rate at 12 weeks with patients given 300 mg twice daily (Zhu 
and Garcia 2013). More selective specificity of orteronel 
inhibition leads to less inhibition of 17α-hydroxylase with 
a reduction in the risk of overproduction of mineralocor-

ticoids. Thus, orteronel is potentially an attractive drug for 
longer duration therapy or when prolonged corticosteroid 
is not ideal. However, in a clinical setting, many trials have 
included prednisone coadministration (Zhu and Garcia 
2013; Alex et al. 2016). 

Galeterone (VN/124-1, TOK-001) is a CYP17A1 inhibitor 
with multiple mechanisms of action, including CYP17A1 
inhibition, AR antagonism and a decrease in intratumoral 
AR levels (Fig. 1 and 3; Alex 2016). Additionally, galeterone 
has a unique mechanism of action by disrupting AR signal-
ing via a proteosomal-dependent pathway, leading to AR 
degradation (Kwegyir-Afful et al. 2015). In a phase I study of 
chemonaive men with CRPC, 22% demonstrated a decrease in 
PSA of more than 50%, whereas an additional 26% had a PSA 
decline of 30–50% after 12 weeks. No evidence of adrenal 
mineralocorticoid excess was noted (Montgomery et al. 2016). 

Finally, an additional drug, namely seviteronel (VT-464, 
Viamet Pharmaceuticals), is in early stages of development 
(Fig. 1). It is a novel nonsteroidal CYP17A1 inhibitor and 
AR antagonist. It preferentially inhibits 17,20-lyase over 
17α-hydroxylase, thus offering an advantage over AA from 
the perspective of not requiring concomitant therapy with 
prednisone, because of to its minimal effects on upstream 
steroid levels (Suzman and Antonarakis 2014).

Conclusions

This review summarises the role of CYP17A1 in the synthesis 
of androgens and the influence of CYP17A1 SNPs on the 
susceptibility to the risk of PCa. We also discuss potential 
new therapeutic strategies that may lead to improvements 
in the oncological outcomes of this disease. In the future, 
advances in new technologies with clinical information will 
offer the possibility of the earlier detection of PCa pathol-
ogy and will lead to different or specific treatments that will 
prolong patient survival, delay symptom progression and 
maintain, if not improve, quality of life.
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