
565Gen. Physiol. Biophys. (2017), 36, 565–572

doi: 10.4149/gpb_2017033

Association of single nucleotide polymorphisms in FGF-RAS/MAP 
signalling cascade with breast cancer susceptibility

Zuzana Dankova1, Pavol Zubor1,2, Marian Grendar3, Andrea Kapinova1, Katarina Zelinova1,2, 
Marianna Jagelkova1,2, Alexandra Gondova2, Karol Dokus2, Michal Kalman4, Zora Lasabova1 
and Jan Danko2

1 Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 
Martin, Slovakia

2 Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Mar-
tin University Hospital, Martin, Slovakia

3 Bioinformatic unit, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 
Martin, Slovakia

4 Department of Pathology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin University 
Hospital, Martin, Slovakia

Abstract. The fibroblast growth factor receptors (FGFRs) and Ras/mitogen activated protein (RAS/
MAP) signalling cascades are the main molecular pathways involved in breast carcinogenesis. This 
study aims to determine the association between FGF10 (rs4415084 C>T), FGFR2 (rs2981582 C>T) 
and MAP3K1 (rs889312 A>C) gene polymorphisms and breast cancer, to analyse the discriminative 
ability of each SNP and to test the accuracy of the predictive breast cancer risk model which includes 
all SNPs. We conducted a case-control study of 170 women (57.06 ± 11.60 years) with histologically 
confirmed breast cancer and 146 controls (50.24 ± 10.69 years). High resolution melting (HRM) 
method with Sanger sequencing validation was used in analyses. We have revealed significant associa-
tion of FGFR2 and MAP3K1 polymorphisms with breast cancer. The odds ratio of FGFR2 T allele was 
1.897 (95% CI 1.231–2.936, p = 0.004) and MAP3K1 C allele 1.804 (95% CI 1.151–2.845, p = 0.012). 
FGFR2 polymorphism achieved the best discriminative ability (41.95%). The Random Forest algo-
rithm selected FGFR2, MAP3K1 and age as important breast cancer predictors. The accuracy of this 
prediction model approached moderate accuracy (70%), with 35.9% sensitivity and 88.6% specificity.
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Introduction 

Breast cancer is a heterogeneous disease. On the molecular 
level, it develops and progresses from alterations in genes 
regulating biological processes such as cell growth, prolifera-
tion and differentiation (Harlid et al. 2012; Pham et al. 2013; 
Chen et al. 2016a; Toss et al. 2017). Large studies of genomic 
modifications and protein expression involved in breast tu-
morigenic pathways identified several differently penetrating 

polymorphisms associated with this disease and provided an 
increasing number of targets for drugs which significantly 
improve patient prognosis (Easton et al. 2007; Fachal and 
Dunning 2015; Michailidou et al. 2015). Emerging evidence 
from clinical trials has proven also that specific genetic back-
ground and molecular landscapes significantly influence the 
sensitivity and resistance profile (Wilson et al. 2016; Zardavas 
and Piccart-Gebhart 2016; Miller et al. 2017; Toss et al. 2017). 
Moreover, identification of molecular signatures and gene 
expression profiling is increasingly inevitable for full un-
derstanding of the tumorigenesis, especially in personalised 
targeted medicine (Ellsworth et al. 2010; Pereira et al. 2016). 

Breast carcinogenesis is a complex of several mutually 
intertwined signalling pathways, such as 1) the oestrogen 
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signalling pathway, 2) PI3K/AKT/mTOR pathway, 3) RAS/
MAPK signalling pathway, 4) angiogenic pathway and 5) 
the FGFR signalling or p53 pathway (Eroles et al. 2012; 
Pham et al. 2013; Suman et al. 2016). Genetic alterations 
at any level induce aberrant signalling, thus leading to in-
creased cancer risk (Guille et al. 2013; Sullivan et al. 2016; 
Ng et al. 2017).

Fibroblast growth factor receptor  2 (FGFR2) is trans-
membrane tyrosine kinase receptor for FGF family mem-
bers with high affinity for FGF10. Their binding induces 
functional FGFR dimerization and kinase activation by 
trans-autophoshorylation which activates multiple down-
stream cellular cascades and responses (Wesche et al. 2011; 
Tiong et al. 2013). The cascade involving mitogen-activated 
protein kinase 1 (MAP3K1), a serine-threonine kinase in 
the MAP3K family and the STE superfamily, comprises of 
several steps: activated FGFR kinase trigger stimulation of 
its intracellular substrates. Major FGFR substrate 2α (FRS2α) 
binds the adaptor protein growth factor receptor-bound 2 
(GRB2) which recruits the guanine nucleotide exchange fac-
tor son of sevenless (SOS). It activates RAS GTPase which 
initiates activation of the whole RAS-RAF-MEK-MAPK 
cascade (Goetz and Mohammadi 2013). MAPK translocates 
from the cytoplasm to the nucleus, where it phosphorylates 
and triggers early gene transcription factors which mediate 
the expression of oncogenes involved in proliferation, cell 
differentiation, cell migration and survival (McCubrey et al. 
2007; Jara et al. 2013; Pham et al. 2013; Zheng et al. 2014). 
The activation of this receptor tyrosine kinase signalling is 
thus one of the mechanisms underlying tumour develop-
ment and growth and genetic alterations of genes involved 
in this cascade contribute to aberrant cell biology.

Diverse FGF10, FGFR2 and MAP3K1 gene polymor-
phisms have already been identified as breast cancer suscep-
tible in various populations (Rebbeck et al. 2009; Ripperger 
2009; Harlid et al. 2012; Jara et al. 2013; Murillo-Zamora et 
al. 2013; Pritchard and Hayward 2013; Siddiqui et al. 2014; 
Zheng et al. 2014; Campbell et al. 2016), and studies on 
breast cancer genetic background have also been performed 
in Slovakia (Franeková et al. 2007; Zubor et al. 2007, 2008, 
2014; Kasajová et al. 2016). Results from these studies em-
phasised the relevance of several polymorphisms in breast 
cancer susceptibility and pointed out the importance of an 
inter-population genetic variability.

The aim of our case-control study was to determine 
the association of single-nucleotide polymorphisms in 
FGF10, FGFR2 and MAP3K1 genes with breast cancer in 
a sample of Slovak women. Furthermore, we focused on 
the discriminative ability of each SNP to determine the 
risk of disease status in individual patients and tested the 
accuracy of the disease prediction model including all SNPs 
by unconditional linear regression and the random forest 
classification algorithm.

Materials and Methods

Subjects

We conducted the case-control study with 170 women 
(57.06  ± 11.60 years) with histopathologically diagnosed 
breast cancer and the control group comprised 146 healthy 
females (50.24 ± 10.69 years) without previous history of 
breast carcinoma or other malignancies. Women were of 
Slavic Caucasian origin, and samples were collected at the 
Clinic of Gynaecology and Obstetrics at the Jessenius Faculty 
of Medicine in Martin, the Comenius University in Bratislava 
and University Hospital in Martin. All subjects gave written 
informed consent and study was approved by the Ethical 
Committee (EC 1269/2013) and implemented in accordance 
with the Declaration of Helsinki.

Histopathological analyses

Immunohistopathology parameters of breast cancer tis-
sue samples were provided by the pathologists. Tumour 
and lymph node specimens were fixed in formalin and 
embedded in paraffin. The basic histological examination 
was performed on 4–5-μm-thick slides stained with hae-
matoxylin and eosin. In selected cases, lymph nodes were 
stained immunohistochemically (cytokeratin 19) to detect 
potential isolated tumour cells or micrometastases. Tumour 
type and histological grade were evaluated according to 
the WHO criteria and Nottingham grading modification 
(Elston and Ellis 1991; Lakhani et al. 2012). Briefly, immu-
nohistochemistry for oestrogen receptor (ER), progesterone 
receptor (PR) and human epidermal growth factor receptor 
(HER2) was performed concurrently on serial sections with 
ready to use reagents using an automated immunostainer 
Autosteiner Link 48 (Dako; Agilent Technologies, Inc., 
Santa Clara, CA, USA). Primary ER antibody (FLEX Mono-
clonal Rabbit, ER alpha, clone EP1, RTU, IR08461) and PR 
antibody (FLEX Monoclonal Mouse, clone PgR636, RTU, 
IS0683) were supplied by Dako; Agilent Technologies, Inc. 
(Santa Clara, CA, USA). Antigen retrieval was performed 
using EnVision TM FLEX Target Retrieval Solution High 
pH (pH 9.0) for 20 min at 97–98°C in PT Link instrument 
(Dako; Agilent Technologies, Inc., Santa Clara, CA, USA). 
Endogenous peroxidase activity was blocked by 10 min 
incubation in 3% hydrogen peroxide, followed by antibody 
incubation for 20 min at room temperature. EnVisionTM 
FLEX/HRP, High pH kit (K8000, Dako; Agilent Technolo-
gies, Inc., Santa Clara, CA, USA) was used as detection 
system according to the manufacturer’s instructions. The 
immunohistochemistry for HER2 was performed using 
a HercepTestTM Breast+Gastric kit (SK001, Dako; Agilent 
Technologies, Inc., Santa Clara, CA, USA). Antigens were 
retrieved in HercepTest TM Epitop Retrieval Solution (pH 
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6.0), using PT Link for 40 min at 97–98°C. Sections were 
blocked for endogenous peroxidase in 3% hydrogen perox-
ide for 10 min, then incubated with primary antibody for 
30 min at room temperature. HercepTestTM Visualization 
Reagents were used 30 min at room temperature according 
to the manufacturer’s instructions.

ER, PR and HER2 status were interpreted following the 
American Society of Clinical Oncology/College of American 
Pathologists criteria from 2010 and 2013 (Hammond et al. 
2010; Wolff et al. 2013). Tumours were considered as ER 
and PR positive if ≥1% of neoplastic cells stained positively. 
Positive HER2 status was considered for cases exhibiting 
a  3+ reaction in ≥10% of neoplastic cells. Cases with 2+ 
reaction of HER2 staining were considered as equivocal and 
were analysed by fluorescent in situ hybridization to con-
firm or exclude HER2 gene amplification. Table 1 provides 
information on histological type, grade, receptor status and 
molecular subtypes of the studies samples.

DNA extraction and HRM assays

DNA was isolated from the peripheral blood using the 
commercially available isolation kit based on silica gel mem-
branes, and sample concentrations were analysed by Qubit 
fluorometer. All samples were diluted in sterile distilled water 
to 20 ng/µl final concentration.

Genotyping was performed by high resolution melting 
(HRM) method which is based on the different disassocia-
tion characteristics of double-stranded DNA amplicons and 
fluorescence measurement. Validated positive controls of 
all genotypes and negative controls were included in each 
analysis which ran in a 96-well plate in the LightCycler® 480 
Real-Time PCR System (Roche Diagnostics). The single-
tube mixture was prepared in a total volume of 20 µl (Light 
Cycler Master Mix 10.0 µl, 25 mM MgCl2 2.4 µl, 10 pmol 
P1 0.4 µl, 10 mol P2 0.4 µl, H2O 4.8 µl, 20 ng DNA 2.0 µl). 
We designed all primers in accordance with HRM method 
requirements and using Primer3 online application. The 

Table 1. Histopathological characteristics of breast cancer patients

Frequency (%)
Histological type 

DIC 76.0
LIC 7.8
DCIS 1.9
Other 14.3

Histological grade
Grade 1 16.7
Grade 2 38.3
Grade 3 45.0

ER status
ER-positive 85.8
ER-negative 14.2

PR status
PR-positive 79.8
PR-negative 20.2

HER2 status
PR-positive 16.5
PR-negative 83.5

Molecular subtype
Luminal A 79.8
Luminal B 13.8
TN BC 3.7
HER2 2.8

DIC, ducal invasive cancer; LIC, lobular invasive cancer; DCIS, 
ductal cancer in situ; ER, oestrogen receptor; PR, progesterone 
receptor; HER2, human epidermal growth factor receptor 2.

Figure 1. Schematic HRM (high resolution melt-
ing) curves determining CT, TT and CC FGFR2 
genotypes. Different melting curves represent three 
genotypes. The curve course and temperature of the 
melting depends on the amplicon sequence. At the 
beginning of the HRM analysis the fluorescence is 
high as the dye is bound to dsDNA amplicons. By 
heating, dsDNA decreases as the DNA is melting 
and the fluorescence is reduced.

specificity was checked by Primer-BLAST application and 
formation of dimers by OligoAnalyzer tool 3.1. Primer 
sequences were as follows: rs4415084 (FGF10): forward 
5´-TAGCCCTGTTGTATTCCTGATGAC-3´and reverse 
5´-AAGATTGCTGTATGTGTGGCAGGT-3´; rs2981582 
(FGFR2) forward 5´-CGAGAATAAAACGGCAGATC-
CC-3´, reverse 5´-GACTGCTGCGGGTTCCTAAAG-3´ 



568 Dankova et al.

and rs889312 (MAP3K1) forward 5´- ACACAAGTCAG-
GCCCCATTA-3´, reverse 5´-TGGGAAGGAGTCGTT-
GAGTT-3´. The genotypes were determined by the different 
shapes of the melting curve (Figure 1). Several samples from 
each SNP were validated by Sanger sequencing. The PCR 
samples were purificated by Nucleo Spin Gel and PCR Clean-
up kit and by SigmaSpin™ Sequencing Reaction Clean-Up. 
The analyses were carried out on the 3500 Genetic Analyzer 
(Applied Biosystems™). The sequences were read with free 
trace viewer Chromas program v.2.6.2.

Statistical analyses

The conformity of genotypes distribution with Hardy-
Weinberg Equilibrium was tested by a  goodness-of-fit χ2 
test in both controls and cases groups. The comparison of 
genotype distribution between cases and controls was tested 
by the χ2 test with Monte-Carlo p-values. Odds ratios and 
their 95% confidence intervals were obtained in logistic 
regression, with adjustment for age. The predictive accuracy 
of the model was measured by the area under the ROC 

(receiver operating characteristic) curve. The random for-
est classification algorithm with the nested cross-validation 
feature selection was used to obtain a realistic estimate of 
the predictive performance of the breast cancer risk model.

All data were analysed using R software (R Core Team, 
2015) and IBM SPSS program version 21. p values below 
0.05 were considered statistically significant.

Results

The distribution of genotypes and allele frequencies of all 
three SNPs according to health status are shown in Table 2. 
Genotypes with risk minor alleles occurred more often in 
all three SNPs in the breast cancer case group than in the 
control group. However, statistical analyses revealed signifi-
cant association only between the FGFR2 (p = 0.032) and 
MAP3K1 (p = 0.015) gene polymorphisms and breast cancer 
susceptibility. The genotype distribution of all SNPs showed 
conformity with Hardy-Weinberg Equilibrium criteria in 
both study groups (p  > 0.05) except for FGF10 genotype 
distribution in the control group (p = 0.011).

Table 3 shows the odds ratios of heterozygotes and homozy-
gotes with two minor risk alleles of the three studied polymor-
phisms. Individuals with two minor alleles in homozygous 
form had higher risk than heterozygotes in FGFR2 (OR 1.95 
vs. 1.77) and in MAP3K1 (OR 2.89 vs. 1.76) polymorphisms. 
The range of confidence intervals and p-values for rs4415084 
FGF10 polymorphism confirmed that neither homozygosity 
nor heterozygosity for the T  variant is associated with in-
creased breast cancer risk.

We also analysed association of these polymorphisms 
with histopathological characteristics of the samples dis-
played in the Table 1. However, neither the association of 
three polymorphisms and tumour type, histological grade, 
receptor status nor molecular subtype was statistically sig-
nificant (p < 0.05).

Table 2. Genotype and allele frequencies of polymorphisms in FGF10, FGFR2 and MAP3K1 genes

Genotype
n (%)

Allele

FGF10 C>T CC CT TT C T
Cases (170) 49 (28.7) 77 (45.0) 45 (26.3) 0.51 0.49 χ2 = 1.895 p = 0.388
Controls (146) 52 (35.6) 57 (39.0) 37 (25.3) 0.55 0.45
FGFR2 C>T CC CT TT C T
Cases (170) 57 (33.5) 81 (47.6) 32 (18.9) 0.57 0.43 χ2 = 6.879 p = 0.032*
Controls (146) 70 (47.9) 56 (38.4) 20 (13.7) 0.67 0.33
MAP3K1 A>C AA AC CC A C
Cases (170) 79 (46.2) 79 (46.2) 13 (7.6) 0.69 0.31 χ2 = 8.383 p = 0.015*
Controls (146) 90 (61.6) 51 (34.9) 5 (3.4) 0.79 0.21

Frequencies of genotypes are shown as number (n) and percent (%); * p < 0.05.

Table 3. Odds ratios of the FGF10, FGFR2 and MAP3K1 genotypes

OR
95% CI

p
Lower bound Upper bound

FGF10 C>T
CT 1.43 0.85 2.42 0.188
TT 1.29 0.72 2.32 0.458
FGFR2 C>T
CT 1.77 1.09 2.89 0.026*
TT 1.95 1.01 3.83 0.049*
MAP3K1 A>C
AC 1.76 1.11 2.81 0.019*
CC 2.89 1.03 9.57 0.048*

OR, odds ratio; CI, confidence interval; * p < 0.05.
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To assess the predictive capability of single SNPs, we 
calculated classification error of each SNP. Although the 
best value was found for FGFR2 polymorphism (41.95%), 
its discriminative ability was low (Table 4).

ROC curves and the area under the ROC curve (AUC) 
were used to quantify the predictive accuracy of the multi-
variate logistic regression model of all studied SNPs. FGFR2, 
MAP3K1 polymorphisms and age were statistically signifi-
cant predictors of breast cancer in the model. The accuracy 
of this prediction model approached 70%, with moderate 
accuracy (Figure 2).

The Random Forest algorithm was applied to the data as 
an alternate predictive algorithm in order to obtain a realistic 
estimate of the predictive performance of the three SNPs 
and age by nested cross-validation feature selection. This 
algorithm also determined FGFR2, MAP3K1 and age as the 
important breast cancer predictors. The predictive accuracy 
of this model was 67.3% with 35.9% sensitivity and 88.6% 
specificity.

Discussion

Our study confirmed significant associations of low-
penetrant FGFR2 and MAP3K1 polymorphisms with 
breast cancer risk in Slovak women. However, we found 
no evidence to implicate the FGF10 T allele polymorphism 
as a  breast cancer risk factor even though this had been 
previously identified by large-scale and genome-wide as-
sociation breast cancer studies (Easton et al. 2007; Hunter 
et al. 2007; Stacey et al. 2008). The odds ratios for FGFR2 
heterozygous and homozygous form (1.77 and 1.95) and 
for MAP3K1 (1.76 and 2.89) were higher than reported in 
the literature (1.2 and 1.6 for FGFR2 and 1.1 and 1.3 for 
MAP3K1) (Easton et al. 2007; Ripperger et al. 2009). These 
differences can be explained by inter-population variability 
but also by sample size.

Although, the MAP3K1 mutations were more frequently 
observed in HER2+ breast cancer and FGFR2 variants are 
reported relevant in ER+ and PR+ breast cancer (Pham 
et al. 2013; Campbell et al. 2016), we found no significant 
association between genetic polymorphisms and histo-
pathological characteristics of the cancer samples. Further 

studies of other polymorphisms in these genes and the 
expression profile could elicit essential information be-
cause FGFR2 is a tumour suppressor gene amplified and 
overexpressed in 10–15% of breast tumours (Rebbeck et al. 
2009; Ahmad et al. 2012; Tiong et al. 2013) and enhanced 
FGFR expression may not only be due to genetic alterations 
but also to epigenetic deregulation at transcriptional and 
post-translational levels.

Multiple studies have already examined and confirmed 
the association of these low-penetrant genes with breast can-
cer susceptibility in several populations (Easton et al. 2007; 
Rebbeck et al. 2009; Murillo-Zamora et al. 2013; Chen et al. 
2016b). However, most of these did not assess SNP’s predic-
tive capability, and this is one of the most important factors 
for precision medicine (Wu et al. 2016). To understand the 
discriminative ability of studied SNPs, individually, we com-
puted the classification error. Our results indicate that overall 
accuracy was weak using classification error; ranging from 
41.95% to 45.11%. With regard to low-penetrating SNPs, it 
is assumed that more SNPs have greater cumulative power, 
and therefore, we generated ROC curve of the multivariate 
logistic regression model which includes all three studied 
genotypes. Based on the AUC value of 0.695, the model’s 
predictive performance approached moderate accuracy. 

Table 4. Discriminative ability of three SNPs according to the 
classification error

Classification  
error (%)

Discriminative  
ability

FGF10 C>T 45.11 low
FGFR2 C>T 41.95 low
MAP3K1 A>C 42.59 low

Figure 2. ROC (receiver operating characteristic) curve with the 
area under the ROC curve (AUC) for the multivariate logistic 
regression model. The position of the ROC on the graph reflects 
the accuracy of the diagnostic test. Closer to the upper left corner, 
the better, as the area under the curve is higher, which means 
better prediction power of the model based on higher sensitivity 
and specificity.
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Wu et al. (2016) analysed more SNPs and the AUCs for 
the models with 10, 22 and 77 SNPs were 0.591, 0.622 and 
0.684, respectively, and this indicates that more SNPs the 
prediction model includes, the better discriminative abil-
ity the model attains. However, their last model with 153 
SNPs demonstrated lower predictive performance in terms 
of AUC 0.650. It appears that the common genetic variants 
attained the upper limit of their predictive power. Higher 
AUC value of our model might be explained by age, one of 
the main determinants in breast carcinogenesis, which we 
included in our model. Further, because the logistic regres-
sion overfits data and provides upward-biased estimates of 
accuracy, sensitivity and specificity, we employed the Ran-
dom Forest algorithm with nested cross-validation selection 
to obtain a realistic estimate of the SNP’s predictive ability 
with age. This provided us with lower, but realistic estimate 
of model´s accuracy (67.3%). We assume that inclusion 
of other clinical risk factors could increase the predictive 
power of the models.

In conclusion, we confirmed FGFR2 and MAP3K1 
as breast cancer susceptible genes with T  allele (FGFR2 
rs2981582) and C allele (MAP3K1 rs889312) elevating the 
disease risk. The discriminative ability of single SNP mod-
els was low. Based on the AUC value of 0.695, the model’s 
predictive performance approached moderate accuracy. 

Further studies examining more low-penetrant genes 
and combination of highly-, moderate- and low-penetrant 
polymorphisms involved in another main signalling path-
ways, together with clinical characteristics would enhance 
assessment of the cumulative role of genetic variants in breast 
carcinogenesis and determine their diagnostic accuracy.
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