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Clear cell renal cell carcinoma (ccRCC) is the most common type of renal cancer in adults. Th e aim of this study is to 
identify the biomarkers and potential molecular mechanisms of ccRCC. Th ree gene expression profi les and two miRNA 
expression profi les were downloaded from GEO database. A total of 330 up-regulated diff erentially expressed genes (DEGs), 
545 down-regulated DEGs, 26 up-regulated diff erentially expressed miRNAs (DEMs) and 11 down-regulated DEMs were 
identifi ed by GEO2R. Th e gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis were performed by KOBAS soft ware. Th e results showed that GO terms of the up-regulated DEGs were 
mostly enriched in response to stimulus at BP level, cell periphery at CC level and binding at MF level, while the GO terms of 
down-regulated DEGs were enriched in single-organism process at BP level, extracellular exosome at CC level and catalytic 
activity at MF level. As for KEGG pathways, HIF-1 signaling pathway, focal adhesion, PI3K-Akt signaling pathway and 
metabolic pathways were signifi cantly enriched. Th en, protein-protein interaction (PPI) network and miRNA-gene network 
were constructed and analyzed by Cytoscape. A total of eight DEGs were identifi ed as biomarkers, including VEGFA, 
PPARA, CCND1, FLT1, CXCL12, FN1, DCN and ERBB4. Expression validation and survival analysis were performed by 
GEPIA and OncoLnc, respectively. Four biomarkers were verifi ed by quantitative real-time PCR (qPCR) in 786-O cell line 
and HK-2 cell line. All four genes had the same expression trend as predicted. Our study provides a series of biomarkers and 
molecular mechanisms for the deeper research of ccRCC. 
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Clear cell renal cell carcinoma (ccRCC) is the most 
common type of RCC that occurs in adults and has the 
worst prognosis among the common epithelial tumors of 
the kidney [1]. Recently, increasingly accurate knowledge 
on the molecular pathogenesis of this tumor has provided 
diff erent treatments of RCC [2]. However, the early 
diagnosis and therapy of ccRCC remain challenging.

Molecular biomarkers have been shown to aid the 
diagnosis and therapy for many cancers, and some 
biomarkers are also found in ccRCC [3]. For example, 
IL13RA2 has been reported to play a role in the acquired 
sunitinib-resistance in ccRCC [4]. Besides, higher SK1 
levels in ccRCC can induce invasion and angiogenesis and 
lead to shorter survival [5]. Except for gene biomarkers, 
some miRNAs have also been confi rmed as biomarkers 
of ccRCC. miR-106b-5p can induce cell proliferation and 

suppress processing of caspase-3 and cell apoptosis in 
ccRCC cells by down-regulating SETD2 [6]. However, 
miR-126 is down-regulated in metastatic ccRCC, and is 
associated with cellular migration and proliferation [7]. For 
cancers, it is common that multiple molecules play a role 
in the same cancer. So, a systemic analysis of the molecular 
mechanism is needed.

Bioinformatics analysis is a useful tool to perform 
systemic analysis of diseases. By analyzing gene ontology 
(GO) terms, we can better understand the biological process 
(BP), cellular component (CC) and molecular function 
(MF) of ccRCC  [8]. Meanwhile, Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis can provide 
us the most signifi cant pathways in ccRCC [9]. Besides, 
network analysis is the best way to identify the biomarkers 
and molecular interactions [10].
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Materials and methods

Microarray data. Microarray profi les were downloaded 
from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo) [11], including three gene expres-
sion profi les (GSE16441, GSE53757 and GSE68417) and two 
miRNA expression profi les (GSE12105 and GSE16441). Th e 
GSE16441 datasets contained 17 ccRCC samples and 17 
normal renal samples in both gene and miRNA expression 
profi les. GSE53757 consisted of 72 ccRCC samples and 72 
normal samples. GSE68417 included 29 ccRCC samples and 
20 normal samples. GSE12105 contained 12 ccRCC samples 
and 12 normal samples.

Identifi cation of DEGs and DEMs. Th e identifi cation of 
DEGs and DEMs was performed by GEO2R (http://www.ncbi.
nlm.nih.gov/geo/info/geo2r.html). GEO2R is a useful web 
tool for comparing groups of samples to identify diff erentially 
expressed genes and miRNAs across experimental conditions. 
Th e p-value<0.05 and |logFC|>1 were set as cut-off  criteria.

Functional enrichment analysis of DEGs. GO and KEGG 
analysis are common useful methods for annotating gene 
functions and identifying biological attributes for genome or 
transcriptome data. Th e GO and KEGG pathway analysis were 
performed by KOBAS 3.0 (http://kobas.cbi.pku.edu.cn) [12] 
web tool. Th e p-value<0.05 was defi ned as the cut-off  criterion.

PPI network construction and modules analysis. Search 
Tool for the Retrieval of Interacting Genes (STRING, http://
string.embl.de) database is an online tool to evaluate the 
protein-protein interaction (PPI) information. To analyze the 
relationships among the DEGs, PPI network was constructed 
by STRING (version 10.0), and the combined score>0.4 
was chosen as the cut-off  criterion. Th en, PPI network was 
visualized by Cytoscape (version 3.4.0) and the modules was 
analyzed by the Molecular Complex Detection (MCODE) 
app. Th e cut-off  criterion was defi ned as follows: MCODE 
scores>3 and the number of nodes>4. In addition, the KEGG 
pathway analysis of genes in the modules was performed by 
KOBAS and the p-value<0.05 and input number >3 were set 
as the cut-off  criterion.

Prediction of miRNA targets. Th e prediction of the target 
genes of DEMs was performed by fi ve established miRNA 
target prediction programs (miRanda, MirTarget2, PicTar, 
PITA and TargetScan). Th e target genes predicted by at least 
three programs were considered as the targets of the DEMs.

Expression validation and survival analysis. Gene 
expression profi ling interactive analysis (GEPIA, http://
gepia.cancer-pku.cn) [13] was used for validating the expres-
sion of hub genes. Survival analysis for mRNAs and miRNAs 
was performed by OncoLnc (http://www.oncolnc.org).

Cell culture. Th e human RCC cell line 786-O and normal 
renal cell line HK-2 were obtained from the Molecular 
Oncology and Epigenetics Laboratory (the First Affi  liated 
Hospital of Chongqing Medical University, Chongqing, 
China). Th e 786-O cell line was cultured in RPMI-1640 
medium (Hyclone) supplemented with 10% fetal bovine 

serum (PAN), while the HK-2 cell line was cultured in 
Keratinocyte Serum Free Medium (GIBCO) supplemented 
with 0.05mg/ml BPE and 5ng/ml EGF. Both cell lines were 
cultured at 37 °C in 5% CO2.

Quantitative real-time PCR validation. Total RNA of 
cultured cells (786-O and HK-2) was extracted by RNAiso 
Plus (TaKaRa, China). Th en, RNA (1 μg) was reverse 
transcribed using GoScript™ Reverse Transcription System 
(Promega, USA). Quantitative real-time PCR was performed 
by GoTaq qPCR Master Mix (Promega, USA) and qPCR 
values of each gene were normalized against ACTB. Th en, 
the relative expression of genes was calculated by the 2–ΔΔCt 
method [14].

Statistical analysis. Th e qPCR data was presented as 
mean ± SD and analyzed by Student’s t-test. Th e p-value <0.05 
was considered to have statistical diff erences.

Results

Identifi cation of DEGs and DEMs. A total of 1763, 2121 
and 670 up-regulated DEGs were identifi ed with the 2275, 
2442 and 1115 down-regulated DEGs from GSE16441, 
GSE53757 and GSE68417, respective ly. Moreover, 102 and 
58 up-regulated DEMs were identifi ed with the 193 and 
34 down-regulated DEMs from GSE12105 and GSE16441, 
respectively. A total of 330 up-regulated DEGs (Figure 1A) 
and 545 down-regulated DEGs (Figure 1B) were found in 
the overlap of the three gene expression datasets. Besides, 
there were 26 up-regulated DEMs (Figure 1C) and 11 down-
regulated DEMs (Figure 1D) in the overlap of the two miRNA 
expression datasets.

Functional enrichment analysis of DEGs. Th e functional 
and pathway enrichment analysis of the DEGs was performed 
by KOBAS online tool. GO enrichment results showed that 
up-regulated DEGs were enriched in response to stimulus, 
immune system process and single-organism cellular process 
at BP level; cell periphery, plasma membrane and membrane 
at CC level and binding, protein binding and receptor 
binding at MF level. Down-regulated DEGs were signifi -
cantly enriched in single-organism process, single-organism 
metabolic process and organic acid metabolic process at BP 
level; extracellular exosome, extracellular vesicle and extracel-
lular organelle at CC level and catalytic activity, binding and 
oxidoreductase activity at MF level (Figure 2). Most GO terms 
were enriched in the signal transduction and cellular regula-
tion processes and supported the reliability of our analysis.

KEGG pathway analysis revealed that up-regulated DEGs 
were signifi cantly enriched in HIF-1 signaling pathway, focal 
adhesion and PI3K-Akt signaling pathway (Figure 3A), while 
down-regulated DEGs were enriched in metabolic pathways, 
such as carbon metabolism, propanoate metabolism and 
fatty acid degradation (Figure 3B).

PPI network construction and modules analysis. Th e 
PPI network was analyzed by STRING and constructed by 
Cyt  oscape (Figure 4). Th en, the modules in the PPI network 
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were analyzed by MCODE app. Th e top four modules were 
chosen and the KEGG pathway analysis of the genes in the 
top four modules was performed by KOBAS. Th e pathway 
enrichment analysis showed that genes in these modules were 
signifi cantly enriched in HIF-1 signaling pathway, oxidative 
phosphorylation, metabolic pathways and fatty acid metabo-
lism (Figure 5).

miRNA-gene network. Th e target genes of the identifi ed 
DEMs were predicted and compared with DEGs. Th en, the 
overlapping genes were chosen as the target genes. Moreover, 
the miRNA-gene network was constructed by Cytoscape 
(Figure 6). To better identify the gene biomarkers in ccRCC, 
we combined both PPI and miRNA-gene networks. Only the 
genes meeting the criterion that degree ≥30 in PPI network 
and degree ≥3 in miRNA-gene network were chosen as 
the key gene biomarkers. A total of eight gene biomarkers 
were identifi ed, including VEGFA, PPARA, CCND1, FLT1, 
CXCL12, FN1, DCN and ERBB4 (Figure 7). Besides, several 
miRNAs   were also identifi ed, such as hsa-miR-142-3p and 
has -miR-142-5p.

Expression validation and survival analysis. Th e 
expression of eight identifi ed hub genes was validated by 
GEPIA. Four genes (CCND1, FLT1, FN1 and VEGFA) were 

increased in ccRCC tissues, while three genes (CXCL12, 
DCN and ERBB4) were decreased. However, the expression 
of PPARA showed no signifi cant diff erences between ccRCC 
tissues and normal tissues (Figure 8). Survival analysis for 
mRNAs showed that CCND1, DCN, FLT1 and PPARA play 
important roles in ccRCC. Moreover, hsa-miR-142-3p and 
has-miR-142-5p also have an infl uence on the survival of 
ccRCC patients (Figure 9).

Quantitative real-time PCR validation. To confi rm 
the reliability of the bioinformatics analysis for identifying 
biomarkers, quantitative real-time PCR was performed. 
Th e expression of the four identifi ed gene biomarkers was 
detected in ccRCC cell line (786-O) and normal renal cell 
line (HK-2). Th e above analysis revealed that CC ND1 and 
FN1 were up-regulated DEGs in ccRCC, while ERBB4 and 
PPARA were down-regulated DEGs. Th e qPCR results 
showed that the expression of CCND1 was higher in 786-O 
cell line than that in HK-2 cell line (p<0.01). Th e expression 
of FN1 was higher in 786-O cell line than that in HK-2 cell 
line (p<0.05). However, the expression of ERBB4 and PPARA 
was lower in 786-O cell line than that in HK-2 cell line 
(p<0.05 and p<0.001, respectively) (Figure 10). Th ese results 
supported the bioinformatics analysis in our study.

Figure 1. Identifi cation of DEGs and DEMs. (A) Th e identifi cation of up-regulated DEGs. (B) Th e identifi cation of down-regulated DEGs. (C) Th e 
identifi cation of up-regulated DEMs. (D) Th e identifi cation of down-regulated DEMs.
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Figure 2. GO terms analysis of the DEGs. Black bars stand for the up-regulated DEGs, while white bars stand for the down-regulated DEGs.

Figure 3. KEGG pathways enrichment of the DEGs. (A) KEGG pathways analysis of the up-regulated DEGs. (B) KEGG pathways analysis of the down-
regulated DEGs.
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Discussion

ccRCC is the most common type of RCC 
in adults. In this study, bioinformatics analysis 
was performed to identify the biomarkers and 
potential mechanisms in ccRCC. A total of 
330 up-regulated DEGs, 545 down-regulated 
DEGs, 26 up-regulated DEMs and 11 down-
regulated DEMs were identifi ed. For the 
up-regulated DEGs, GO terms were mostly 
enriched in response to stimulus at BP level, 
cell periphery at CC level and binding at MF 
level. For the down-regulated DEGs, GO terms 
were enriched in single-organism process at 
BP level, extracellular exosome at CC level 
and catalytic activity at MF level. Most of these 

Figure 4. PPI network construction and modules analysis. Th e yellow nodes represent the DEGs, purple nodes represent the genes involved in the top 
four modules and the lines represent the interaction between two nodes.

Figure 5. KEGG pathways analysis of the genes in the top four modules.
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activation of HIF-1α leading to hypoxic signaling, such as 
increased VEGF production and enhanced glycolysis [17]. 
Metabolic reprogramming is considered as a symbol of 
cancer [18]. Oncogenic signaling pathways directly enhances 
nutrient acquisition and facilitates assimilation of carbon 
leading to support for cell growth and proliferation, such as 
HIF-1α, PI3K and KRAS signal pathways [19]. Th e PI3K-Akt 
pathway is the primary eff ector of insulin signaling and the 
activation of Akt promotes glucose uptake, glycolytic fl ux and 
lactate excretion [20]. In addition, both Ras activation and 
hypoxia can activate HIF-1 [21]. Th ese pathways supported 
the cancer cell growth and proliferation.

Th e PPI network was constructed and analyzed by 
Cytoscape soft ware. Pathways analysis of the genes in the 

Figure 6. miRNA-gene network. Yellow nodes stand for the DEGs, while green nodes stand for the DEMs. Th e lines stand for the regulation relationship 
between DEMs and DEGs.

enriched GO terms were fundamental concepts of regulatory 
process in the cell.

KEGG pathway analysis showed that HIF-1 signaling 
pathway, focal adhesion, PI3K-Akt signaling pathway and 
metabolic pathways were signifi cantly enriched. Hyp oxia 
grows up in most solid tumors due to incapacity of the 
ex isting vascular system to provide the growing tumor mass 
with adequate amounts of oxygen. Oxidative stress in the 
tumor stroma imitates the eff ects of hypoxia resulting in 
an excess production of ROS. Th en, excess ROS activates 
the antioxidant defense protecting the cancer cells from 
apoptosis [15]. HIF-1 has been shown to participate in many 
molecular events required for the adaptation of tumor cells 
to hypoxia [16]. Besides, ROS and NO can potently trigger 



248 F. WU, S. WU, X. GOU

top four modules was performed by KOBAS. Th e results 
showed that the KEGG pathways were also signifi cantly 
enriched in HIF-1 signaling pathway, oxidative phosphoryla-
tion, metabolic pathways and fatty acid metabolism, which 
supported the above analysis and could reveal the molecular 
mechanisms of ccRCC.

miRNAs are series of small non-coding RNA which play 
a role in regulating cellular processes. By combined analysis 
of PPI and miRNA-gene network, eight gene biomarkers 
were identifi ed, including VEGFA, PPARA, CCND1, FLT1, 
CXCL12, FN1, DCN and ERBB4. VEGFA is a member of 
the PDGF/VEGF growth factor family. I  t can induce prolif-

Figure 7. Gene biomarkers regulation network. Yellow nodes stand for the DEGs, red nodes stand for the eight gene biomarkers and green nodes stand 
for DEMs. Th e lines stand for the regulation relationship between two nodes.
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eration and migration o f vascular endothelial cells, and is 
essential for both physiological and pathological angiogen-
esis. Burgesser et al. [22] reported that there is a direct linear 
relationship between expressions of VEGF-A and HIF-1α in 
ccRCC samples. Besides, VEGFA can promote proliferation, 
migration and invasion, and suppress apoptosis of 786-O cells 
[23]. FLT1 is a member of the vascular endothelial growth 
factor receptor (VEGFR) family. Similarly, Flt1 promotes the 
growth and metastasis of tumor cells [24]. In addition, FLT1 
can induce tumor metastasis [25]. Moreover, hypermethyl-
ated FLT1 plays an important role in chemotherapy resistance 
[26]. CXCL12 plays a role in many cellular functions, such as 
tumor growth and metastasis. CXCL12 was up-regulated in 
bladder cancer and related to the diff erentiation degree and 
invasive depth of cancer tissues [27]. DCN is an important 
component of the extracellular matrix. DCN underexpres-
sion is correlated with the presence of KRAS mutations [28].

Experimental validation was performed to confi rm our 
results predicted by bioinformatics analysis. Th e qPCR 
results revealed that the expression of CCND1 and FN1 was 
higher in 786-O cell line than in HK-2 cell line, while the 
expression of ERBB4 and PPARA was lower in 786-O cell line 
than in HK-2 cell line.   CCND1 is frequently overexpressed 
in early stages of gastric carcinoma [29]. It is the target of 
multiple biomarkers in diff erent cancers, such as prostate 
cancer, bladder cancer and   cervical cancer [30, 31]. FN1 is 
overexpressed in prostate cancer and related to aggressive 
prostate cancer [32]. However, there is no report about FN1 
in ccRCC. As for ERBB4, it can directly regulate HIF-1α and 
promote HIF-1α stability in a series of human cancers [33]. 
It has been found that PPARA mRNA level was decreased in 
hepatocellular carcinoma regulated by miR-9 [34]. Besides, 
PPARA physically bounds to Bcl2 protein leading to reduced 
cancer cell chemoresistance [35].

Figure 8. Boxplot of expression validation. *: p<0.05; T: tumor; N: normal
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Multiple factors participate in the occurrence and 
progression of malignant tumors. By combined analysis of 
mRNAs, miRNAs, interactions and regulatory networks, the 
molecular mechanisms of tumors can be investigated and 
explained. Th is is a useful approach to identify biomarkers 
playing the most important role in cancer. In this study, we 
identifi ed the biomarkers of ccRCC by bioinformatic analysis 
and performed experimental validation. However, there are 
still some limitations in this study. Due to the diffi  culty to 
obtain clinical samples and information, there was a lack 

of validation in tissue. Besides, we only checked the mRNA 
levels in one ccRCC cell line and one normal cell line, which 
cannot fully explain the diff erent expression of biomarkers 
in ccRCC.

Conclusion

In our study, eight gene biomarkers were identifi ed in 
ccRCC, including VEGFA, PPARA, CCND1, FLT1, CXCL12, 
FN1, DCN and ERBB4. Moreover, four biomarkers were 

Figure 9. Survival analysis for mRNAs and miRNAs.
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verifi ed by qPCR. Th ese genes might play important roles in 
the ccRCC research. Besides, a series of signifi cant molecular 
mechanisms and pathways were provided for diagnosis and 
therapy.
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