
163Gen. Physiol. Biophys. (2018), 37, 163–174

doi: 10.4149/gpb_2017020

Acid sphingomyelinase inhibitors, imipramine and zoledronic acid, 
increase skeletal muscle tissue sensitivity to  insulin action at old age
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Abstract. Malfunction of skeletal muscles and dysregulated turnover of sphingolipids in the insu-
lin responsive tissues have been determined at old age. Present article investigates the role of acid 
sphingomyelinase (SMase)-dependent ceramide accumulation in reduction of the skeletal muscle 
sensitivity to insulin action at old age. The 3-, 12- and 24-month-old Wistar male rats were used in 
the experiments. The progressive increase of ceramide content and ceramide/sphingomyeline (SM) 
ratio was determined in the extensor digitorum longus (EDL) muscle during aging of rats. The age-
dependent ceramide accumulation was followed by reduction of muscle tissue response to insulin 
action. The resistance of EDL to insulin action at old age can be imitated by exogenous natural 
N-palmitoyl-D-erythro-sphingosine (C16-ceramide) injection to adult rats, while imipramine or 
zoledronic acid treatment of old animals nullified dysregulation of SM turnover and improved the 
muscle tissue response to insulin action. Drugs significantly increased insulin-stimulated 2-D-[3H]
glucose uptake by the EDL muscle of 24-month-old animals to the level close to that of 3-month-old 
rats in both in vivo and in vitro experiments. Imipramine, as well as zoledronic acid significantly 
reduced acid SMase activity in the EDL of old animals. Thus, ceramide overproduction via acid 
SMase activation can be important for the development of EDL resistance to insulin action. Therefore, 
acid SMase inhibitors can possibly be used as therapeutic tools for improvement of muscle tissue 
sensitivity to insulin action at an old age. 
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Introduction

Acid sphingomyelinase (SMase) is a key enzyme of sphin-
golipid turnover. The main products of SMase activity are 
ceramides, which are signaling molecules and important 
components of lipid rafts. Activation of acid SMase has been 
determined under the action of various cellular stressors 
and inflammatory cytokines, which may play a role in in-
sulin resistance (Summers 2006; Cawthorn and Sethi 2008; 
Jenkins et al. 2010). Moreover, ceramide accumulation in 
the insulin responsive tissues are usually associated with 

reduced sensitivity to insulin action (Chavez and Summers 
2003; Holland and Summers 2008; Summers 2010; Lipina 
and Hundal 2011). Increased production of ceramides and 
inflammatory cytokines has been correlated with reduced 
liver and brain cell sensitivity to insulin action at old age 
(Babenko and Kharchenko 2012, 2015a, 2015b, 2015c). 
Ceramides can inhibit numerous key points of insulin sign-
aling pathways such as protein kinase Akt, glucose trans-
porter 4 (Glut4) and phospholipase D. Obesity-induced 
insulin resistance is usually associated with an increase of 
ceramide synthesis de novo and can be improved by the 
inhibitor of sphingolipid synthesis, myriocin (Holland et 
al. 2007). However, improvement of liver cell sensitivity 
to insulin action at an old age can be done only by the 
mixture of myriocin and inhibitors of neutral and acid 
SMases (Babenko and Kharchenko 2015a). Treatment 
of isolated “old” liver cells by inhibitor of key enzyme of 
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sphingolipid synthesis de novo (serinepalmitoyltransferase 
(SPT)) myriocin and inhibitors of neutral (GW4869) and 
acid SMases (imipramine) abolishes age-dependent cera-
mide accumulation and improves hepatocytes sensitivity to 
insulin action (Babenko and Kharchenko 2015a). However, 
in the brain cortex and hippocampus of 24-month-old 
rat neutral SMase-dependent ceramide accumulation has 
been determined (Babenko and Shakhova 2014a). Neutral 
SMase inhibitors nullify age-dependent changes of sphin-
gomyeline (SM) turnover, while imipramine treatment of 
old rats does not change the ceramide content in the brain. 
It can be assumed that neutral SMase-induced ceramide 
accumulation in brain structures at old age led to brain 
resistance to insulin action. However, little is known about 
mechanism of age-dependent ceramide accumulation in 
the skeletal muscle which is a  main insulin-responsive 
tissue. 

Different pathways of ceramide production have been 
demonstrated in the muscle tissues (Błachnio-Zabielska 
et al. 2010, 2011). SPT, neutral and acid SMase, neutral 
and alkaline ceramidases (nCDase and alCDase) play an 
important role in maintaining specific levels of ceramide 
in the soleus and red and white sections of gastrocnemius 
muscle. It has been demonstrated that elevated ceramide 
content in the muscle tissues induced by the diet enriched 
with saturated fat (SFD) could be a result of increased SPT 
activity and decreased activity of nCDase. At the same 
time, diet enriched with the polyunsaturated fat did not 
change ceramide content in the skeletal muscle due to in-
creased activity of SPT and alCDase and decreased activity 
of SMases. Elevated ceramide level in the soleus and gas-
trocnemius muscle of rats on SFD resulted in reduction of 
insulin-stimulated glucose uptake (Błachnio-Zabielska et al. 
2010). Moreover, a two-fold increase of ceramide level in the 
skeletal muscle of obese humans was observed to decrease 
Akt phosphorylation after an insulin infusion and thus, 
could play an important role in the reduced ability of insu-
lin to stimulate glucose uptake (Adams et al. 2004). Recent 
experiments using cultured myotubes and permeabilized 
red gastrocnemius muscle fiber bundles showed that exog-
enous and endogenous ceramides increased mitochondrial 
fission associated with reduced mitochondrial respiration 
and increased production of reactive oxygen species (ROS). 
Also, it was found that mitochondrial fission is important 
in ceramide-induced insulin resistance (Smith et al. 2013). 
Using myriocin, the inhibitor of the rate-limiting enzyme 
in ceramide biosynthesis, it has been determined that newly 
synthesized ceramide in the red gastrocnemius muscle af-
fect both mitochondrial respiration and glucose tolerance 
in mice fed a high-fat, high-sugar diet. In addition, diet-
induced accumulation of the newly synthesized ceramide 
in the skeletal muscle plays an important role in reduction 
of cell sensitivity to insulin action due to inhibition of Akt 

phosphorylation and activity and mitochondrial dysfunc-
tion. It is also demonstrated that inhibition of acid SMase 
activity by specific enzyme inhibitors reduces ceramide level 
in such skeletal muscles as soleus and gastrocnemius of old 
rats (Babenko et al. 2016). However, the role of acid SMase-
dependent ceramide accumulation in the development of 
insulin resistance in muscle tissue should be determined. 
Taking into account that insulin signaling is similar in all 
classical insulin-sensitive tissues and ceramide induces 
insulin resistance via inhibition of key points of insulin-
receptor signal cascade an assumption can be made that acid 
SMase-dependent ceramide accumulation at old age leads 
to a decrease of skeletal muscle sensitivity to insulin. If so, 
the new target for treatment of muscle tissue resistance to 
insulin action at old age will be determined. 

The aim of the present work was to determine the impact 
of acid SMase hyperactivity in the intramuscular ceramide 
accumulation and reduction of the extensor digitorum lon-
gus muscle tissue response to insulin action at old age. For 
this purpose two inhibitors of acid SMase, imipramine and 
zoledronic acid, were used. These inhibitors have different 
mechanisms of action on SMase, minimally toxic, widely 
used to improve the acid SMase-dependent metabolic dys-
functions and licensed for medical use in humans (Kölzer 
et al. 2003; Roth et al. 2009; Arenz 2010; Jenkins et al. 2010; 
Kornhuber et al. 2010; Canals et al. 2011).

Materials and Methods

Materials

Imipramine hydrochloride (“Melipramin” Egis, Hungary), 
zoledronic acid (“Zometa”, Novartis Pharma Stein AG, Swit-
zerland), [N-methyl-14C-phosphorylcholine]sphingomyelin 
(52 mCi/mmol) (“PerkinElmer”, USA), sodium chloride 
(0.9% NaCl injectable solution, Galich Farm, Ukraine), 
Sorbfil plates (Sorbopolimer, Russia) for thin-layer chroma-
tography were used. Lipid standards (ceramide, SM) were 
obtained from Sigma (USA). Other chemicals used were of 
chemically pure grade.

Animals 

The 3-, 12- and 24-month-old Wistar male rats were used 
in the experiments. They were kept at 24oC on a cycle of 
12 h light/12 h darkness and had a free access to a standard 
chow diet and drinking water ad libitum. All experiments 
on animals were carried out according to the International 
Principles of the European Convention for the Protec-
tion of Vertebrate Animals Used for Experimental and 
Other Scientific Purposes (Strasbourg, 1985) and National 
General Ethical Principles for Experiments on Animals 
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(Ukraine, 2001). Experimental procedures were approved 
by the Institutional Animal Care and Use Committies at the 
Kharkov Karazin National University. The 3-month-old rats 
were divided into 2 groups: C16-ceramide intraperitoneally 
injected (40 μg per kg body weight) for 6 days and control 
group. Control rats were intraperitoneally injected for 6 days 
with a mixture of ethanol and dodecane (49:1, v/v) diluted 
in warm 0.9% sodium chloride. The 24-month-old rats 
were divided into four groups: imipramine- and zoledronic 
acid-treated and two control groups. The 24-month-old rats 
injected by imipramine, intramuscularly, daily for 14 days 
(10 mg/kg body weight) and rats injected by zoledronic 
acid, intramuscularly (0.15 mg/kg body weight) for 10 days, 
one time in two days. Control rats (for imipramine-treated) 
intramuscularly injected by 0.9% NaCl daily for 14 days. 
Control animals (for zoledronic acid-treated) intramus-
cularly injected by 0.9% NaCl for 10 days, one time in two 
days. Rats were fasted overnight and were anesthetized 
the next day with an injection of ketamine (75 mg/kg) and 
sacrificed by decapitation. Their skeletal muscle tissues 
(extensor digitorum longus) were used for lipid analysis, 
determination of acid SMase activity and insulin-induced 
glucose uptake as described below. 

Experiments with muscle tissue 

Extensor digitorum longus muscles were widely used to 
study muscle insulin sensitivity. Muscles were quickly re-
moved and dissected on ice. Isolated muscles were washed 
in Krebs-Ringer bicarbonate buffer, pH 7.4. Homogenates 
of the muscles, prepared in the Krebs-Ringer bicarbonate 
buffer, pH 7.4, were used for lipids extraction and separation 
as described below. Isolated muscle strips of 24-month-old 
rats were incubated in the Krebs-Ringer bicarbonate buffer, 
pH 7.4, in the presence of imipramine (50 and 100 µM) 
or DMSO (control) for 1.5 h at 37°C in the atmosphere of 
5% CO2 – 95% O2. The reaction was stopped with ice cold 
Krebs-Ringer bicarbonate buffer, pH 7.4 and muscles were 
used for lipids extraction and separation as described below. 
To determine the stimulation of glucose uptake by insulin 
muscle strips were incubated in the Krebs-Ringer bicarbo-
nate buffer, pH 7.4 at 37º C for 1 h in the atmosphere of 5% 
CO2 and 95% O2 before addition of insulin and 2-D-[3H]
glucose as described below.

Determination of glucose metabolism 

Muscle strips were used to study insulin-induced uptake of 
2-D-[3H]glucose (0.5 μCi/ml) by the method of Brutman-
Barazani et al. (2012). Muscle strips were incubated in the 
Krebs-Ringer bicarbonate buffer, pH 7.4 at 37ºC for 1 h in 
the atmosphere of 5% CO2 and 95% O2 and then treated by 
10 nM insulin or 0.9% NaCl (control) for 30 min. To study 

the glucose uptake muscles were washed by the same buffer 
and placed into the buffer, supplemented with 0.5 µCi/ml of 
2-D-[3H]glucose, and incubated for 10 min at 37ºC. The re-
action was stopped by addition of the ice-cold Krebs-Ringer 
bicarbonate buffer, pH 7.4, and muscles were washed three 
times in the same buffer. The muscles were lysed with 50 
mM NaOH and radioactivity of 3H-glucose was measured 
using a BETA scintillation counter. Content of protein in the 
samples was determined according to Lowry et al. (1951).

Determination of sphingolipids turnover 

The activity of acid SMase was determined using the intact 
skeletal muscles lysates and [N-methyl-14C-phosphorylcho-
line]sphingomyelin (52 mCi/mmol) (“PerkinElmer”, USA), 
as enzyme substrate. The specific activity was adjusted by 
the addition of unlabeled SM. To determine activity of acid 
SMase, tissues were lysed in buffer containing 50 mmol/l 
CH3COONa, pH 5.0, 0.65% Triton X-100. The reaction 
mixture contained 50 mmol/l CH3COONa, pH 5.0, 0.65% 
Triton X-100, 1.5 mg protein and 38,000 dpm [methyl-14C]
sphingomyelin in a  final volume of 200 μl. The reaction 
proceeded up to 1 h at 37°C and then was terminated by 
the addition of 1.5 ml of chloroform/methanol (1:2, v/v) 
followed by 0.5 ml of chloroform and 0.5 ml of H2O. The 
mixture was centrifuged for 5 min at 3,000 rpm. After phase 
separation, a portion of the upper, aqueous phase containing 
[14C]phosphorylcholine, was removed and the radioactivity 
determined by liquid scintillation counting. To determine 
the remaining [methyl-14C]sphingomyelin, the lower phase 
was used. 

Extraction and separation of lipids 

The lipids were extracted according to the Bligh and Dyer 
protocol (Bligh and Dyer 1959). The chloroform phase was 
collected and dried in vacuum at 37°C. The lipids were re-
dissolved in chloroform/methanol (1:2, v/v) and applied on 
the TLC plates. For ceramide and SM analysis the individual 
lipids were separated by TLC on Sorbfil plates (Sorbpolymer, 
Russia) in solvent systems CH3CH 2OCH2CH3 (system 1) 
and CHCl3–CH3OH–H2O (40 : 10 : 1 v/v) (system 2). Lipid 
spots on chromatograms were identified by comparison with 
the standards (Sigma, USA). SM content was determined by 
the Bartlett technique (Bartlett 1959). For ceramide content 
determination, lipid spots were transferred to test tubes and 
eluted by a mixture of chloroform and methanol (volumes 
1:1) with subsequent elution by methanol. Combined elu-
ates were subjected to vacuum evaporation and hydrolysis 
in НСl solution (0.5 mol/l) in methanol at 65°С for 15 h. 
Masses of ceramides were estimated by the release of long-
chain compounds after hydrolysis of lipids (Babenko and 
Kharchenko 2012). 
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Statistical analysis

Data were analyzed by one-way analysis of variance (ANO-
VA) followed by post hoc Fisher’s protected least significant 
difference (Fisher PLSD) test. The results obtained represent 
the means ± standard error of the mean (SEM) and deemed 
statistically significant when p < 0.05. The statistical analysis 
was carried out with StatSoft Statistica v6.0.

Results

Age-dependent peculiarities of sphingolipids contents in the 
muscle

To study the age-dependent peculiarities of ceramide and 
SM contents in the muscle two adult (3- and 12-month-old) 
and old (24-month-old) groups of rats were used. Ceramide 
content (Fig. 1A) and ceramide/SM ratio progressively in-
creased (Fig. 1C), while SM level decreased (Fig. 1B) in the 
muscle tissue during aging. However, ceramide (Fig. 1A) as 
well as ceramide/SM ratio (Fig. 1C) and SM level (Fig. 1B) 
in the muscle of 12-month-old rats was not differ from that 
of 3-month-old animals, while ceramide content (Fig. 1A) 
was significantly increase and SM level decrease (Fig. 1B) in 
the muscle of 24-month-old animals in contrast of younger 
rats. Simultaneous increase of ceramide level and ceramide/
SM ratio and decrease of SM content in the cells are usually 
associated with elevation of SMase activity. It can be sup-
posed that activation of these enzymes play important role 
in ceramide accumulation in the muscle of 24-month-old 
rats. Thus, in other experiments 24-month-old rats were used 
to determine the impact of acid SMase in the intramuscu-
lar ceramide accumulation and reduction of the extensor 
digitorum longus muscle tissue response to insulin action at 
old age. Taking into account that sphingolipid levels in the 
muscle of young adult 3-month-old rats were not different 
from that of adult 12-month-old animals, the 3-month-old 
rats were used to show that drugs can improve SM turnover 
and muscle response to insulin in 24-month-old animal up 
to the level in the adult rats.

Effect of natural C16-ceramide on glucose uptake stimulati-
on by insulin in muscles of adult rats

To be sure that extensor digitorum longus muscle is sen-
sitive to both insulin and natural ceramide action in the 
next set of experiments the regulation of 2-D-[3H]glucose 
uptake by insulin in muscles of 3- and 24-month-old rats 
was studied. Moreover, C16-ceramide, the most prevalent 
in the skeletal muscle (Ferreira et al. 2010; Dobrzyn and 
Gorski 2002; Dumitru et al. 2007), was used for treatment 
of 3-month-old rats. Long-term treatment of the 3-month-
old animals by C16-ceramide led to the accumulation of 
ceramide, but not SM in the extensor digitorum longus 
muscle (Fig. 2A). The two-fold increase of glucose uptake 
by insulin was determined in the muscle strips of untreated 
(Fig. 2B) and C16-ceramide solvent-treated 3-month-old 
rats (Fig. 2C). However, response of muscle strips to insulin 
action of 24-month-old animals (Fig. 2B) and muscle strips 
of 3-month-old rats treated by C16-ceramide (Fig. 2C) was 
significantly reduced in contrast to adult or control adult rats, 
respectively. Results obtained demonstrated that exogenous 

Figure 1. Ceramide and sphingomyelin levels in the extensor digi-
torum longus muscle of rats of different age. A. Ceramide content 
of the muscle (nmol/mg protein). B. Sphingomyelin (SM) content 
of the muscle (nmol/mg protein). C. Ceramide/SM ratio (nmol/
nmol) in the muscle. * p < 0.05 24-month-old vs. 3-month-old rats.
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natural C16-ceramide treatment led to old age-like increase 
of intramuscular ceramide content, which followed by re-
duction of insulin-stimulated glucose uptake by muscle of 

adult animals. Taking into account that intramuscular SM 
content was not changed under C16-ceramide treatment we 
can suppose that ceramide accumulation plays important 
role in decrease of insulin-stimulated glucose uptake by the 
target tissue. 

Effect of inhibitors of acid SMase on sphingolipid turnover 
in the skeletal muscle of old rats

In the present paper to study the acid SMase-dependent 
ceramide accumulation in the extensor digitorum longus 
muscle imipramine- or zoledronic acid-treated 24-month-
old rats were used. Imipramine or zoledronic acid treat-
ment of 24-month-old rats decreased acid SMase activity 
in the extensor digitorum longus muscle (Fig. 3). The both 
drugs decreased [14C]phosphorylcholine release (Fig. 3A) 

Figure 2. Treatment of 3-month-old rats by C16-ceramide increases 
ceramide content and reduces extensor digitorum longus muscle 
response to insulin action. A. Ceramide and sphingomyelin (SM) 
content of muscles (nmol/mg protein). B. 2-D-[3H]glucose uptake by 
the muscle strips stimulated by insulin or by the control strips of 3- and 
24-month-old rats. C. 2-D-[3H]glucose uptake by the muscle strips 
stimulated by insulin or in the control strips of 3-month-old control 
and C16-ceramide-treated rats. * p < 0.05 C16-ceramide-treated vs. 
control;  p < 0.05 insulin-treated vs. 0.9% NaCl-treated muscles.

Figure 3. Imipramine and zoledronic acid inhibits the acid sphin-
gomyelinase activity in the extensor digitorum longus muscle of 
24-month-old rats. Rats were injected intramuscularly by drugs or 
0.9% NaCl (control) as described in the “Materials and Methods”. 
To determine the enzyme activity [methyl-14C-phosphorylcholine]
sphingomyelin was used. [14C]phosphorylcholine release (A) and 
[N-methyl-14C-phosphorylcholine]sphingomyelin content (B) 
were determined as described in the “Materials and Methods”. * p < 
0.05 drug-treated vs. control.
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and [N-methyl-14C-phosphorylcholine]sphingomyelin 
degradation (Fig. 3B). Moreover, imipramine as well as 
zoledronic acid nullified age-dependent ceramide accumu-
lation (Fig. 4A) and SM content drop (Fig.4B). In addition, 
acid SMase inhibitors prevented increase of ceramide/SM 
ratio in the muscle of 24-month-old rats (Fig. 4C). To avoid 
the central effect of imipramine the next set of experiments 
were done on isolated muscle strips treated with drug. In 
the present paper imipramine decreased ceramide content 
and ceramide/SM ratio and increased SM level in the iso-
lated extensor digitorum longus muscle strips in contrast 
to controls (Fig.5A). Treatment of “old” muscle strips by 

Figure 4. Effect of imipramine and zoledronic acid on sphingolipids 
content of the extensor digitorum longus muscle of 24-month-old rats. 
A. Ceramide content of the muscle (nmol/mg protein). B. Sphingo-
myelin (SM) content of the muscle (nmol/mg protein). C. Ceramide/
SM ratio (nmol/nmol) in the muscle. In the experiments 3- and  
24-month-old untreated rats as well as drug- and drug solvent-treated 
24-month-old animals were used. The 24-month-old rats were in-
jected by imipramine intramuscularly daily for 14 days (10 mg/kg 
body weight) or by zoledronic acid intramuscularly (0.15 mg/kg 
body weight) for 10 days, one time in two days. Here control rats for 
imipramine-treated group of animals were used as no differences 
were determined between control animals for zoledronic acid- and 
imipramine-treated animals. Control rats injected by 0.9% NaCl intra-
muscularly daily for 14 days. Lipids were analyzed as described in the 
“Materials and Methods”. * p < 0.05 24-month-old vs. 3-month-old rats; 
 p < 0.05 drug-treated 24-month-old vs. control 24-month-old rats.

Figure 5. Imipramine treatment of the extensor digitorum longus 
muscle of 24-month-old rats improves sphingolipids content and 
muscle response to insulin action. A. Ceramide and sphingomyelin 
(SM) content of the muscle (nmol/mg protein), and ceramide/SM 
ratio (nmol/nmol) in the muscle. B. 2-D-[3H]glucose uptake by the 
muscle strips stimulated by insulin or by the control strips. To study 
the prime effect of imipramine on sphingolipids content the isolated 
muscle strips of 24-month-old rats were treated by 100 µM of drug 
or DMSO (control) for 1.5 h. To study effect of imipramine on the 
insulin-stimulated glucose uptake, isolated muscle strips were treated 
by 50 and 100 µM of drug or DMSO as described in the “Materials 
and Methods”. * p < 0.05 drug-treated vs. control;  p < 0.01 insulin-
treated vs.0.9% NaCl-treated.
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imipramine (100 µM) decreased significantly acid SMase 
activity, as compared with controls (data not shown). These 
results clearly demonstrated that increase of ceramide 
content and decrease of SM level in the muscle at old age 
depended on acid SMase activation and that imipramine 
directly inhibited sphingolipid turnover in the extensor 
digitorum longus muscle.

Effect of inhibitors of acid SMase on insulin-stimulated 
glucose uptake by the skeletal muscle of old rats

The long-term imipramine, as well as zoledronic acid treat-
ment of 24-month-old rats increased significantly the exten-
sor digitorum longus muscle sensitivity to insulin action. 
Drugs increased insulin-stimulated 2-D-[3H]glucose uptake 
by the extensor digitorum longus muscle strips of 24-month-
old animals (Fig. 6) to the level close to that of 3-month-old 
rats (Fig. 2B). However, imipramine slightly reduced glucose 
uptake in the non-stimulated muscle strips, while zoledronic 
acid did not alter this process in the insulin-untreated mus-
cle. Short-term imipramine treatment of isolated muscle 
strips of 24-month-old rats led to ~four-fold increase of 
insulin-stimulated glucose uptake and did not change glu-
cose metabolism in the non-stimulated tissues (Fig. 5B). 

Discussion

Majority of studies have demonstrated that ceramide is the 
most potent inhibitor of various key points in insulin signal 
transduction, such as protein kinase Akt/PKB and protein 
kinase Cζ (PKCζ), protein phosphatase 2A (PP2A), Glut4 
and phospholipase  D. Using insulin responsive cells and 
as a role short-chain synthetic ceramides it was shown that 
ceramide inhibits insulin-stimulated glucose metabolism, 
blocking protein kinase Akt/PKB activity (Holland and 
Summers 2008) and translocation to the plasma membranes 
(Stratford et al. 2001). Ceramides stabilize interactions 
between Akt/PKB and atypical PKC isoform – PKCζ (Fox 
et al. 2007; Hajduch et al. 2008). Ceramide-induced activa-
tion of PP2A can lead to Akt/PKB dephosphorylation and 
thus prevents stimulation of glucose uptake by insulin (Ugi 
et al. 2004). At the same time, inhibition of the PP2A by 
okadaic acid prevents the ceramide-induced disruption of 
insulin signaling pathway in the C2C12 myotubes (Chavez 
et al. 2003), PC12 neurons (Salinas et al. 2000), adipocytes 
(Teruel et al. 2001) and human glioblastoma cell line (Zinda 
et al. 2001). Moreover, ceramide can inhibit glucose uptake/
glycogen synthesis via decrease of Glut4 translocation to cel-
lular membranes (JeBailey et al. 2007) or Glut4 transcription 
(Long and Pekala 1996) and phospholipase  D  inhibition 
(Babenko and Kharchenko 2015c). Elevation of ceramide 
content and reduction of insulin sensitivity in muscle tissues 

was determined in human studies in obese and type 2 dia-
betic patients (Adams et al. 2004; Moro et al. 2009; Coen et 
al. 2010; Amati et al. 2011; Søgaard et al. 2016) and in obese 
experimental animals (Holland and Summers 2008). Fur-
thermore, studies of 18–80 year-old patients demonstrated 
that old and obese as well as insulin resistant humans have 
an elevated total and long-chain ceramide species content 
in the skeletal muscle tissue in contrast to younger and lean 
ones (de la Maza et al. 2015). Accumulation of ceramides 
in the insulin responsive tissues, such as liver (Babenko 
and Shakhova 2006), brain (Babenko and Shakhova 2014a) 
and some types of skeletal muscles: soleus and gastrocne-
mius (Babenko et al. 2016; Rivas et al. 2016) and extensor 
digitorum longus muscle (Fig. 1A) has been determined 
at old age. Age-dependent ceramide accumulation in the 
hepatocytes and brain cortex was followed by a decrease of 
insulin-stimulated glucose uptake and glycogen synthesis 
(Babenko and Kharchenko 2012, 2015a). Similar results were 
obtained in the present work. Extensor digitorum longus 
muscle sensitivity to insulin action significantly reduced 
at old age, in contrast to adult animals. Treatment of adult 
rats by natural C16-ceramide was followed by old age-like 
intramuscular ceramide accumulation and reduction of 
insulin-stimulated glucose uptake. In addition, treatment of 
muscle C2C12 cells by a cell-permeable ceramide inhibits 
insulin-stimulated Akt serine phosphorylation and activa-
tion which triggered insulin resistance (Jadhav et al. 2013). 

Ceramide not only reduced target cells’ sensitivity to 
insulin action but also led to a  premature senescence of 
the cancerous cells (Chen et al. 2010; Leontieva et al. 2011; 
Saddoughi and Ogretmen 2013), endothelial cells (Venable 
and Yin 2009), fibroblasts (Venable et al. 1995) and muscle 

Figure 6. Imipramine and zoledronic acid treatment of the 24-month-
old rats increases extensor digitorum longus muscles response to 
insulin action. Rats were injected intramuscularly by drugs or 0.9% 
NaCl (control) and insulin-stimulated glucose uptake by the muscle 
strips was determined as described in the “Materials and Methods”. 
* p < 0.05 drug-treated vs. control 0.9% NaCl-treated,  p < 0.05 insulin-
treated vs.0.9% NaCl-treated.
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cells (Jadhav et al. 2013). Treatment of proliferating C2C12 
myoblasts with C2-ceramide induced expression of senes-
cence marker – β-galactosidase and cell cycle inhibitory 
proteins, such as p16, p21 and p53. C2-ceramide also reduces 
cell proliferation and response to insulin action (Jadhav et 
al. 2013). C2-ceramide decreases Akt phosphorylation in 
both untreated and insulin-stimulated myoblasts, which 
can be improved by glucose lowering agent, metformin. 
Moreover, metformin partly reversed cellular senescence 
induced by ceramide. Thus, it has become evident that 
insulin signaling in the skeletal muscle is extremely sensi-
tive to ceramide accumulation and that close relation exists 
between age-dependent resistance of cells to insulin action 
and intramuscular ceramide level increase. However, the 
mechanism of ceramide overproduction at an old age in the 
skeletal muscle is still unknown.

Notably, that inhibition of key enzyme of ceramide syn-
thesis de novo in the diet-induced obese or ob/ob mice im-
proved both senescence-associated secretory phenotype and 
glucose and insulin tolerance (Yang et al. 2009). Significant 
increase of expression of SPT, as well as neutral SMase has 
been determined in the medial gastrocnemius, but not in 
the soleus muscle of 24–26-month-old male F344/BN rats, 
in contrast to 7–8-month-old animals (Russ et al. 2015). No 
age-dependent differences in expression of acid SMase and 
neutral CDase have been determined in the gastrocnemius 
and soleus muscles. However, previously we have determined 
that elevated acid SMase activity at old age could lead to 
ceramide accumulation in the gastrocnemius and soleus 
muscles of Wistar male rats (Babenko et al. 2016). Widely 
used acid SMase inhibitors, imipramine and zoledronic acid 
(Kölzer et al. 2003; Roth et al. 2009; Arenz 2010; ; Jenkins et 
al. 2010; Kornhuber et al. 2010; Canals et al. 2011), improve 
SM turnover in different tissues. Multiple mechanisms by 
which some antidepressants mediate their effects on glucose 
metabolism (psychobehavioural, neurohormonal, anti-in-
flammatory and intracellular effects) have been determined. 
Antidepressants may be involved in regulation of glucose-
insulin homeostasis through central mechanisms at the level 
of the hypothalamus and hippocampus. Both beneficial and 
harmful effects of antidepressants on glucose homeostasis 
have been evaluated. Up to now it is not clear if tricyclic 
antidepressants influence glucose-insulin homeostasis via 
acid SMase inhibition in the insulin responsive tissues or 
via central mechanisms. Thus, in the present paper in addi-
tion to experiments on imipramine-treated rats treatment of 
isolated muscle strips by imipramine was used. Our results 
showed for the first time that treatment of 24-month-old 
rats or isolated “old” extensor digitorum longus muscle by 
imipramine or zoledronic acid reduced acid SMase activity 
and improved ceramide and SM levels and ceramide/SM 
ratio. This data demonstrated involvement of acid SMase in 
the age-dependent sphingolipid turnover dysregulation in 

the extensor digitorum longus muscle. Moreover, imipra-
mine improved muscle tissue sensitivity to insulin action at 
old age primarily inhibiting acid SMase. Drug direct effect 
on muscle can be dependent on reduction of the level of 
ceramide, negative regulator of insulin-stimulated signaling 
pathways, and not be the reason of imipramine action on 
brain and other tissues. Taken together, these results and 
data published previously (Babenko and Kharchenko 2012, 
2015a) clearly demonstrate that there is a specific pathway 
of ceramide production for each insulin-responsive tissue 
which induces the reduction of cells sensitivity to insulin 
action at old age. It is worth to note, that not only ceramide 
accumulation, but the pathway of its production can be 
extremely important for cell response. Taking into account 
different physiological consequences of insulin action in 
each of target tissue ceramide accumulation can be fol-
lowed by specific pathophysiology. Overexpression of acid 
SMase plays an important role in SFD- and alcohol-induced 
inflammation, liver insulin resistance and steatosis, while 
inhibition of acid SMase with amitriptyline protects wild 
type mice against liver injury (Garcia-Ruiz et al. 2015). On 
the other hand, C2C12 myotubes treatment with palmitic 
acid increases expression of neutral SMase genes which is 
associated with ceramide synthesis through the salvage path-
way and insulin resistance (Verma et al. 2014). Inhibition of 
neutral SMase by an inhibitor (GW4869) partially reverts the 
palmitate-induced insulin resistance and improves metabolic 
functions of myotubes.

Previously we reported that both long- and short-term 
treatment of 24-month-old rats by N-acetylcysteine (NAC) 
led to a decrease of ceramide content, but did not nullify 
age-dependent ceramide accumulation in the extensor digi-
torum longus muscle (Babenko et al. 2015). NAC increases 
gluthathione (GSH) content and insulin-stimulated glucose 
uptake in the muscle of old rats. Beneficial effect of NAC on 
sphingolipid turnover can be imitated by specific inhibitor 
of neutral SMase, GW4869, in in vitro studies. Suggestion 
has been made that neutral SMase plays important role in 
ceramide accumulation in the extensor digitorum longus 
muscle at old age. It is known, that oxidative stress and inflam-
matory cytokines can activate both neutral and acid SMases. 
Ceramide accumulation is required in order for cytokines to 
induce insulin resistance in skeletal muscles (Gamard et al. 
1997; Strle et al. 2004; Demarchi et al. 2005; Holland et al. 
2011). Inhibition of neutral and acid SMase activity and cera-
mide synthesis by GSH, D609 and fumonisin B1, respectively, 
prevented tumor necrosis factor α (TNF-α)- and interleukin 
1β (IL-1β)-induced resistance of myotubes to insulin-like 
growth factor I action (IGF) (Strle et al. 2004). Increase of 
expression of inflammatory markers, such as Toll-like recep-
tor 2, TNF-α and IL-1β, as well as ceramide level were found 
in the skeletal muscles of old animals (Rivas et al. 2016). 
Age-dependent ceramide accumulation leads to diminished 
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anabolic signaling response to insulin and contributes to 
skeletal muscle loss. Recently it was shown that treatment 
of mature C2C12 myotubes or diaphragm fiber bundles by 
exogenous SMase led to increase of total ceramide content 
and levels of numerous ceramide species and production 
of ROS followed by depressed muscle force and accelerated 
fatigue (Ferreira et al. 2010; Loehr et al. 2015). SMase-induced 
ROS production and malfunction of skeletal muscles can 
be prevented by NAC treatment (Ferreira et al. 2010). It 
is noteworthy, that muscle weakness and fatigue as well as 
abnormal redox signaling and oxidative stress are frequently 
associated with aging (Scheel-Toellner et al. 2004; Colavitti 
and Finkel 2005). Age-dependent decrease of neutral SMase 
negative regulator (GSH) content can be increased by NAC 
treatment of insulin responsive tissues: liver, brain and exten-
sor digitorum longus muscle (Babenko et al. 2012; Babenko 
and Shakhova 2014b; Babenko et al. 2015). NAC or GSH 
treatment was followed by an increase of insulin-stimulated 
glucose uptake and glycogen synthesis in the target cells of 
24-month-old animals. However, insulin response was still 
stronger in 3-month-old untreated rats. Thus, it cannot be 
excluded that overproduction of inflammatory cytokines at 
old age can induce acid SMase-dependent ceramide accumu-
lation followed by oxidative stress-dependent neutral SMase 
activation and reduction of “old” muscle cells sensitivity to 
insulin action. Other experiments are needed to elucidate 
these conclusions. 

In summary, this study demonstrated that acid SMase-
dependent ceramide production and accumulation in 
the extensor digitorum longus muscle at old age plays an 
important role in the reduction of insulin-stimulated glu-
cose uptake. Progressive increase of ceramide content was 
determined in the muscle tissues during aging. Ceramide 
accumulation in the muscles of 24-month-old rats was fol-
lowed by SM content drop and ceramide/SM ratio increase. 
Dysregulation of SM turnover as well as insulin-stimulated 
glucose uptake in the skeletal muscles of old rats can be 
abolished by treatment with functional inhibitor of acid 
SMase (imipramine) and specific inhibitor (zoledronic 
acid). Both long-term (in vivo) and short-term (in vitro) 
effects of imipramine were determined. These findings 
demonstrated prime imipramine effect on SM turnover and 
insulin signaling in the “old” skeletal muscle which was not 
dependent on drug action in brain or other tissues. These 
results indicated that enhanced acid SMase-dependent 
ceramide production was required for development of 
resistance of aged extensor digitorum longus muscle to 
insulin action. However, other pathways of sphingolipid 
turnover may be involved in ceramide content elevation in 
the muscle of old animals. Manipulating acid SMase activ-
ity and ceramide content in the aged skeletal muscle may 
be the strategy for treating abnormal glucose metabolism 
regulation. Drugs (imipramine and zoledronic acid) which 

are licensed for medical use in humans were used for the 
first time for treatment of old age-associated insulin resist-
ance of skeletal muscles. 
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