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SNC80 and naltrindole modulate voltage-dependent sodium, 
potassium and calcium channels via a putatively delta opioid 
receptor-independent mechanism
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Abstract. SNC80 was designed as a highly selective nonpeptide delta opioid receptor (DOR) agonist. 
Antidepressant-like and antinociceptive effects of this compound were demonstrated in animal 
models. Naltrindole was synthetized as a highly selective DOR antagonist. Its antitussive and an-
tinociceptive effects were reported. Observed effects of SNC80 and naltrindole may be accompanied 
by changes in neuronal excitability including modulation of voltage-dependent ion channels. We 
investigated possible DOR-independent modulation of neuronal sodium, calcium and potassium 
currents by both agents. NG108-15 cells lacking expression of DOR protein were used as model of 
neuronal cells. Cells were differentiated into neuronal phenotype by exposure to dibutyryl cyclic-
AMP (dbcAMP). Lack of DORs expression in NG108-15 cells and the presence of DOR expres-
sion in brain and neuronal cultures were demonstrated by Western blot analysis. Both SNC80 and 
naltrindole exerted low to moderate modulatory effects on voltage-dependent ion currents. SNC80 
weakly inhibited sodium current, potentiated calcium current, and did not act on potassium chan-
nels. Naltrindole inhibited sodium current, did not act on calcium current and inhibited potassium 
current at a high concentration. Such effects should be taken into account when these compounds 
are used for investigation of DOR-mediated signaling pathways.
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Introduction

NG108-15 cell line is a  hybrid of mouse neuroblastoma 
(N18TG-2) and rat glioma (C6BU-1) cell lines (Hamprecht 
1977). These cells have been used as a model for cholinergic 
neurons (McGee et al. 1978; Schanne et al. 1989; Jin et al. 
1994; Chemin et al. 2002). Serum-starved cells in the pres-
ence of dibutyryl cyclic-AMP (dbcAMP) start to develop 
neurites, express neuronal proteins, and develop neuronal 
morphology (Tojima et al. 2000). Further, differentiation 
involves biochemical and electrophysiological changes, 
such as an increase of sodium or calcium currents densities. 

Increase of sodium (Liu et al. 2012a) and calcium (Liu et al. 
2012b) currents was observed after 9 days of differentiation. 

Sodium channels in neuronal cells are classified as tet-
rodotoxin (TTX)-sensitive and TTX-resistant (Roy and 
Narahashi 1992). In differentiated NG108-15 cells TTX- 
sensitive sodium channels are solely expressed and are 
predominantly of NaV1.7 subtype (Kawaguchi et al. 2007; 
Liu et al. 2012a). All classes of voltage-dependent calcium 
channels are expressed in differentiated NG108-15 cells. 
Density of low-voltage-activated (T-type) calcium currents 
did not differ in undifferentiated and differentiated cells. 
Expression of high-voltage-activated calcium channels was 
markedly enhanced in differentiated cells (Lukyanetz 1998; 
Chemin et al. 2002; Liu et al. 2012b). NG108-15 cells also 
express multiple potassium channels. Expression of inward-
rectifier potassium channel (Kir) was markedly increased 
during differentiation, in accord with more hyperpolarized 
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resting membrane potential (Hu and Shi 1997; Ma et al. 1999; 
Pancrazio et al. 1999).

NG108-15 cells were frequently used for characteriza-
tion of regulatory pathways related to opioid receptors (Lee 
et al. 1988; Loh and Smith 1990). In recent years, δ-opioid 
receptors (DOR) and their ligands are in center of interest 
due to their potential role in treatment of chronic pain and 
mood disorders (Gaveriaux-Ruff et al. 2008; Fujii et al. 2013). 
Previously, NG108-15 cells have been used as a model for 
studying of DOR (Roerig et al. 1992; Heiss et al. 2009) and 
DORs were cloned for the first time from these cells (Evans 
et al. 1992; Kieffer et al. 1992). However, expression of these 
receptors is very unstable and at higher passage number cells 
express little or no receptors (Vicente-Sanchez et al. 2016). 

Nonpeptide compound (+)-4-[(αR)-α-((2S,5R)-4-
Allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-
diethylbenzamide (SNC80) was designed as a highly selective 
DOR agonist (Calderon et al. 1994, 1997). Nevertheless, 
recent study demonstrated highest affinity of this compound 
to µ-δ heteromers (Metcalf et al. 2012). SNC80 is commonly 
used in research focused on outcomes of an activation of 
DOR-related pathways. SNC80 had antidepressant-like effect 
in rats, which was blocked by the selective DOR antagonist 
naltrindole, indicating that this effect is specific to DOR 
signaling pathway (Jutkiewicz et al. 2003, 2004). In monkeys 
this compound produced an antinociceptive effect (Negus et 
al. 1998; Allen et al. 2002). High doses of SNC80 produced 
proconvulsant activity in rats (Bausch et al. 2005) and mice 
(Chung et al. 2015). Opioid receptors-independent effects of 
SNC80 were demonstrated, as well. In granular cells of den-
tate gyrus, SNC80 directly interacted with voltage-dependent 
sodium channels (Remy et al. 2004).

Nonpeptide ligand, 17-cyclopropylmethyl-6,7-dehydro-
4,5α-epoxy-3,14-dihydroxy-6,7,2´,3´-indolomorphinan 
(naltrindole) was synthetized as a  highly selective DOR 
antagonist (Portoghese et al. 1988). It was commonly used 
as a tool to prove that a DOR agonists act through DOR 
signaling pathways (Bilecki et al. 2000; Jutkiewicz et al. 2004; 
Remy et al. 2004). However, it was found that naltrindole 
itself has antinociceptive (Takemori et al. 1992) and antitus-
sive (Kamei et al. 1995) effect when applied without agonist 
pretreatment. Antinociceptive effect is probably mediated 
through κ-opioid receptors (KOR) (Takemori et al. 1992), 
while antitussive effect of naltrindole is mediated partially 
through DOR and partially through KORs (Kamei et al. 
1995).

Observed effects of DOR ligands may be accompanied 
by changes in neuronal excitability including modulation of 
voltage-dependent ion channels. Indeed, we have observed 
such changes in primary culture of hippocampal neurons 
(Moravcikova and Lacinova, unpublished data). We aimed 
to elucidate whether a DOR-independent pathways are in-
volved in modulation of neuronal excitability by SNC80 and 

naltrindole. NG108-15 cell line used in our laboratory does 
not express DOR protein. Therefore, we used these cells as 
a model for testing DOR-independent effects of both ligands 
an agonist SNC80 and an antagonist naltrindole, on neuronal 
voltage-gated sodium, calcium, and potassium channels. 

Material and Methods

Cell cultivation

Differentiated NG108-15 cell line was used in all experi-
ments. NG108-15 cell line was kindly provided by N. Klug-
bauer from Albert-Ludwig University in Freiburg, Germany. 
Cells were incubated at 37°C in humidified atmosphere 
containing 5% CO2. DMEM medium with high glucose sup-
plemented with 10% fetal bovine serum (FBS), 100 IU/ml 
penicillin, 100 µg/ml streptomycin and 5 µg/ml Plasmocin 
prophylactic (Invitrogen) was used as a  culture medium. 
For experiments cells were seeded on coverslips (Sarstedt, 
Slovakia) covered by poly-L-lysine (PLL, 50 µg/1ml/1cm2) 
in density 1.5 x 104 cells/cm2. Differentiation was induced 
by adding 1  mM dbcAMP into culture medium without 
FBS. After 7 to 11 days of conditioning, cells were used for 
electrophysiological experiments and molecular analysis. 
Unless mentioned otherwise, all chemicals were purchased 
from Sigma Aldrich, Slovakia.

Molecular analysis

Dissected brain tissues from newborn rat were snap-frozen 
by immersing in liquid nitrogen. For protein extraction, 
brain tissue was lysed in ice-cold lysis buffer RIPA (150 mM 
NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris, 
pH 8.0), homogenized and centrifuged at 16000 × g for 10 
min at 4°C to collect the supernatant. Cell cultures were 
washed twice with PBS and lysed in RIPA buffer. 40 or 80 μg 
of protein lysates were loaded on 10% SDS-PAGE gels and 
transferred to PVDF (Amersham) membranes. The mem-
branes were incubated with mouse anti-delta-type Opioid 
Receptor (Millipore, MABN352), rabbit anti-Mu Opioid 
Receptor (Millipore, AB1580-I) and rabbit anti-GAPDH 
(Santa Cruz, SC-25778) antibodies and appropriate horse-
radish peroxidase-conjugated secondary antibodies (Santa 
Cruz). Protein bands were detected using the Immun-Star 
WesternC Chemiluminescence-Kit (Biorad) according to 
the manufacturer’s instructions.

Electrophysiology

Sodium (INa), calcium (ICa) and potassium (IK) currents 
were measured by whole cell patch clamp using HEKA 
EPC10 amplifier (HEKA Electronics, Lambrecht, Germany). 
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Patch pipettes were made from borosilicate glass (Sutter 
Instruments, Novato, CA). When filled with experimental 
solutions their resistance was 4–5 MΩ. For measurements of 
INa bath solution containing (in mM): 105 NaCl, 10 HEPES, 
2 CaCl2, 0.5 MgCl2, 25 TEA-Cl, and 10 D-glucose; pH 7.4 
(adjusted with NaOH) was used. Pipette solution contained 
(in mM): 3 Na2ATP, 10 HEPES, 3 EGTA, 2 MgCl2, 135 CsCl, 
0.4 Na2GTP, and 20 TEA-Cl; pH 7.4 (adjusted with CsOH). 
ICa was measured using bath solution containing (in mM): 
10 HEPES, 10 BaCl2, 1 MgCl2, 140 TEA-Cl, and 10 D-glu-
cose; pH 7.4 (adjusted with TEA-OH). Pipette solution for 
calcium current contained (in mM): 5 Na2ATP, 10 HEPES, 
11 EGTA, 1 CaCl2, 120 CsCl, 4 MgATP, and 4 Tris-GTP; 
pH 7.3 (adjusted with CsOH). For measurements of IK bath 
solution contained (in mM): 130 NaCl, 3 KCl, 10 HEPES, 
2 CaCl2, 1 MgCl2, and 10 D-glucose; pH 7.4 (adjusted with 
NaOH); and pipette solution contained (in mM): 120 K-
gluconate, 2 Na2ATP, 10 HEPES, 20 KCl, 2 MgCl2, and 0.25 
Na2GTP; pH 7.4 (adjusted with KOH). Osmolarity of pipette 
solutions was approximately 290–300 mOsm. Osmolarity 
of bath solutions was approximately 2–3 mOsm lower than 
osmolarity of corresponding pipette solution. ICa and IK were 
measured in the presence of 1 µM TTX citrate (Abcam, UK) 
to block the INa.

Sodium currents were activated by 5 ms long depolarizing 
pulses to voltages between –70 mV and +70 mV from a hold-
ing potential of –90 mV. Calcium currents were activated by 
50 ms long depolarizing pulses to voltages between –40 mV 
and +50 mV from a holding potential of –40 mV. Potassium 
currents were activated by 400 ms long depolarizing pulses 
to voltages between –40 mV and +80 mV from a holding 
potential of –80 mV.

Ligands

Naltrindole hydrochloride (Sigma Aldrich, Slovakia) was 
dissolved in water in 10 mM concentration. SNC80 (Sigma 
Aldrich, Slovakia) was dissolved in 1 M HCl in 1 mM con-
centration. Both compounds were stored at –20°C. Before 
measurements, stock solutions were diluted in a bath solu-
tion to a desired concentration 0.1, 1, 10 or 100 µM. pH of 
solution with SNC80 was adjusted to pH 7.4 with NaOH. 
Compounds were applied to the close proximity of measured 
cell by a perfusion system.

Data analysis

Data were recorded using Patchmaster v2x73.3 (HEKA 
Electronics, Lambrecht, Germany) and analyzed using Fit-
master v2x73.3 and Origin 8.1 (OriginLab Co., Northamp-
ton, MA, USA) software. Results are presented as a mean 
± standard error of mean (SEM). Statistical differences 
between groups were determined by one-way or two-way 

analysis of variance (ANOVA) for repeated measures fol-
lowed by Tukey’s post hoc test for multiple comparison by 
GraphPad InStat 3 (GraphPad Software, Inc.). One-way 
ANOVA was used for all experiments with SNC80 and 
experiments with effect of naltrindole on calcium currents. 
Two-way ANOVA was used for experiments with effect 
of naltrindole on sodium and potassium currents. Time 
(before and after naltrindole administration) was consid-
ered dependent variable. Concentration of naltrindole was 
considered independent variable. Probability p < 0.05 was 
considered significant.

Results

Expression of opioid receptors

We have analyzed the expression of μ-opioid (MOR) and 
δ-opioid receptors in differentiated NG108-15 cell line, in 
SH-SY5Y cell line, and in tissues from various brain regions. 
As demonstrated in the Figure 1, NG108-15 expressed MOR 
but did not express DOR proteins on comparable level. 

Moderate inhibition of the sodium currents

DOR agonist SNC80 moderately inhibited sodium cur-
rent in differentiated NG108-15 cells (n = 7, Fdf34 = 2.603, 
p  =  0.0613) (Figure 2A). This effect was statistically sig-
nificant at 1 μM concentration only (Figure 2C). Similarly, 
naltrindole only moderately suppressed sodium current 
(n = 7, Fdf1,27 = 11.24, p = 0.0024). Significant inhibition was 
observed at 0.1 μM and 100 μM concentrations (Figure 2B 
and D). Medium concentrations were without any significant 
effect (Figure 2C and D).

Figure 1. Western blot analysis of homogenized rat brain tissue 
(cortex, hippocampus), primary cultures of rat hippocampal and 
cortical neurons, and two immortalized neuron-like cell lines 
(NG108-15 and SH-SY5Y) with indicated antibodies, using 40 ug 
(A), or 80 ug (B) of protein lysate. 
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Figure 2. Effects of SNC80 (A) 
and naltrindole (B) on volt-
age-gated sodium currents in 
NG108-15 cell line. Averaged 
I-V relations for sodium cur-
rents were measured before () 
and after () drug application in 
concentrations of 0.1–100  µM, 
as marked in each graph. Repre-
sentative current traces measured 
under the control conditions 
(solid line) and in the drug pres-
ence (dashed line) are shown left 
to the corresponding IV. Con-
centration-dependences of peak 
current amplitude in the presence 
of SNC80 (C) and naltrindole (D) 
expressed as percentage of con-
trol current amplitude (SNC80; 
n  =  7; naltrindole; n  =  7). “n” 
represents the number of indi-
vidual cells averaged in graphs. 
NTI, naltrindole; * p < 0.05; ** p < 
0.01 in comparison with control. 

Calcium current was potentiated by SNC80

Analysis of voltage-dependent calcium current was ham-
pered by its relatively low amplitude after 7–11 days of differ-
entiation. Therefore, we analyzed only its amplitude activated 

by a depolarizing pulse to +10 mV, which corresponds to 
a peak of current-voltage relation. SNC80 significantly po-
tentiated calcium current at all investigated concentrations 
(n = 6, Fdf29 = 24.378, p < 0.0001) (Figure 3A). Naltrindole 
had dual effect on calcium current – low concentrations 
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potentiated, and high concentration inhibited the current 
amplitude (Figure 3B). However, these effects were not 
significant (n = 3, Fdf11 = 0.9506, p = 0.4609).

Potassium current was inhibited by naltrindole

Potassium current in differentiated NG108-15 cells had 
two components: moderately distinguishable rapidly 
activating and inactivating component and pronounced 
noninactivating component. We evaluated separately 
effects of both compounds on peak potassium current 
and on sustained potassium current. SNC80 and nal-
trindole lowered both components of potassium current. 
Inhibition caused by SNC80 was weak (n = 12, for peak 
current: Fdf59 = 3.214, p = 0.0213; for sustained current: 
Fdf59 = 1.983, p = 0.1138) and only peak current inhibition 
by 100 μM of SNC80 was statistically significant (Figure 
4A and B). Naltrindole was more potent potassium current 
inhibitor and in 100 μM concentration inhibited both peak 
(n = 16, Fdf1,56 = 23.44, p < 0.0001) and sustained (n = 16, 
Fdf1,56 = 10.23, p = 0.0023) potassium current with high 
significance (Figure 4C and D).

Discussion

In the present work we aimed to characterize effects of the 
DOR agonist SNC80 and the DOR antagonist naltrindole 
on neuronal voltage-dependent ion channels in a cellular 

model lacking DOR protein. SNC80 weakly inhibited so-
dium current, potentiated calcium current, and did not act 
on potassium channels. Naltrindole inhibited sodium cur-
rent, did not act on calcium current and inhibited potassium 
current at a high concentration.

The diversity of properties for immortalized cell lines 
from different laboratories were reported (Clementi et 
al. 1992; Shoji-Kasai et al. 1992; Corradi et al. 1996). We 
checked our NG108-15 cell line for expression of DOR and 
MOR. As a positive control DOR and MOR expression in 
brain tissue and neuronal culture was used. Lack of DOR 
expression in NG108-15 cell line and high level of MOR 
protein was confirmed by Western blot analysis. This find-
ing contrasts with older reports which used NG108-15 cells 
as a model for studying DORs (Roerig et al. 1992; Heiss et 
al. 2009; Vicente-Sanchez et al. 2016). However, it was also 
noted that the DOR expression in this cell line is unstable 
and may be lost after prolonged culturing (Vicente-Sanchez 
et al. 2016). As properties of immortalized cell lines may 
change over a long time span, careful examination should 
be always included into experimental outline. 

Effects of SNC80 and naltrindole on voltage-dependent 
ion channel could be mediated by their binding to another 
type of opioid receptor, i.e., MOR, KOR, or opioid receptor-
like orphan receptor (ORL1). All these receptors are coupled 
to similar intracellular signaling pathways. Their activation 
leads to an inhibition of adenylate cyclase activity (Connor 
and Christie 1999) and an increase phospholipase C activity 
(Spencer et al. 1997).

Figure 3. Effects of SNC80 and naltrin-
dole on voltage-gated calcium currents in 
NG108-15 cell line. A. Left part: Repre-
sentative current traces recorded under the 
control conditions and in the presence of 
SNC80 in concentrations as marked. Right 
part: Averaged calcium current amplitudes 
measured at +10 mV under the control 
conditions and after application of SNC80 
in concentrations 0.1–100  µM, as marked 
(n = 6). ** p < 0.01; *** p < 0.001 in compari-
son with control. B. Left part: Representative 
current traces recorded under the control 
conditions and in the presence of naltrindole 
in concentrations as marked. Right part: 
Averaged calcium current amplitudes meas-
ured at +10 mV under the control conditions 
and after naltrindole application in concen-
trations 0.1–100 µM, as marked (n = 3). “n” 
represents the number of individual cells. 
NTI, naltrindole.
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Figure 4. Effects of SNC80 and 
naltrindole on voltage-gated 
potassium currents in NG108-
15 cell line. A. Representative 
current traces measured under 
the control conditions and in 
the presence of SNC80 in con-
centrations as marked (left), 
averaged I-V relations for peak 
(middle) and sustained (right) 
potassium currents measured 
before () and after () appli-
cation of SNC80 in concentra-
tions 0.1–100 µM, as marked. 
B. Concentration-dependence 
of current amplitude measured 
at +80  mV in the presence of 
SNC80 in concentrations 0.1–
100 µM, expressed as percentage 
of control current amplitude 
(n = 12). * p < 0.05 in compari-
son with control. C. Representa-
tive current traces measured 
under the control conditions and 
in the presence of naltrindole in 
concentrations as marked (left), 
averaged I-V relations for peak 
(middle) and sustained (right) 
potassium currents measured 
before () and after () applica-
tion of naltrindole in concentra-
tions 0.1–100  µM, as marked. 
D. Concentration-dependence 
of current amplitude measured 
at +80 mV in the presence of 
naltrindole in concentrations 
0.1–100 µM, expressed as per-
centage of control current am-
plitude (n = 16). *** p < 0.001 in 
comparison with control. NTI, 
naltrindole.

In NG108-15 cell line used in our experiments we detected 
by RT-PCR the expression of ORL1s, while the expression of 
KORs was negligible (data not shown). SNC80 is not exclu-
sively specific DOR ligand. It was shown to bind effectively to 
MOR-DOR heteromers, while its binding to MOR itself was 
weak (Metcalf et al. 2012). Nevertheless, even if SNC80 would 
be able to activate an alternative opioid receptor pathway in 
NG108-15 cells, observed effects on voltage-dependent ion 
currents could not be simply explained by such interaction as 
they are only partly consistent with previous reports. 

Sodium current should be facilitated by OR-activated 
pathway due to an inhibition of adenylate cyclase activity 
(Connor and Christie 1999) and, consequently, decrease in 
channel phosphorylation (Scheuer 2011). We have observed 
no effect at low concentration and a moderate inhibition at 
high concentration. Inhibition of sodium current could be 
caused by a direct interaction of SNC80 with sodium chan-
nel. Such interaction was reported also in granular cells of 
dentate gyrus (Remy et al. 2004). Course of the concentra-
tion dependence of sodium current inhibition reported 
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here could be a result of minor current facilitation due to 
minor activation of MOR and moderate inhibition by direct 
interaction with the channel protein.

Facilitation of calcium current is opposite to what we 
could expect from suppressed adenylate cyclase activity 
which results in suppressed calcium channel phosphoryla-
tion by protein kinase  A-dependent mechanism. On the 
other hand, basal level of calcium current amplitude was very 
low suggesting very low basal level of channel phosphoryla-
tion, which cannot be further decreased by an attenuation 
of a  protein kinase A-related pathway. Observed current 
enhancement may be related to activation of another signal-
ing pathway, possibly phospholipase C-diacylglyerol-protein 
kinase C pathway, which is also activated via ORs (Spencer 
et al. 1997; Fukami et al. 2010). Phosphorylation by protein 
kinase C was shown to exert dual effect on neuronal calcium 
channels (Rajagopal et al. 2014; Rajagopal et al. 2017). Final 
effect – either inhibition or potentiation – depends on rela-
tion between both components.

Effect of SNC80 on potassium current was negligible. The 
highest tested concentration 100 μM slightly but significantly 
suppressed the peak, but not the sustained current amplitude. 
This effect may be caused by direct interaction of the drug 
with the channel protein.

Naltrindole modulated significantly sodium and po-
tassium currents. This drug, like SNC80, does not bind 
exclusively to DORs. Interaction with KOR (Kamei et 
al. 1995) and, at micromolar concentration, with ORL1 
(Fawzi et al. 1997) was demonstrated. Several naltrindole 
analogue compounds possessing µ-agonist/δ-antagonist 
activities were synthesized (Ananthan et al. 1999). It can-
not be excluded that also naltrindole itself may, to a certain 
extent, possess such properties. The fact that naltrindole 
reversed morphine effect in cells expressing both MORs 
and DORs may be also interpreted as an indirect hint that 
naltrindole may interact not only with DORs but also with 
MORs (Guo et al. 2015). We can speculate that bell-shaped 
concentration dependence of naltrindole effect on sodium 
current may be due to mixed interaction of this drug with 
MORs and ORL1s. Similar mechanism was demonstrated 
for another ORs ligand buprenorphine, which exerted bell-
shaped antinociceptive effect in mice mediated by MORs 
and modified by ORL1s (Lutfy et al. 2003).

Inhibition of potassium currents by high concentration 
of naltrindole may be mediated by direct interaction of the 
drug with channel proteins. Such interpretation is consistent 
with report that another ORs antagonist naloxone inhibited 
potassium channels in micromolar concentration and this 
inhibition was caused by direct channel block (Ulens et al. 
1999).

To conclude, both SNC80 and naltrindole may exert low 
to moderate modulatory effects on sodium, calcium and po-
tassium currents which are independent of their interaction 

with δ-opioid receptors. Such effects should be taken into 
account when these compounds are used for investigation 
of DOR-mediated signaling pathways.
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