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Deterministic approximation of stochastic spatially explicit model  
of actin-myosin interaction in discrete filament lattice
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Abstract. One of commonly used approaches of biophysical modeling of muscle contractile ap-
paratus is spatially explicit discrete lattice models in Monte Carlo simulation. Such models allow to 
reproduce structural features and actin-myosin interaction in the muscle contractile system more 
accurately. Limitation of such models is their low computational efficiency and stochasticity under 
certain circumstances. This work introduces deterministic approximation of stochastic model that 
considers a pair of rigid contractile filaments interaction. Approximation background is discreet-
ness of spacing between cross-bridges and binding sites. Due to this property cross-bridges can be 
divided into discrete groups with the same strain, and considered statistically using the set of ordi-
nary differential equations. Deterministic model is more computationally efficient, operates with 
average values. Within the given approach isotonic contraction was simulated. A comparison with 
Monte Carlo simulation demonstrates that approximation reproduces results for stochastic model 
with large number of cross-bridges. Also within the deterministic model a mechanism and essential 
conditions for oscillations appearance in isotonic transient response, relations of their parameters 
with geometrical ones of filaments lattice were examined, theoretical and experimental results were 
compared. The proposed approach can also be applied to approximation of continuous Huxley-based 
models solutions. Advantage over existing numerical methods is their greater numerical stability. 
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Introduction

Molecular mechanism of the functioning of such complicat-
ed system as muscle cannot be obtained only by studying the 
properties of individual isolated components of this system, 
due to it emergent character. In particular, muscle sarcomere 
architecture plays an important role in this mechanism. 
Work performed by a muscle is the result of the interaction 
between cross bridges of thick filaments and actin of thin 
filaments. This interaction depends on their mutual position, 
which in turn is determined by the structure of myofilaments 

and their arrangement in sarcomere lattice. Physiological 
significance of a sarcomere structure is highlighted by the 
fact that the degree of its order has changed in the course of 
evolution (Squire et al. 2005, 2008; Iwamoto et al. 2006) and 
that muscles with different sarcomere architecture differ in 
their functional characteristics (Squire et al. 2008; Iwamoto 
2011). The mechanism that links features of sarcomere lat-
tice geometry to its mechanical characteristic is still poorly 
explored.

One of the currently widely used approaches to study 
molecular mechanism of muscle contraction is computer 
simulation. In many models of muscle contraction the 
approach that originates from classical Huxley model 
(Huxley 1957) is applied. In this approach, the internal 
state of sarcomere is described at the level of cross-bridges 
distributions along reaction coordinate, which depends on 
relative distance between cross-bridges and actin binding 
site. It is assumed that this distance is a continuous quantity 
with a uniform distribution among all cross-bridges. Time 
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evolution of cross-bridges distributions is described using 
partial differential equations (PDE). A disadvantage of this 
approach is that it doesn’t explicitly take into account sar-
comere lattice geometry.

Another, more recent type of the models is spatially ex-
plicit stochastic models (Daniel et al. 1998; Campbell 2006). 
In this approach, the contractile system state is specified 
more detailed to the level of mechano-chemical state of 
individual cross-bridges. Cross-bridge state transitions are 
modeled with Monte Carlo methods. While keeping infor-
mation about the features of sarcomere lattice geometry this 
approach more realistically reproduces interaction between 
cross-bridges and binding sites. In contrast to Huxley-based 
models, the distance between cross-bridges and binding sites 
is discrete quantity. 

T﻿heoretical studies performed in the course of the ap-
proach that use spatially detailed models prove influence of 
the structure on kinetics of actomyosin interactions, ATP 
utilization, muscle force production, thin-filament Ca2+ 
activation (Duke 1999; Tanner et al. 2007; Smith et al. 2008). 
Behavior of cross-bridges ensemble demonstrates complex 
collective effects absent in spatially continuous models (Duke 
1999; Smith et al. 2008). Fluctuations, which occur in this 
model due to stochasticity of the cross-bridge kinetic transi-
tions, also can be relevant to functioning of the contractile 
system. Capability to simulate within this approach the 
contractile system, which is composed of limited number 
of filaments, is actual due to experimental studies of such 
systems (Liu et al. 2004; Suzuki et al. 2005; Placais et al. 2009).

However, this approach also has its disadvantages: 
models, created within this approach, are computationally 
demanding. Using individual realizations of the stochastic 
dynamical process it can be difficult to obtain its general 
properties, define its dependence on parameters. It is not 
always possible to separate these general properties from 
occasional fluctuations by averaging individual realizations. 
The fact that the model operates with random realizations 
may cause problems in the case of analysis of model results, 
its parametric identification or its sensitivity analysis.

So, it is advantageous to construct the model, allowing 
the acceleration of the simulation and operating with aver-
age values, as well as taking into account information on the 
structure of the sarcomere lattice.

As the results of experimental researches suggest, muscle 
contractile apparatus can operate in oscillatory mode, the 
nature of this phenomenon thought to be tightly related to 
sarcomere structure. Isolated muscle fibers from the frog 
exhibit damped length oscillations in the isotonic transient 
response to a force step (Edman et al. 2001). When myofibril 
from rabbit skeletal or cardiac muscles or from insects fly-
ing muscles was ramp-released or ramp-stretched by motor, 
their individual sarcomere length changes in stepwise fashion 
(Yakovenko et al. 2002; Nagornyak et al. 2004; Pollack et al. 

2005). Similarly, at the level of the single pair of thick and 
thin filaments, sliding of thin filament against elastic load 
follows a stepwise trajectory (Liu et al. 2004). It is considered 
that such oscillatory behavior reflects synchronous activity 
of the cross-bridges. This synchronization may be based on 
restrictions imposed by filament lattice on myosin and actin 
interaction. Indirectly, this is indicated by quantitative rela-
tions between the parameters of oscillatory dynamics and 
geometrical parameters of the lattice. Thus, in (Edman et al. 
2001) peak-to-peak amplitude of the muscle fiber length os-
cillation was equal to 2.7 nm. And in researches (Yakovenko 
et al. 2002; Liu et al. 2004; Nagornyak et al. 2004; Pollack et al. 
2005) the height of steps in sliding trajectory of sarcomeres 
or pair of filaments was equal to integer multiple of 2.7 nm. 
On the other hand, the value of 2.7 nm is equal to the mono-
meric repeat along the actin filament (Pollack et al. 2005).

Oscillatory sliding was also theoretically proved in the 
number of theoretical studies that applied the models with 
discrete lattice (Duke 1999; Smith et al. 2008). Those studies 
imply that such collective dynamics results from interaction 
between individual cross-bridges mediated by common thin 
filaments with which they interact. If one-cross bridge shifts 
a thin filament, it will change interactions of the other cross-
bridges with it. It was suggested that the oscillatory dynamics 
retrieved in the models is analogous to experimental (Duke 
1999; Vilfan et al. 2003; Smith et al. 2008). However, the step 
value in those works has not coincided with experimental 
one and quantitative relation between the step value and 
model parameters was not provided either.

In this research the approach for deterministic approxi-
mation of the stochastic spatially explicit model of a pair of 
rigid contractile filaments interaction was developed. The 
starting point for approximation is discreetness of cross-
bridges strain that also determines their chemical proper-
ties. As a result, all cross-bridges can be divided into finite 
number of groups by their strain (chemical properties). If 
each group has a great number of cross-bridges, then instead 
of individual cross-bridge state simulation it is possible to 
statistically simulate the whole group state via relevant ki-
netic equations. Such approximation preserves information 
about filament lattice geometry, defined by the set of ordinary 
differential equations (ODEs), and in contrast to stochastic 
model it operates with average values.

To verify approximation adequacy, we compared the 
results of deterministic ODE model with Monte Carlo 
simulation. Also within ODE model we studied in detail 
a mechanism and essential conditions for oscillations ap-
pearance under isotonic contraction, linked their spatial 
period with geometrical parameters of filaments lattice and 
compared theoretical and experimental results.

The suggested approach can also be used for approxima-
tion of PDE models solutions based on Huxley formalism. 
So, we also validated the adequacy of such approximation; 
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compare numerical stability of the given method with exist-
ing numerical methods for PDE solving.

Material and Methods

Spatially explicit stochastic model of a single pair of con-
tractile filaments 

We were looking for an approximation of stochastic spatially 
explicit model with a single pair of non-extensible thick and 
thin filaments (Fig. 1). There are N cross-bridges on think 
filament with spacing lmn between adjacent, which can in-
teract with binding sites of thin filament. It is assumed that 
at the same time only one of the two cross-bridge heads can 
bind to actin. Thin filament has infinite number of binding 
sites with spacing lan between adjacent. The thick filament 
is fixed, while thin filament can move in longitudinal di-
rection when subjected to the forces generated by bound 
cross-bridges and external force Fext. The force of bound 
cross-bridges arises from deformation of their elastic element 
with spring constant kcb. 

In general, cross-bridges cycle can include a number of 
free and bound states. Further we will consider kinetic cross-
bridge cycle that includes three states: 
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where numbers indicate different chemical states: state 1 
is detached, states 2 and 3 are bound; kij, rate for transi-
tion i→j. Transitions 1→2 and 2→3 may be accompanied by 
conformational changes in the myosin head, which increase 
the cross-bridge elastic element distortion by values d1 and 
d2 respectively. Transition 3→1 is accompanied by recovery 
stroke with value of −∑2

i = 1di. Chemical transition of indi-
vidual cross-bridge is stochastic event and it is simulated by 
Monte Carlo method (Daniel et al. 1998).

It is supposed that in general case transition rates kij are 
functions of cross-bridge distortion, which in turn depends 
on relative axial position between cross-bridge and binding 

site with which it interacts. We assume that thick filament is 
fully overlapped by thin filament. Each cross-bridge is char-
acterized by relative axial distance from its head equilibrium 
position in unbound state to the closest actin binding site 
on the right. Due to the periodicity of the cross-bridges and 
actin binding sites locations this distance will be a discrete 
quantity, and under the given mutual arrangement of thin 
and thick filaments, it will take values from discrete set 
Δ = {Δ1, … Δk, …ΔM}, where Δk+1>Δk. Size M and values of 
the set Δ depend on cross-bridges and binding sites periodic-
ity (lmn and lan), as well as on number of cross-bridges N. 

Further, we find the properties for the discrete set Δ in 
case of the infinitely long thick filament. Having chosen 
i-th cross-bridge (Fig. 2), we can find a cross-bridge with 
number of i+Tcb along thick filament which will have the 
same distance to the closest binding site on the right as i-th 
one. The distances to the closest right-handed binding site of 
cross-bridges from i-th toi+Tcb−1, make a pattern of unique 
values. Beginning with i+Tcb-th cross-bridge, this pattern will 
repeat. Sorted values of this pattern will constitute a set Δ. 
In this case, the size of the set Δ will be M = Tcb. The value 
Tcb is related to geometrical parameters of lattice as follows:
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Figure 1. Contractile system composed of 
a single pair of inextensible thick and thin 
filaments.

Figure 2. Example of lattice of a single pair of thick and thin fila-
ments for which the set Δ consists of two values {Δ1, Δ2}. Cross-
bridges with numbers of i+Tcbk and i+Tcbk+1, where Tcb = 2 and 
k is integer, the distances to the closest binding site on the right are 
equal to Δ1 and Δ2 respectively.
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where Tcb and Tbs are some unknown integers and they 
should be the least among possible. Distance s between any 
two adjacent elements of Δ will be:
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and elements of the set Δ will have the following values:
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where the value of the constant C depends on current mutual 
offset of thick and thin filaments.

For the thick filament of finite length, a number of cross-
bridges N in general case will not be equal toTcb. If N < Tcb 
then M = N and current set Δ does not include all the values 
from the set (Eq. 4). Differences Δk+1−Δk between adjacent 
elements of the set Δ will be multiple of s. If N > Tcb and N is 
not multiple of Tcb then M = Tcb and the set Δ will include 
all elements (Eq. 4) but their distribution between N cross-
bridges will be non-uniform.

The distance from cross-bridge to binding site with 
relative number r, with which it interacts (see Fig. 3), is 
equal:
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Binding sites are numbered so that the closest one on the 
right has its number r = 0, and on the left r = −1 etc. (Fig. 3).

The cross-bridge distortion is expressed by xk
r in the fol-

lowing way (see Fig. 3):
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where ξk
i,r is distortion of the cross-bridge in i-th chemical 

state. For unbound state ξk
i,r is distortion which must be 

taken by cross-bridge elastic element due to thermal fluctua-
tions for successful binding with r-th binding site.

Deterministic approximation

In the system with a single pair of thick and thin filaments 
(Fig. 1) stochasticity can be eliminated by combining a num-
ber of such pairs subsequently (Fig. 4). State of the combined 
system will represent an average of all possible stochastic 
realizations of the single pair filaments system state at the 
given moment of time. Dynamics of the combined system 
can be modeled using the system of ODEs. 

Figure 4. Contractile system composed from numerous pairs of 
inextensible thick and thin filaments connected in parallel.

Figure 3. Relationship between values of Δk, xk
r and 

ξk
i,r for the cross-bridge in different chemical states. 

Figures illustrate the same cross-bridge in different 
states for the same mutual offset between thick and 
thin filaments. A. In unbound state 1, the distance be-
tween myosin head and the closest binding site on the 
right is equal to Δk. B. Under the actin binding sites 
their relative numbers are shown. The cross-bridge is 
connected with 1-th binding site, then xk

r = Δk + lan. 
In the given example it is supposed that transition 
1→2 is not accompanied by conformational changes 
of cross-bridge (d1 = 0) so the value of cross-bridge 
elastic element distortion ξk

2,1 is equal to xk
1. С. If 

transition 2→3 is accompanied by structural changes of cross-bridge which performs the power stroke of size d2 then under transition 
to the state 3 cross-bridge elastic element distortion will increase by d2: ξk

3,1 = xk
1 + d2.
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In contractile system composed of large number of thick-
thin filament pairs every thick filament is inflexibly linked to 
each other and any two cross-bridges with the same number, 
located on different thick filaments, have the same axial posi-
tion (Fig. 4). The same is true for thin filaments and binding 
sites on them. Because the thick and thin filaments and links 
between them are rigid, at mutual sliding of thick and thin 
filaments, the distances Δk of all cross-bridges will change in 
the same way. That is, cross-bridges of all pairs of contractile 
filaments, at any given moment, will have the same sets of Δ. 
All cross-bridges of the combined system can be divided into 
finite number of groups (M) on the basis of their distance to 
the closest binding site on the right. Within each group, all 
cross-bridges that interact with r-th binding site will have 
the same kinetic properties. If the number of cross-bridges 
in each group is large enough, then its stochastic description 
can be replaced with deterministic one. To describe each 
group, we used corresponding kinetic equations. 

Assuming that unbound cross-bridges can be attached 
only to the closest binding sites on the left (r = −1) or on the 
right (r = 1) and taking into account scheme (1), the set of 
kinetic equations that determine the dynamics of fraction 
of the bound cross-bridges with the distance to the closest 
binding site on the right Δk is as follows:
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where Ck
i,r ≡ Ck

i,r (xk
r , t)is fraction of bound cross-bridges 

in i-th state which interact with r-th binding site located at 
distance xk

r at the moment t; Ck
1 ≡ Ck

1 (Δk , t) is fraction of 
unbound cross-bridges that have distance xk

1 = Δk to the 
closest binding site on the right at the moment t. We denote 
the set of all Ck

i,r as Ci = {Ck
i,r | k = 1…M, r = −m,…, n}. 

Normalizing conditions should take into account the fact 
that bound cross-bridges with xk

r = Δk + rlan, r є (−m,…, 
n) after unbounding will join the group of unbound cross-
bridges with the distance to the closest binding site on the 
right Δk. Normalizing conditions appear as follows:
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Distance Δk  є  [0;  lan) is a  circular value, and reaching 
its upper bound, it moves to the lower and vice versa. The 
distance xk

r є [ rlan; (r + 1)lan) will be transformed into xk
r-1 

at reaching its lower bound and into xk
r+1 when it reaches 

its upper bound. In accordance with this, the following 
boundary conditions should be imposed on the fractions 
of bound cross-bridges:
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The system of equations (7) must be completed by add-
ing mechanical equations that define the time evolution of 
thin filament position yan. In isotonic condition if the force 
of inertia is disregarded this equation will be the following:
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where βan is coefficient of viscous friction, Fcb is an average 
force of all bound cross-bridges, Fext is external force, both 
forces are per cross-bridge. Force Fcb is calculated as:
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where pk represents the number of cross-bridges of the single 
pair of thick-thin filament with the distance to the closest 
binding site of Δk. In case N ≤ Tcb all N of cross-bridges of 
the single pair of contractile filaments have different Δk then 
M = N and all pk = 1. If N > Tcb, then some of cross-bridges 
from the pair will have the same value of Δk, in this case pk 
will be equal to the number of cross-bridges that have the dis-
tance to the closest binding site on the right Δk and M = Tcb.

Computational algorithm for numerical solution of the 
system of equations (7), (8) and (10) with boundary condi-
tions (9) is given in Supplementary Methods, Section 1.

It is also possible to add noise into obtained deterministic 
ODE model. In the Monte Carlo simulation noise is related 
to stochasticity of chemical transitions. To add similar noise 
to deterministic ODE model we can replace ODE (Eq. 7), 
which has a general form of dCk

i,r /dt = f (Ck
i,r ), with ap-

propriate stochastic differential equations:

  

2 
 

 

 , , 1

, ,

(( 1) ) (( 1) ), 2,3, ( 1,..., 1)

( ) 0, (( 1) ) 0 2,3

k k
i r an i r an

k k
i m an i n an

C r l C r l i r m n

C ml C n l i




       

    
  (9) 

 

 

 ( )an
an cb ext

dy F F N
dt

     (10) 

 

 

 
3

, ,
1 2

M n
k kcb

cb k i r i r
k i r m

kF p C
N


  

    (11) 

 

 

 , ,( )k k
i r i rdC f C dt gdW    (12) 

 

 

 ( 1) , 1,...,k anlk k K
K

      (13) 

 

� (12)

where g is diffusion coefficient, W is Wiener process.

Approximation of solutions of Huxley-based model

Suggested ODE model also can be applied for approxi-
mation of numerical solutions of PDE models based on 
Huxley’s formalism, with normalizing conditions that cor-
respond to Eq. 8. According to this formalism the distance 
from cross-bridge to the closest binding site is a continuous 
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quantity. If in contractile system with discrete lattice the 
size of a discrete set Δ converge to infinity, then the dis-
tances between myosin heads and binding sites becomes 
a  continuous quantity and such contractile system can 
be described with PDE model. In the case of the above 
considered contractile system composed from numerous 
pairs of thick-thin filaments (Fig. 4), this situation can 
be reproduced by introducing mutual axial offsets from 
interval (0, lan] to different thin filaments. Assume that as 
results of such modification we have set Δ which consists 
of the following K values:
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According to Huxley’s approach (Huxley 1957) when 
K goes to infinity such contractile system can be described 
by system of PDEs. The system of this equations together 
with normalizing conditions correspond to those of the 
discrete lattice model (Eq. 8) are given in Supplementary 
Methods, Section 2.

Simulation parameters

Further we consider the parameters of simulation that are 
common for all models (see also Table 1). Mechanochemi-
cal cross-bridge cycle includes three states (scheme 1). It 
is assumed that the first bound state (state 2 on scheme 
1) is weakly bound, transition 1→2 is not accompanied 
by cross-bridge conformational changes (d1 = 0 nm). The 
second state is strongly attached force-generating state, 
transition 2→3 is followed by power stroke of d2 = 8 nm 
size. Dependencies of forward transition rates on distance 
x are given in Table 1 and Fig. 5. Revers transition rates 
were found from the ratio kji  =  kij  exp(Gj−Gi), where 
Gi(x) = kcb (x + ∑i-1

k = 1dk )2/2 + G0
i is dependence of free 

energy of state i on distance x. In these equations energies Gi 
and Gi

0  are in units of kBT where kB is Boltzmann constant 
and T = 300 K is the absolute temperature. The selected 
parameters are intended to illustrate general principle, and 
the results similar to calculated below can be also obtained 
under their different values. An essential issue is depend-
ence of the rate of transition 2→3 on distortion, when dis-
tortion decreases k23(x) should increase non-linearly. Such 
dependence can be found in many other models. 

Figure 5. Free energy profiles (A) and transition rates (B) are plotted against distance x which represents relative distance between 
cross-bridge and binding site.

A B

Tale 1. Simulation parameters

Parameter Value (unit)

d1 0 (nm)

d2 8 (nm)

kcb 2 (pN/nm)

k12(x) 103exp(0.1kcb x2/kBT) (s–1)

k23(x) {
10 (s–1),    x > −0.1 (nm)

104 (s–1),    x ≤ −0.1 (nm)

k31(x) {
103 (s–1),    x > −2.1 (nm)

104 (s–1),    x ≤ −2.1 (nm)

k13(x) 0

G0
1 0 (kBT)

G
0
2 –4.3 (kBT)

G
0
3 –18.7 (kBT)

βan 10–6 (g/s)
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Computational implementation

Model with Monte Carlo simulation and ODE model was 
implemented in C++ as console application. ODE and SDE 
models also have been implemented in MATLAB/GNU 
Octave package. For numerical solving of ODEs and SDEs 
systems, libraries SUNDIALS (Hindmarsh et al. 2005), 
SDETools (github.com/horchler/SDETools) and standard 
MATLAB/GNU Octave ODE solvers were used. ODE and 
SDE solvers from above-mentioned libraries support event 
detection, this feature is essential for boundary conditions 
realization (Eq. 9).

Results

Isotonic transient response to a force step

In order to study the effects of contractile apparatus structure 
on dynamics of cross-bridge ensemble, isotonic transient 
response at different model parameters was simulated. The 
simulation was carried out both within deterministic ODE 

model and, for comparison, with spatially explicit model that 
uses Monte Carlo simulation. For simulation of isotonic tran-
sient response, contractile system was previously activated 
isometrically after that it was allowed to contract isotonically 
against different external loads. Values of external force in 
isotonic mode were less than isometric force.

At first we consider the lattice with simpler geometry. We 
assume that lmn = 43.2 nm and lan = 35.1 nm, the number 
of cross bridges N  =  13. For these parameters, according 
to Eq. 2 and 3, Tcb = 13 and s = 2.7 nm. Because N is equal 
to Tcb, values Δk will be uniformly distributed among all 
cross-bridges and Δk+1 − Δk = s. Fig. 6 shows trajectories 
for isotonic contraction. Trajectories are stepwise and com-
plete steps size (height of the plateau plus the jump height) 
are equal to 2.7 nm. As it is observed from Fig. 6A, Monte 
Carlo simulation of contractile system composed of large 
number of identical pairs of thin-thick filaments and its 
deterministic ODE approximation fairly coincide. The veloc-
ity of contraction increases at external force Fext decreasing 
due to reducing of pauses between steps (Fig. 6B). At the 
intermediate velocities of contraction, single steps alternate 
with double ones (Fig. 6B, Fext = 0.18 pN per cross-bridge). 

Figure 6. Isotonic transient responses received in spatially ex-
plicit model with Monte Carlo simulation and in its deterministic 
ODE approximation, with lattice parameters lmn = 43.2 nm and 
lan = 35.1 nm. A. Comparison of Monte Carlo and deterministic 
simulations (curves are marked as MC and ODE respectively) at 
external isotonic force Fext = 0.4 pN per cross-bridge. In Monte 
Carlo simulation, the number of thin-thick filament pairs con-
nected in parallel was 1.5 × 103, N = 13. B., C. Simulation results of 
ODE model at various values of external loads (curves are marked 
by values of Fext in pN per cross-bridge). The results on the figures 
B and C were calculated with N = 13 and N = 20 respectively.

A

C

B
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Double steps have size of 5.4 nm and emerge as the result of 
single 2.7 nm steps fusion. The pauses between such steps 
are almost absent.

If the number of cross-bridges is increased to N = 20, 
some of them will have identical Δk. In this case under all 
external loads in trajectories of ODE model there are steps 
of 2.7 nm and 5.4 nm size. Their sequence forms a certain 
pattern (Fig. 6С).

To study the influence of stochasticity on dynamics of 
contractile system the ODEs (Eq. 7) in deterministic model 
was replaced with SDEs (Eq. 12). Trajectories of SDE model 
reproduce fairly good results of the Monte Carlo simula-

tion even though the structure of noise is different in both 
models (Fig. 7A). Noise leads to formation of the fused steps 
with integer multiples of 2.7 nm (Fig. 7A,B). In contrast to 
ODE model with the same parameters of the lattice, these 
fused steps appear under different external forces and their 
appearance is random. Fused steps occur more frequently 
and have greater sizes under lower external forces (Fig. 7B).

If as periods lmn and lan experimental values of 42.9 nm 
and 37.3 nm respectively are selected, then Tcb = 373 and 
s = 0.1 nm. In case N < Tcb distances Δk+1 − Δk can take 
different values for different k, but they all will be integer 
multiples of 0.1 nm. The exact set of values depends on the 
number of cross-bridges N as well as on mutual displacement 
of thick and thin filament. For example, at N = 20 value set 
Δk+1 − Δk will mainly consist of 1.8 nm and 1.9 nm values. 
In the ODE model, trajectory steps will also have sizes equal 
either to those values or their sum (Fig. 8).

Mechanism of stepwise motion

To analyze the mechanism of stepwise contraction, the 
dynamics of discrete distributions Ci(t,x) was researched 
(Fig. 9). Under contraction, the distributions Ci move to 
the left along the x-axis (Fig. 9A–F) and their form changes 
simultaneously.

The pauses between jumps

Drift on the plateau between consecutive steps (Fig. 9A–С) 
takes place due to increasing of weakly bound cross-bridges 

A B

Figure 7. Effect of noise on contractile dynamics. Isotonic transient responses retrieved in SDE model, Monte Carlo simulation and in its 
deterministic approximation with lattice parameters: lmn = 43.2 nm, and lan = 35.1 nm, N = 13 are shown. A. Comparison of the results 
of the SDE model and Monte Carlo simulation (curves are marked as SDE and MC respectively). Also, simulation result of ODE model 
is shown (curve is marked as ODE). In all cases, external isotonic force was Fext = 0.4 pN per cross-bridge. In Monte Carlo simulation, 
the number of thin-thick filament pairs connected in parallel was 150, and in SDE model g = 0.6. The arrows show steps of 5.4 nm. B. 
Comparison of the results of the SDE and ODE models (curves are marked as SDE and ODE respectively) at various values of external 
loads (curves are labeled by values of Fext in pN per cross-bridge). In SDE model g = 0.4.

Figure 8. Isotonic transient responses retrieved in ODE model 
with lattice parameters lmn = 42.9 nm, lan = 37.3 nm and N = 20.
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Figure 9. Mechanism of stepwise contraction. A.–F. Dynamics of 
discrete distributions Ci (t, x) of bound cross-bridges when contrac-
tile system performs one of the steps in trajectory of length change. 
Distributions shown in A–F correspond to different moments of 
time. Vertical lines with markers at the top represent different values 
of Ck

i,r (xk
r , t) (C2

i,r and C3
i,r marked with  and × respectively). 

A vertical line which represent value Ck
i,r is located on the x-axis 

at the point xk
r. The distance between any adjacent lines along the 

x-axis is equal to s = 2.7 nm. The lines for some of Ck
i,r are marked 

by arrows with numbers. The fragment of the trajectory of the ODE 
model from Fig. 6A is shown on the inserts. Marker on the trajec-
tory indicates current actin position. The results were calculated in 
ODE model at lmn = 43.2 nm, lan = 35.1 nm, N = 13 and Fext = 0.4 
pN per cross-bridge. 

fraction of the group 3 (Fig. 9A–С, fractions of weakly and 
strongly bound cross-bridges of this group are marked with 
arrow and number “3”) caused by the chemical transitions 
1→2. At the beginning of a plateau this process is compensat-
ed by unbinding of strongly bound cross-bridges of the group 
3, and as a result actin remains almost fixed (Fig. 9A, В).

Jumps

A jump in the trajectory is a  result of synchronization of 
power strokes (transitions 2→3) between weakly bound cross-
bridges one of the discrete groups (Fig. 9С–Е). The drift on 
the plateau leads to decreasing of the distance between weakly 
bound cross-bridges of the group 2 and binding sites they 
interact with. At a certain moment of time this distance gets 
less than –0.1 nm and these results in sharp increasing of 
transition rate 2→3 (Fig. 5B). As this transition is accompanied 
by power stroke it also leads to dramatic rise of force Fcb and 
the velocity of contraction.

Size of elementary steps

When trajectory attains a new plateau, distributions Ci take 
the same form as at the beginning of the cycle, and the pro-
cess repeats itself. Thus, one cycle of distribution changes 
continues until each of the cross-bridges groups takes the 
position occupied by the neighboring group at the beginning 
of the cycle (which is as far as s = 2.7 nm). For example, group 
2 at the end of the cycle will occupy the position of group 
3 which the latter have previously occupied at the beginning 
of the cycle. Therefore, total step amplitude is related to 
spatial duration of cyclic changes. Value of the power stroke 
does not directly influence the step size.

Formation of the double steps in ODE model

If external force is not large, the group of cross-bridges that 
forms a  jump in trajectory can also initiate synchronous 
performance of power-strokes for its adjacent group, it leads 
to formation of the double steps (Fig. 6B, Fext = 0.18 pN per 
cross-bridge). For example, if while performing a  jump, 
group 2 advances the thin filament, so that at the end of 
this jump (Fig. 9E) group 1 is located behind the distance 
x = −0.1 nm, this will result in formation of instant second 
jump, avoiding the phase of the plateau. Fusion is limited by 
two steps because group 1 will advance thin filament to some 
smaller distance than group 2. Because second jump is not 
preceded with pause, then group 1 will have less time in the 
region x > −0.1 nm and consequently will have less amount 
of weakly bound cross-bridges at the beginning of this jump. 
If parameters of the model are chosen so that the distances 
Δk+1 − Δk are sufficiently small, then fusion of more than 
two steps can occur in the same manner.

Formation of fused steps in SDE model

Mechanism of the steps fusion under noise condition is 
similar to that in the ODE model but throwing of another 
group, which will perform the next jump, over the boundary 
x = −0.1 nm will be carried out due to random instantaneous 
increase in force Fcb. Moreover, at external force decreasing, 
relative distance from this group to boundary x = −0.1 nm 
at the beginning of the new step will be reducing (in Fig. 9F 
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this distance is between group 1 and point x = −0.1 nm) so 
fusion probability will increase with force Fext decreasing.

The above given analysis shows that stepwise dynamics 
observed in the model is a result of cooperative effects related 
to structural constraints of discrete lattice. At contraction, 
steps occur due to synchronization of power strokes between 
cross-bridges of one of the discrete groups. Another essen-
tial condition for synchronization is nonlinearity of strain 
dependent rate constants of the transitions that are related 
with significant changes of cross-bridge strain (power stroke 
generation) or contractile system stiffness (attachment or 
detachment of cross-bridges). In the above-mentioned 
simulations such rate constant is k23(x). It characterizes the 
rate of the power stroke transition, this rate sharply increases 
with decreasing x after x = −0.1 nm (Fig. 5B).

We have considered the simulation of isometric contrac-
tion but stepwise sliding can also be received under the 
stretching of contractile system. In this case jumps will be 
resulted from reverse power strokes synchronization which 
is related to transitions 3→2. This synchronization will arise 
due to nonlinear rate increasing of reverse power stroke 
(k32(x > 0)) under increasing of x (Fig. 5B).

Approximation solutions of PDE model

As stated above, ODE model (Eqs. 7–10) can also be used 
to approximate the solutions of PDE models based on 
Huxley formalism. We compared the results of simulation 
of isokinetic contraction in ODE model and corresponding 
PDE model derived within the Huxley approach (see Sup-
plementary Eqs. S3 and S4). In ODE model the set of Δk 
values is formed based on Eq. 13 and as a result all values xk

r 
are uniformly distributed along the interval of integration 
with step Δx = lan/K.

For numerical solution of PDEs (Supplementary Eq. S3), 
its spatial coordinate x is discretized via K(m+n)+1 points 
and K(m+n) intervals of length Δx = lan/K(m+n) each. Spatial 
derivatives in the right side PDEs (Supplementary Eq. S3) are 
approximated by central differences. For numerical solving of 
the obtained system of the ODEs we used the same numerical 
methods (the same solvers of MATLAB/Octave package) as 
for ODE model (Eq. 7). Likewise the simulation from previ-
ous section, cross-bridge cycle is composed of three states, 
with parameters from Table  1. Isokinetic contraction has 
preceded isometric activation in the simulation. The velocity 
of contraction was 1 µm/s.

The results of simulation are shown on Fig. 10. As it can 
be observed numerical solutions of PDE model are unstable, 
they have significant oscillations. Without those oscillations, 
PDE and ODE model solutions match closely (Fig. 10A,B). 
Under decreasing of Δx, those oscillations decrease and 
solutions of PDE model approach to those of ODE model. 
In contrast the solutions of ODE model remain stable and 
their form doesn’t change even with large Δx (or small K) 
(Fig. 10С,D). 

Discussion

Results of the simulation of the isotonic transient show that 
the structure of contractile system can play significant role 
in its functioning. In particular, in the model of contractile 
system composed of the pair of filaments can occur coop-
erativity between molecular motors due to their interactions 
within discrete filaments lattice, this cooperativity leads to 
stepwise motion of the thin filament. Can we consider oscil-
lations observed in the model similar to the experimental 
ones? Similarly to the experimental results (Pollack et al. 

Figure 10. Distributions Ci(x) of bound cross-bridges at isokinetic contraction obtained as numerical solution of ODE model (curves 
are marked as “ODE”) and PDE model (curves are marked as “PDE”) at different values of step Δx. 
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2005), the model allows to obtain steps with height which 
is integer multiple of some elementary step size. Also the 
pauses duration between steps and relative probability of 
appearance large and small steps shows a dependency on 
the sliding velocity similar to experimental. However, the 
model faces difficulties with obtaining experimental value 
for elementary step size of 2.7 nm.

In the model the constraints on the size of the elementary 
steps are imposed by values Δk+1 − Δk. Their sizes are equal 
to or a combination of Δk+1 − Δk. The set of Δk+1 − Δk, in 
turn, depends on geometry of filaments lattice (periods 
lmn and lan), as well as on the number of cross-bridges N. 
Moreover, the exact size of the steps, which will be drawn 
from the available values Δk+1 − Δk, depends on functional 
form of transition rates in cross-bridge cycle.

As we have observed experimental value for elementary 
step size can be obtained in the model at periods lmn and lan 
that are somewhat different from experimental ones. Moreo-
ver, since dependence of elementary step size on parameters 
lmn and lan has complex nonlinear character, the model is 
very sensitive to their changes. On this background we can 
conclude that it is unlikely to explain the experimentally 
observed length oscillations only on the ground of coopera-
tive effects in myosin cross-bridges related to restrictions 
imposed by discrete filament lattice on myosin and actin 
interaction.

Possible solution to overcome this problem is considera-
tion of alternative or additional assumptions concerning the 
structure of the contractile system, and myosin and actin 
interaction. For example, existence of more complicated ge-
ometry can be assumed, when single actin filament interacts 
with several rows of cross-bridges of single thick filament 
(Suzuki et al. 2011). Else when myosin can interact not only 
with one actin monomer but also with a number of neigh-
bouring ones located in the target zone (Steffen et al. 2001; 
Tregear et al. 2004). In the last case it will result in the dis-
tances Δk+1 − Δk that are equal or integer times smaller than 
the linear repeat of actin monomers along the thin filament 
(2.7 nm). Another assumption may relate to the mechanism 
of force generation by single cross-bridges. Based on single 
molecule measurement, it was assumed (Kitamura et al. 
1999; Yanagida et al. 2012) that sliding of actin past myosin 
can be driven by biased Brownian movement of the bound 
myosin heads along actin filament rather than by lever arm 
rotation. A single myosin head moves in stepwise manner 
with unitary steps of ~5.5 nm. It may take 2–5 fast steps per 
one hydrolyzed ATP (Kitamura et al. 1999). 

Conclusions

An innovative method for deterministic ODE approximation 
of stochastic spatially explicit model of single pair of rigid 

thick and thin filaments is introduced in this study. Applica-
tion of such ODE model allows to avoid extensive calcula-
tions associated with the use of Monte Carlo simulation of 
the spatially explicit model. ODE model retains information 
about constraints imposed on actin-myosin interactions 
caused by their arrangement in discrete filament lattice.

Simulation of isotonic length response to a  force step 
within both models shows that the results of ODE model 
coincide with Monte Carlo simulation. ODE model re-
produces collective effects of cross-bridge ensemble that 
are presented in spatially explicit model and are related to 
structural constraints of discrete lattice. Effects of noise as-
sociated with stochastic kinetic transitions in Monte Carlo 
simulation can be reproduced in approximation by replacing 
ODEs with SDEs system.

Within ODE model, the mechanism of stepwise motion 
under isotonic response is analyzed in great detail; inter-
relation between step size and geometrical parameters of 
filament lattice is studied. Discreetness of spacing between 
cross-bridges and binding sites and nonlinearity of strain 
dependent transition rates between weakly and strongly 
bound states are basic preconditions for stepwise motion. 
Despite the fact that this dynamics is qualitatively similar 
to those observed experimentally, the given analysis im-
plies that the dynamics observed in experiment cannot be 
explained only via cooperative effects related to structural 
constraints of discrete lattice. Using current assumptions, 
the model faces principal difficulties in obtaining the step 
size value that is equal to experimental. Possible solution is 
consideration of more complicated structure of contractile 
system, other assumptions about the mechanism of force 
generation by single cross-bridge and its interaction with 
actin.

The suggested approach can also be applied for approxi-
mation of solutions of PDE models based on Huxley formal-
ism. Simulation of isokinetic contraction both in ODE and 
PDE model respectively has shown that the results of both 
models coincide under sufficiently small values of discrete 
step in space Δx. Stability of PDE model solutions, obtained 
by the method of lines, is greatly dependent on the value 
Δx. Whereas the solutions of ODE model remain stable in 
spite of value Δx.
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