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Asthma exacerbation by aspirin and chemical additives: use of 
a nucleotide template model to investigate potential mechanisms 

Wynford R. Williams 
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Abstract. Aspirin exacerbated asthma (AEA) affects approximately 10% of the asthmatic popula-
tion. Clinical studies with a focus on abnormalities in arachidonate metabolism do not adequately 
account for susceptibility. Other pharmacological targets of aspirin receive less attention. Further 
investigation is required to elucidate mechanisms, improve on diagnosis and treatment. This study 
employs a molecular modeling approach, based on use of a nucleotide template, to standardise and 
compare molecular structures of compounds known to induce or prevent asthma. Results identify 
relative molecular similarity within the structures of drugs and cell mediators relevant to AEA and 
intolerance reactions. The investigated compounds provide equivalent fits to ligand structures for 
GABA, glycine, NMDA and nicotinic receptors. Chloride and ligand-gated ion channels are a com-
mon link between agents responsible for the induction and control of AEA. The methodology is 
applicable to compounds responsible for chemical-induced intolerance reactions. 
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Introduction

The properties of aspirin are duplicitous in nature. The drug 
is of importance for anti-platelet and anti-inflammatory 
action and of interest in limiting the development of some 
neoplasms but potentially damaging to the physiology of 
the stomach, skin, nasal and bronchial passages, auditory 
and angio-neural systems (Mastalerz et al. 2005; Kwok and 
Loke 2010; Sheppard et al. 2014; Stevens et al. 2015). Assess-
ments of prophylactic aspirin use in the general population 
focus on major risks of increased mortality and neglect the 
considerable potential for increased morbidity (Thorat and 
Cuzick 2015). Both harmful and therapeutic effects are 
attributed to the inhibitory action of aspirin on cyclooxy-
genase, the enzyme responsible for prostaglandin synthesis 
(Nandakishore et al. 2014). Altered arachidonate metabolism 
by aspirin also leads to the production of aspirin triggered 
lipoxin with strong inhibitory effects on inflammatory 
signaling pathways and their cytokines (Wang et al. 2011). 
A better understanding of the mechanism of aspirin sensitiv-
ity in asthma patients, a condition characterized by chronic 

eosinophil inflammation and dysregulation of arachidonic 
acid metabolism, will facilitate development of a reliable in 
vitro test for better diagnosis of a potentially life-threatening 
condition (Velazquez and Teran 2013; Woessner 2017). 

The molecular weight of aspirin is on a par with endog-
enous neurotransmitters and its chemical simplicity makes 
it multi-functional in regard to effects on enzymes, cell 
mediators and ion channels. In comparison to arachidonate 
metabolism, studies of salicylate action on ion channel func-
tion have received far less attention. Animal and in vitro 
studies demonstrate that aspirin and salicylate influence 
sodium, potassium, GABAA, glycine and NMDA ion chan-
nels (Lu et al. 2009). Hoang and co-authors (2010) are of 
the opinion that the primary defect in asthma is excitation-
bronchoconstriction resulting from the stimulation of cell 
membrane ion channels and receptors. 

Research into the mechanism of AEA is aided by studies of 
adverse reactions in different organ systems, investigations of 
asthma-inducing agents that do not belong to the category of 
non steroidal anti-inflammatories (NSAIDs) and the thera-
peutic efficacy of unconventional anti-asthma drugs such as 
cromolyn and furosemide. Furosemide normalizes increased 
lung epithelial permeability, even in severe asthma, and is 
effective against a wide range of asthma provoking agents, 
including aspirin (Myers et al. 1997; Bhure et al. 2009). The 
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similar asthma prophylactic spectrum of furosemide and 
cromolyn is attributable to their effects on chloride transport 
(Alton et al. 1996; Alton and Norris 1996).

The majority of therapeutic drugs target G-protein con-
trolled receptors (GPCR) via a critical guanine nucleotide 
structure at the focus of the biochemical process controlling 
cell membrane signal transduction events (Johnston and 
Siderovski 2007). The anti-asthma drugs targeting GPCR 
include adrenoceptor agonists, anticholinergic agents and 
leukotriene antagonists (IUPHAR database (2017), www.
guidetopharmacology.org). Purine nucleotides also feature 
prominently in the regulation of ligand- and voltage-gated 
ion channels, which are pharmacologic targets of chromones 
and salicylates (Alton and Norris 1996; Li et al. 2013). Mo-
lecular similarity within nucleotide and hormone structures 
targeting GPCR and ion channels is relevant to the abnor-
malities in cell-signal transduction processes associated 
with asthma. Guanine nucleotide has proven to be a useful 
reference structure for the standardization and comparison 
of drug and hormone structures by means of a computational 

chemistry program (Williams 2011). The methodology is 
applied here to the structures of compounds influencing 
aspirin intolerance and pseudo-allergic reactions, to deter-
mine if this approach assists in our understanding of the 
mechanisms responsible.

Materials and Methods

Molecular formulae of the investigated compounds are 
listed in IUPHAR (www.guidetopharmacology.org) and 
Pubchem (http://pubchem.ncbi.nlm.nih.gov) databases. The 
representative agonist and antagonist compounds selected 
for investigation and literature sources linking ligand struc-
tures to ion channel and cell mediator receptor targets are 
given in Table 1.

The building of molecular structures, and conformational 
analysis to obtain minimum energy conformers for use in 
superimposition and fitting studies, is undertaken with 
the Nemesis software program (Oxford Molecular version 

Table 1. Reference sources and targets of compounds under investigation

Compounds

Ion channels Cell mediators

chloride channels
NMDA nAch Pg LT LXA4

GABAA glycine other
Furosemide 1 1, 9 11, 12 20 – 25 29 –
Cromolyn – – 11, 13 – – 30 –
NPPB 2 – 14, 15 – – 14 29 –
Niflumic acid 1, 2 – 2, 16 2,20 – – – –
Aspirin /salicylate 3 10 – 21 – 26 31 –
Prostaglandin E2 (PgE2) 4 – 17 – – – 32 –
Isoguvacine 5 – – – – – – –
U93631 6 – – – – – – –
Bicuculline 5 7 – – – – – –
Strychnine 7 7 – – – – – –
Toluene-diisocyanate (TDI) 8 – – – 8 – – –
Leukotriene E4 (LTE4) – – 18 22 – 27 – –
Lipoxin A4 (LXA4) – – 19 – – 28 – –
N-methyl-D-aspartate (NMDA) – – – 23 – – – –
Quinolinic acid – – – 23 – – – –
MK801 – – – 23 – – – –
Nicotine – – – – 8 – – –
Epibatidine – – – – 8 – – –
Aspartame – – – 24 – – – –
Montelukast – – – – – – – 33

1, Kumamoto and Murata 1997; 2, Zhao et al. 2016; 3, Gong et al. 2008; 4, Kimura et al. 1985; 5, Allan & Harris 1986; 6, Dillon et al. 
1995; 7, Shirasaki et al. 1991; 8, Liu et al. 2006; 9, Dudeck et al. 2003; 10, Lu et al. 2009; 11, Alton et al. 1996; 12, Deisz et al. 2011; 13, 
Reinsprecht et al. 1992; 14, Breuer and Skorecki 1989; 15, Babot et al. 2005; 16, Liantonio et al. 2007; 17, Moeser et al. 2004; 18, Jett et al. 
1991; 19, Verriere et al. 2012; 20, Lerma and Martin del Rio 1992; 21, Deng et al. 2013; 22, Kiyoyuki et al. 2015; 23, Pawley et al. 1996; 
24, Abdollahi et al. 2001; 25, Pavord et al. 1995; 26, Nandakishore et al. 2014; 27, Salimi et al. 2017; 28, Kumar et al. 2014; 29, Perkins et 
al. 1992; 30, Yoshida et al. 1998; 31, Planaguma et al. 2002; 32, Narayanankutty et al. 2013; 33, Cai et al. 2007.   

http://www.guidetopharmacology.org
http://pubchem.ncbi.nlm.nih.gov
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2.1). All ligand structures are minimum energy conformers 
in an uncharged form. The low energy conformer of GTP 
nucleotide is from a previous setting (Williams 2011). The 
program fits paired molecular structures on a 3 point basis. 
Fitting points comprise of selected atom pairs of similar type 
and partial charge within ligand and nucleotide structures. 
The sequence of fitting to the nucleotide is given for each 
compound in Table 2 (reading from left to right). The Nem-
esis program computes goodness-of-fit values, in respect 
of inter-atomic distance at each fitting point and the root 
mean square value. Ligand fitting points are identified in the 
Figures by colour-coded atoms: carbon-green, nitrogen-blue, 
oxygen-red. Bond order within molecular structures is not 
shown and the nucleotide structure is cropped to improve 
on presentation

Results

Results of the molecular modeling study are presented for 
ligand-gated ion channel (LGIC) ligands, and compounds 
modulating asthma and chemical-induced adverse reactions. 
Goodness-of-fit for the structures in Figures 1–3 does not 
exceed 0.20 Å and 0.0300 Å for inter-atomic distance and 
root mean square value, respectively (Table 2).

Compounds with a regulatory action on LGIC relate to 
several fitting patterns on the GTP template (Figure 1). The 
agonist and antagonist structures are ligands at GABAA, 
glycine, NMDA and nicotinic (nAch) receptors; bicucul-
line is active at glycine and GABAA receptors. GABAA and 
nAch ligands fit at the nucleotide endocyclic C4-C5 bond 
with the third fitting point at C6 (GABA) or N9 (nAch). The 

Table 2. Fitting data for ligands superimposed on the GTP template

Compounds Fitting points Inter-atomic  
distance (Å)

RMS
 (Å)

Acetylcholine N9C4C5 0.19,0.02,0.20 0.0277
Aspartame O6C6C5 0.09,0.05,0.08 0.0034
Aspirin C6C5C4 0.04,0.00,0.04 0.0041
Bicuculline C4C5C6 0.01,0.03,0.01 0.0014
Cromolyn O6C6C1’ 0.10,0.12,0.08 0.0113
Epibatidine C6C5C1’ 0.06,0.01,0.07 0.0010
Furosemide O6C6C5 0.07,0.03,0.04 0.0039
Furosemide O6C6N1 0.09,0.02,0.08 0.0031
Furosemide C6C5C4 0.02, 0.01,0.01 0.0019
GABA C4C5C6 0.09,0.10,0.06 0.0156
Glycine O6C6N1 0.02,0.06,0.08 0.0059
Isoguvacine C4C5C6 0.01,0.02,0.02 0.0014
Lipoxin A4 C5C4O2 0.05,0.06,0.02 0.0084
LTE4 O6C6C5 0.01,0.04,0.05 0.0042
LTE4 C8N9C1’ 0.07,0.13,0.06 0.0328
MK801 N9C4C6 0.11,0.06,0.05 0.0014
Montelukast C8N9C1’ 0.08,0.14,0.06 0.0337
Nicotine N9C4C5 0.13,0.04,0.14 0.0052
Niflumic acid C6C5C4 0.02,0.01,0.03 0.0012
Niflumic acid O6C6C5 0.07,0.03,0.04 0.0036
NMDA O6C6C5 0.09,0.03,0.09 0.0014
NPPB C4C5C6 0.02,0.02,0.02 0.0025
Prostaglandin E2 C4C5C6 0.08,0.11,0.06 0.0212
Prostaglandin E2 C5C4C8 0.09,0.10,0.11 0.0006
Quinolinic acid O6C6C5 0.07,0.03,0.05 0.0022
Salicylate O6C6N1 0.03,0.03,0.06 0.0014
Strychnine O6C6N1 0.01,0.01,0.02 0.0010
TDI C6C5C1’ 0.07,0.07,0.04 0.0134
U93631 C4C5C6 0.09,0.07,0.09 0.0286

LTE4, leukotriene E4; NMDA, N-methyl-D-aspartate; TDI, 
toluene-diisocyanate; NPPB, 5-nitro-2-(3-phenylpropylamino) 
benzoic acid.
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Figure 1. Fits of ligand-gated ion channel ligands to guanine 
nucleotide (A) templates (grey): GABA (B), isoguvacine (C), 
U93631 (D), glycine (E), strychnine (F), bicuculline (G), NMDA 
(H), quinolinic acid (I), MK801 (J), acetylcholine (K), nicotine 
(L), aspirin (M). Agonist structures: B, C, E, H, I, K, L; antagonist 
structures: D, F, G, J.
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Figure 2. Fits of asthma modulating 
agents to guanine nucleotide templates 
(grey): aspirin (A), niflumic acid (B), 
furosemide (C), NPPB (D), PGE2 (E), 
PGE2 (F), cromolyn (G), LTE4 (H), mon-
telukast (I), LTE4 (J), LXA4 (K).

fits of glycine and NMDA ligands focus on the C6 carbonyl 
group of the guanine ring. Aspirin structure (M) is markedly 
similar to the GABAA agonist isoguvacine (C) and NMDA 
agonist quinolinic acid (I). The N9C4C5 fitting values of ace-
tylcholine and nicotine, also replicated by minimum energy 
conformers of the agonists carbamoylcholine, RJR2429 and 
SIB1508Y (data not shown), are amongst the weakest of the 
LGIC ligands (Table 2).

Structures A–E, in Figure 2, provide a  GABAA-like fit 
(C6C5C4) to the nucleotide template. Fitting values for struc-
tures B, C and D, chloride channel inhibitors with preventa-
tive effects on AEA, are better than the fit of GABA (Table 2). 
In comparison to the structure of aspirin (A), fitted chloride 
channel inhibitors present inhibitory alkyl chains and cyclic 
rings above the guanine ring in common with PgE2 (E) and 
cromolyn (G). The structures of cromolyn, LXA4 (K), LTE4 
(H) and the LTE4 antagonist montelukast (I) have a fitting 
point on the ribose moiety of GTP at O2 or C1’. Structure 
J (LTE4) replicates the fit of NMDA in Figure 1 (the terminus 
of the side-chain of LTE4 comprises of a glutamate residue) 
with better fitting values than the alternative fit, template H. 
Template F provides an alternative to the GABAA fit of PgE2. 

Figure 3 gives the glycine-like fits of furosemide (A) and 
salicylate (B) and the NMDA-like fits of furosemide (C), 
niflumic acid (D) and aspartame (E). Differences between 
antagonist (C and D) and exacerbator (E) action at the 
NMDA receptor are evident in the positioning of a non-
fitting cyclic ring, which is absent in aspartame and NMDA 
(Figure 1) exacerbator structures. TDI (F) and the nicotinic 
ligand epibatidine (G) use the same fitting points on the GTP 
template but differ in the superimposition of a cyclic ring on 
the aminouracil moiety of the nucleotide.

Discussion

The nucleotide template model facilitates the recognition 
of molecular similarity within the structures of compounds 
with established roles in the exacerbation and amelioration 
of asthma. In regard to ligand-gated ion channels, aspirin 
and salicylate provide NMDA-, GABA- and glycine-like fits 
to the nucleotide that relate to functionality at these recep-
tors. Aspirin potentiates NMDA responses in ganglionic 
neuron cultures (Peng et al. 2003). Salicylate is equipotent at 
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GABAA and glycine receptors, inhibiting responses in neu-
ron cultures from spinal dorsal horn and hippocampal slices, 
respectively (Gong et al. 2008; Lu et al. 2009). Salicylate has 
a pre-synaptic stimulatory effect on rat medullary inspira-
tory neurons, whereas a higher inhibitory concentration is 
antagonised by bicuculline, a GABA antagonist (Akada et 
al. 2003). GABA transmission is not confined to the central 
nervous system and release of the neurotransmitter from 
epithelial cells contributes to airway smooth muscle relaxa-
tion and regulation of mucous production (Danielsson et 
al. 2016). Glycine, calcium-activated chloride and Na-K-
chloride co-transporter channels are also important in 
maintaining airways smooth muscle relaxation (Danielsson 
et al. 2014).

The structures of asthma ameliorating compounds such 
as cromolyn, PgE2 and furosemide use the same template 
fitting points as aspirin but reveal additional complexity in 
their fit to the nucleotide. These anti-asthma compounds 
influence chloride channel sites and demonstrate interac-
tion in vitro. Furosemide and cromolyn attenuate chal-
lenge tests on asthmatic subjects and block conductance 
of a voltage- and calcium-dependent chloride channel in 
airways epithelium (Alton et al. 1996; Myers et al. 1997). 
Niflumic acid, a COX-2 inhibitor, targets the same inhibi-
tory receptor site as furosemide at GABAA receptors (Zhao 
et al. 2016). Niflumic acid, NPPB and furosemide block 
chloride conductance, in airway epithelium, initiated by 
E-ring isoprostanes (Seto et al. 2008). Prostaglandins pro-
mote the action of GABA but their effects are also subject 
to regulation by ligands binding to the GABAA receptor 
(Kimura et al. 1985; Nonogaki et al. 1993). Furosemide 

and NSAIDs both target specific sub-units of the GABAA 
receptor (Korpi et al. 2002; Sinkkonen et al. 2003).

The drugs under investigation are pluripotent in terms 
of receptor binding (see Table 1) and this is reflected in dif-
ferent receptor type fits to the guanine nucleotide template. 
Enhancement of the NMDA current by aspirin and salicylate 
is linked to the development of tinnitus and ganglionic cell 
death (Peng et al. 2003; Deng et al. 2013). Furosemide pre-
vents NMDA receptor activation and inhibits the strychnine 
sensitive glycine receptor in cultured spinal cord neurons 
(Lerma and Martin del Rio 1992; Dudeck et al. 2003). 
Leukotrienes promote NMDA activity in neurons of the 
rat spinal cord (Kiyoyuki et al. 2015). There is experimental 
evidence for the participation of NMDA receptors in airway 
hyperreactivity but no established link between leukotrienes 
and NMDA receptors in airway inflammation (Antosova and 
Strapkova 2013; Anaparti et al. 2015).

Aspartame and TDI have records of long term contro-
versial use in food and manufacturing processes. Aspartame 
causes neurological disturbances, activating the NMDA 
receptor and NO-cGMP pathway in mice (Abdollahi et al. 
2001). The aspartame structure provides a NMDA-like fit to 
the nucleotide template. TDI has a considerable reputation 
for causing health problems, including asthma, in the work 
environment. In vitro studies demonstrate suppression and 
partial suppression of nicotinic and GABA receptor re-
sponses, respectively (Liu et al. 2006). TDI provides a similar 
nucleotide template fit to the nicotinic ligand epibatidine and 
is known to suppress a Ca2+ current promoted by epibatidine 
in human neuroblastoma cells (Liu et al. 2006). Other irri-
tant sensitising agents of interest in the occupational health 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 3  
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F Figure 3. Fits of intolerance-inducing agents 
and antagonists to guanine nucleotide tem-
plates (grey): furosemide (A), salicylate (B), 
furosemide (C), niflumic acid (D), aspartame 
(E), toluene diisocyanate (F), epibatidine (G).
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setting are organic acid anhydrides, which are structural 
analogues of aspirin with anti-inflammatory properties and 
inhibitory effects on prostaglandin synthesis (Killackey et al. 
1984; Teng et al. 1987). 

The multiple properties and concentration dependent 
effects of aspirin on cell targets contribute to the difficulty 
of establishing a  mechanism for AEA. Aspirin targeting 
of neurotransmitter receptors may also provide opposing 
actions under different conditions. The global inhibitory 
action of GABA may change under depolarising conditions 
to contribute to glutamate excitotoxicity (Babot et al. 2005). 
Aspirin also influences the balance of cell mediators derived 
from the arachidonic cascade within the chemical milieu 
of inflammation. A  singular focus on reciprocal changes 
in prostaglandin and leukotriene levels in AEA, therefore, 
inadequately addresses the action of aspirin in exacerbating 
asthma. Of the cell receptors implicated in AEA, chloride 
ion channels and NMDA receptors are common targets of 
aspirin, inflammatory mediators and the drugs providing 
protection. 

In conclusion, molecular modelling methodology based 
on the use of a purine nucleotide template is a useful ap-
proach to the comparative study of asthma-inducing agents 
and anti-asthma drugs in respect of structure-activity data. 
Literatures sources and molecular fitting data indicate that 
activated NMDA and chloride channels contribute to AEA 
and the condition does not result from protein targets en-
tirely concerned with arachidonate metabolism.

Conflict of interest. I declare that there is no conflict of interest 
within the content of the manuscript. There are no sources of fund-
ing or sponsors associated with this work.
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