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Brain stimulation methods for pain treatment 
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Abstract. Treatment of pain is one of the most important aims of medicine. Over the past several 
decades, invasive, semi-invasive and non-invasive brain stimulation methods have been tested and 
implemented for modulation of the pain. In this review, we bring an overview of those methods 
including stimulation of both deep brain structures utilizing invasive and semi-invasive techniques 
and the brain cortex stimulated by non-invasive transcranial magnetic and electrical techniques. 
Another potentially beneficial method that could modulate pain by stimulating the deep brain with 
interferential transcranial alternating current is discussed as well.
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Abbreviation: AC, anterior cingulate cortex; CMPf, centromedian intralaminar perifascicular 
(complex); DBS, deep brain stimulation; EEG, electroencephalography; fMRI, functional magnetic 
resonance imaging; fNIRS, functional near red stimulation; GABA, gamma-aminobutyric acid; IC, 
internal capsule; if-tACS, interference transcranial alternating current stimulation; IPG, implanted 
pulse generator; NAc, nucleus accumbens; NIBS, non-invasive brain stimulation; PVG/PAG, periven-
tricular and periaqueductal gray; rTMS, repetitive transcranial magnetic stimulation; tCS, transcranial 
current stimulation; tDCS, transcranial direct current stimulation; TENS, transcutaneous electrical 
nervous stimulation; tES, transcranial electrical stimulation; TMS, transcranial magnetic stimulation; 
tPCS, transcranial pulsed current stimulation; tRNS, transcranial random noise stimulation; VPL, 
ventral posterolateral (nucleus); VPM, ventral posteromedial (nucleus).
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Introduction

Pain as well as pain treatment methods have accompanied 
mankind throughout the latter stages of evolution. Early 
therapies for pain were first seen in China, and then in the 
Middle East and India. The main approach to pain treatment 
has been pharmacological, initially in the form of plant-
based phytotherapy, with other drugs being added over 
time (Harrison et al. 2012; Amin and Hosseinzadeh 2015; 
Finch and Drummond 2015; Mehreen et al. 2016). From 
antiquity, through the middle ages and into the modern age, 

each time period was accompanied by discoveries of new 
painkillers. In ancient times, electric stimulation methods, 
using shocks from electric catfish (Malapterurus electricus), 
found in the Nile, were used to treat painful conditions. 
Even though pharmacotherapy alternatives are becoming 
more and more effective, pain medication will likely remain 
the primary method of pain treatment for the foreseeable 
future, however, in cases where pain is pharmaco-resistant, 
pharmaceutical alternatives become extremely important 
(Oakley 2003; Hirayama et al. 2006; Lefaucheur 2008; Eke-
Okoro et al. 2018). 

Significant scientific study of electrical pain treatment 
did not really start until 1967, when Wisconsin colleagues 
Shealy, Mortimer, and Resnik first used electrical stimula-
tion to treat pain (Shealy et al. 1967). Their method involved 
stimulation of the dorsal spinal cord fasciculi. Electro-
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therapy methods for pain after 1967 were mainly invasive, 
that is, electrodes are applied either to the spinal cord or 
to brain regions, especially the brain’s motor region. Next 
came methods for deep brain electric stimulation (targeted 
on areas and paths thought to be associated with pain initia-
tion) and other non-invasive methods, such as stimulation 
via peripheral, transcutaneous nervous electrical stimula-
tion (TENS), which was one of the first methods developed, 
and is still used successfully today (Dailey et al. 2013; Rakel 
et al. 2014; Hazime et al. 2015; Johnson et al. 2017). Since 
1997, more non-invasive methods have emerged, notably 
non-invasive transcranial magnetic stimulation, which is 
initiated by a magnetic field that is then transformed into 
an electric field in the brain. This stimulation does not 
penetrate deeply into the brain, nonetheless the methods 
are effective in activating areas of the cerebral cortex, and 
when using today’s most modern treatments, can activate 
areas in the embedded cortex, i.e., the insula (D’Agata et 
al. 2015). Non-invasive stimulation also uses direct cur-
rent stimulation (tDCS) methods, and recently, there has 
been intense experimentation with other methods such as 
transcranial alternating current (tACS) and transcranial 
random noise (tRNS) stimulation (Curatolo et al. 2017; 
O’Connell et al. 2018). 

Pain is defined as physical suffering resulting from an 
injury or disease, experienced through the central nervous 
system. Pain is a complex phenomenon that is not yet fully 
understood. Its purpose is to alert the body to damage 
or danger to its tissues, although scientists do not fully 
understand what determines the levels and intensity of 
pain experienced by people. Short-lasting pain that trig-
gers an immediate physical response is known as acute 
pain (Radnovich et al. 2014). Long-lasting severe pain 
that persists without diminishment over long periods is 
known as chronic pain (Crofford 2015a). Additionally, 
there is a  type of pain called psychological pain (Flor 
2014; Crofford 2015b). Recent research has shown that 
the chemicals produced by anxiety are similar to those 
that are released in response to physical injury. Pain is 
a complex behavioral paradigm that includes autonomous, 
neuroendocrine, emotional, and cognitive components 
that involve distinct neural circuits (Monticone et al. 
2015; Peters 2015).

Pain signals travel through the body along billions of 
specialized nerve cells reserved specifically for transmitting 
pain messages. These cells are known as nociceptors (Serra 
et al. 2014). Chemical neurotransmitters that can initiate 
a pain signal include prostaglandins, bradykinin, and the 
most potent painful substance known to humans, a chemi-
cal known as substance P (the P stands for pain). Prosta-
glandins are ubiquitous and are manufactured from fatty 
acids in nearly every tissue of the body (Ma and Eisenach 
2002; Schaible et al. 2011). Analgesic pain relievers, such 

as aspirin and ibuprofen, work by inhibiting prostaglandin 
production.

After an injury, cells near the trauma site release the 
abovementioned chemicals, which activate nociceptors 
leading to the central nervous system. The pain signal enters 
the spinal cord via the dorsal root, where it synapses (via 
interneurons in the dorsal horn) with motor neurons that 
trigger contraction of the specific muscles needed to pull 
the injured part of the body away from the source of pain. 
Additional nociceptors that synapse in the dorsal horn send 
the signal towards the brain, where they are first processed by 
the thalamus and then passed to the cerebral cortex (Obara 
et al. 2013). Here, the brain fully processes the information, 
locates its source in/on the body, and begins sending signals 
to relieve the pain (Basbaum et al. 2009).

As the pain signals travel up the spinal cord towards 
the brain, they are sorted according to severity. The body 
has two distinct pathways for transmitting pain messages, 
i.e., epicritic and protopathic. The epicritic system is used 
to transmit messages of sudden, intense pain, such as that 
caused by cuts or burns (Bigley 1990). The neurons that 
transmit such messages are called A fibers, and are capable 
of transmitting signals very quickly. The protopathic system, 
which transmits signals over C fibers, is used to transmit 
less severe pain signals, such as one might experience after 
strenuous exercise. The C fibers of the protopathic system 
transmit signals more slowly than the A fibers of the epicritic 
system (Reddi 1998; Serpell 2006).

The gate theory of pain holds that the nervous system 
can only process limited amounts of information at a time 
(Melzack and Wall 1965). This may explain why chronic 
pain presents its own set of problems. Treating chronic pain 
is difficult because the pain damages the central nervous 
system, making it weaker and more susceptible to pain. 
Similar problems also arise when nerve cells are damaged 
by chemotherapy, diabetes, shingles, or other diseases. In the 
case of arthritis and other inflammatory diseases, the body’s 
threshold for pain is lowered, thus producing more pain 
from fewer pain signals (Andersen et al. 2014; Babatunde 
et al. 2018; Gijon-Nogueron et al. 2018).

Treatments for pain vary widely. For mild pain, the most 
common form of treatment is aspirin, a medication discov-
ered in the 19th century and derived from salicin, a chemical 
found in the bark of the willow tree (Walker et al. 2018). 
Today, there are several mild painkillers on the market for the 
relief of minor, inflammatory pain, including ibuprofen and 
acetaminophen. (Moore et al. 2015). For more severe pain, 
opiates, which are derived from the opium poppy, a com-
mon flowering plant, are often used (Pergolizzi et al. 2008; 
Wolff et al. 2012). Opiates work by attaching themselves, at 
the molecular level, to nerve cells that transmit pain signals. 
Opiates work very well in relieving pain but are quite danger-
ous and can become addictive.

http://psychology.jrank.org/pages/466/Pain.html
http://psychology.jrank.org/pages/447/Nerve.html
http://psychology.jrank.org/pages/108/Central-Nervous-System.html
http://psychology.jrank.org/pages/92/Brain.html
http://psychology.jrank.org/pages/630/Thalamus.html
http://psychology.jrank.org/pages/448/Nervous-System.html
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In the 1970s, scientists began looking for natural opiate-like 
substances, and found that the body does indeed produce its 
own painkillers, which have come to be called endogenous 
opioids. The two most common endogenous opioids are en-
dorphins and enkephalins. These chemicals attach themselves 
to opiate receptors on nerve cells just as opiates do. Studies 
have found that the body can be stimulated to release these 
chemicals using TENS and acupuncture (Levine and Taiwo 
1989; Stein et al. 1990; Kalra et al. 2001; Stein et al. 2003; 
Ibrahim et al. 2005; Ainsworth et al. 2006; Sabino et al. 2008).

Deep brain structures in pain treatment

Deep brain structures became a target for pain treatment 
several decades ago. They are usually activated by electric 

current stimulating the cerebral motor cortex, which ortho-
dromically stimulates the thalamus. The thalamus is full of 
gamma-aminobutyric acid (GABA) receptors and produces 
large amounts of GABA, which influences the ascending 
thalamo-cortical pathway that leads from the thalamic nuclei 
(in particular the ventral posterolateral (VPL) and ventral 
posteromedial (VPM) nucleus to the postcentral gyrus of 
the cerebral cortex, which is located in Brodmann’s Areas 3, 
2, and 1 (areas of pain perception). Despite the demand for 
both safe and easy to use methods for stimulation of deep 
brain structures, contemporary methods for stimulation of 
deep brain structures are either effectively strong but invasive 
or they are non-invasive but ineffectively weak. The inspira-
tion for a potential solution to this problem, i.e., effective 
but non-invasive stimulation of deep brain structures comes 
from tACS, which has been previously used experimentally 

 

Figure 1. Pathways and brain regions involved in 
the transmission and modulation of pain signals. 
Primary afferent neurons, with their cell bodies 
in the dorsal root ganglia, or trigeminal ganglion 
(mouth and face), couple with second order neu-
rons in the dorsal horn of the spinal cord, or the 
spinal nucleus of the trigeminal complex. Axons 
of the second order neurons cross the midline 
and project to the thalamus and a variety of other 
targets in the medulla oblongata, pons, and mid 
brain, including the rostral ventral medulla (RVM) 
and the periaqueductal gray (PAG). Third order 
neurons, with their cell bodies in the thalamus, 
project to the somatosensory cortex, responsible 
for the sensory-discriminative aspects (intensity, 
location and quality) of pain, and to the limbic 
cortical areas, such as the anterior cingulate, insula, 
and the prefrontal cortex, which are involved in 
mediation of the affective / emotional components 
(aversiveness) of pain. Thalamic neurons also 
project to the amygdala, which in turn interact 
with the nucleus accumbens, a region involved in 
both pain processing and the mediation of reward 
/ motivational behavior. These various brain regions 
also send input to the PAG, which, via the raphe 
nuclei in the RVM and the locus coeruleus, send 
descending pain modulatory projections back to 
the first synapses in the afferent pathways. (This 
figure was courteously provided by its author 
Prof. Ernst Brodin, by the Tidende Journal which 
the figure published and by illustrator Sole Lätti).
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in different setups in an effort to therapeutically influence 
pain (Angelakis et al. 2013; Bae and Lee 2014; Elnaggar and 
Elshafey 2016; Gundlach et al. 2016; Hasegawa at al. 2016; 
Peng and Tang 2016; Albornoz-Cabello et al. 2017; Franco et 
al. 2017; Ladi-Seyedian et al. 2017). Exploring the capability 
and suitability of tACS for pain modulation or suppression 
are tasks for the future. 

The analgesic effects of stimulating deep brain structures

The analgesic effects of stimulating deep brain structures 
(for involved structures see Figure  1) have been known 
for more than a half-century and date back to experiments 
by Olds and Milner (1954). Since its first use, deep brain 
stimulation (DBS) has been tested on several types of pain 
(e.g., chronic pharmaco-resistant orofacial pain, rheumatoid 
arthritis pain, etc.). Additionally, targets for DBS have also 
been investigated and include: the internal capsule (IC) 
(Adam et al. 1974), thalamic structures such as the soma-
tosensory intralaminar thalamus (nucleus centro medianus, 
centromedian intralaminar perifascicular complex, CMPf) 
(Hécaen et al. 1949), periventricular and periaqueductal gray 
(PVG/PAG) (Duncan et al. 1991), nucleus accumbens (NAc) 
(Mallory et al. 2012), and the anterior cingulate cortex (AC) 
(Antal et al. 2014; Boccard et al. 2014). 

Anterior cingulate stimulation

Anterior cingulate (AC) stimulation in patients with chronic 
pain with a range of etiologies (failed back surgery syndrome, 
post stroke pain, brachial plexus injury, cervical spinal cord 
injury, head injury, and pain of unknown origin, etc.) has re-
sulted in improvement that was also associated with improved 
subjective analgesic properties relative to PVG stimulation 
alone (Boccard et al. 2014). Additionally, there was a com-
prehensive review (Russo and Sheth 2015) of preclinical and 
clinical studies of AC stimulation as part of pain treatment.

Nucleus accumbens 

The nucleus accumbens (NAc) forms an extension of the 
ventral striatum, which is involved in reward processing. 
DBS of the NAc has been used to treat depression and ob-
sessive-compulsive disorder (Hauptman et al. 2008; Franzini 
et al. 2010). NAc also sends inhibitory projections into the 
medial thalamus (Albe-Fessard et al. 1985) and from there 
to the dorsal horn neurons, which modulate pain perception 
(Lorenz et al. 2003). The NAc, together with the prefrontal 
cortex, insula, and AC have been shown to mediate the af-
fective component of pain (Albe-Fessard et al. 1985; Lorenz 
et al. 2003). There was also a case of post-stoke pain that was 
treated, with great effect, using DBS targeted on the NAc and 
PVG simultaneously (Mallory et al. 2012). 

Somatosensory thalamus

The somatosensory thalamus, consisting of the ventro-
posterior lateral (VPL) and ventro-posterior medial (VPM) 
nuclei, has, in the past, been targeted for stimulation to sup-
press aberrant neuronal firing, which was observed in chronic 
pain (Gerhart et al. 1983); presumably driven by the absence 
of normal sensory input (Mazars et al. 1973). The now obso-
lete gate control theory (Melzack and Wall 1965) postulated 
that low threshold somatosensory pathways inhibit pain 
perception and that stimulation of this pathway would reduce 
neuropathic pain. This idea has been supported using animal 
models in which VPL stimulation inhibited spinothalamic 
nociceptive neurons (Gerhart et al. 1983) as well as in modu-
lation of facial anesthesia dolorosa (Hosobuchi et al. 1973), 
inhibition of the ipsilateral or contralateral VPL (Gerhart 
et al. 1983), neuropathic pain secondary to brachial plexus 
injuries, and phantom limb pain (Pereira et al. 2007, 2013).

The peri-ventricular and periaqueductal gray

The peri-ventricular and periaqueductal gray (PVG/PAG) 
is the most promising target for DBS in the treatment of 
chronic pain (Bittar et al. 2005). The first descriptions of 
DBS of human PVG/PAG demonstrated relief of somatoform 
and nociceptive pain in both acute and chronic settings 
(Richardson and Akil 1977a, 1977b). This was consistent 
with descriptions of the PAG-derived descending inhibitory 
system modulating nociceptive inputs at the spinal level 
(Mayer and Liebeskind 1974). Recent evidence demonstrates 
PAG DBS causes a focal reduction of opioid binding in areas 
of electrostimulation, which is consistent with the release of 
endogenous opioid peptides (Sims-Williams et al. 2017). The 
centromedian parafascicular complex (CMPf) has afferents 
from the ventral posterolateral thalamus (VPL), spinotha-
lamic tract (STT), and trigeminal lemniscus, and efferents 
to the striatum, cortex, and AC. The CMPf is responsive to 
noxious stimuli and sensitive to stimulus intensity but its 
stimulation has yielded inconsistent results (Davis et al. 1998; 
Weigel and Krauss 2004). Neuropathic pain in humans cor-
responds with increased activity of CMPf neurons (Hirato et 
al. 1991). CMPf stimulation or ablation has been found to be 
helpful in the treatment of central pain and deafferentation 
pain (Hariz and Bergenheim 1995; Hollingworth et al. 2017).

Invasive brain stimulation 

Invasive brain stimulation methods, in general, involve 
situations in which brain structures are in physical contact 
(“in situ”) with the stimulating microelectrode. In practice 
it means stimulation of the superficial (cortex) or deep brain 
structures, which are out of reach of non-invasive stimula-
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tion. DBS is a  minimally invasive, targeted neurosurgical 
intervention that enables structures deep in the brain to 
be stimulated electrically using implanted electrodes and 
a pacemaker (see Figure 2). The method was initially de-
veloped for and applied to movement disorders in several 
target areas; such as the thalamus, the pallidum, and the 
subthalamic nucleus. It is currently being extended to other 
indications, such as epilepsy (Chan et al. 2018; Hartl et al. 
2018; Lobato-Polo et al. 2018; Son et al. 2018), dystonia (Ma-
gown et al. 2018; Takeda et al. 2018), tremor (Moldovan et al. 
2017; Camalier et al. 2018), cluster headache (Chabardès et 
al. 2016; Láinez and Guillamón 2017), chronic pain, includ-
ing pain from stroke (Lempka et al. 2017; Gopalakrishnan 
et al. 2018), amputation (Pereira et al. 2013; Kuffler 2018), 
trigeminal neuralgia (Nizard et al. 2012; Yamgoue et al. 
2016) and multiple sclerosis (Abboud et al. 2017; Oliveria 
et al. 2017), and recently to psychiatric disorders, such as 
obsessive compulsive disorder (Naesström et al. 2017; 
Winter et al. 2017; Franzini et al. 2018), Tourette’s syndrome 
(Marceglia et al. 2017; Martinez-Ramirez et al. 2018), and 
depression (Kringelbach et al. 2007b). The mechanism of 
action will likely turn out to be quite complex, involving 
cell-firing inhibition, neurotransmitter depletion, jamming 
and excitation of inhibitory pathways that lead to functional 
inhibition, and mimicking the effects of lesioning of the 
stimulated structures (Benabid 2014). 

While DBS for Parkinson’s disease is based on 20 years of 
experience, a standard and widely accepted DBS treatment 
for chronic pain (even though DBS has been used to treat 
pain for over 50 years) remains restricted to a handful of 
experienced, specialist centers (Pereira et al. 2013).

 

 

Figure 3. Scheme of interferential transcranial alternating current 
stimulation (if-tACS) with potential use to modulate pain associ-
ated with deep brain structures. In principle, if-tACS is to produce 
low frequency effects at sufficient intensity and depth to avoid 
patient discomfort in the superficial tissues (i.e., the skin). Two 
AC currents with sligthly different frequencies are used in crossed 
arrangement. The result frequency affecting tissue in the crossed 
section (in deep structures) is equal to the difference between 
original AC frequencies. For more details, see text.

Figure 2. Arrangement of deep brain stimulation (DBS) tech-
nique.

The DBS system consists of three components: an im-
planted pulse generator (IPG), leads, and an extension. 
The IPG is a  battery-powered neurostimulator, encased 
in a  titanium housing that sends electrical pulses to the 
brain that interfere with neural activity at the target site. 
The lead is a coiled wire, insulated with polyurethane, with 
four platinum-iridium electrodes that are placed in one or 
two different nuclei of the brain. The lead is connected to 
the IPG by an extension, which is insulated wire that runs 
below the skin, from the head, down the side of the neck, 
behind the ear, to the IPG, which is placed subcutaneously 
below the clavicle, or in some cases, the abdomen. The IPG 
can be calibrated to optimize symptom suppression and 
control side effects. DBS lead placement is done relative to 
the type of symptoms to be addressed. For non-Parkinsonian 
essential tremor, the lead is placed in either the ventral 
intermediate nucleus of the thalamus or the zona incerta 
(Holslag 2018); for dystonia and symptoms associated 
with Parkinson disease, the lead can be placed in either 
the globus pallidus internus or the subthalamic nucleus. 
The leads are placed in the NAc for obsessive compulsive 
disorder and depression, the posterior thalamic region or 
periaqueductal gray for incessant pain, and in the anterior 
thalamic nucleus for epilepsy. All three components of the 
system are surgically implanted inside the body. Lead im-
plantation can take place under local or general anesthesia 
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(“asleep DBS”). A hole about 14 mm in diameter is drilled in 
the skull and the probe electrode is inserted stereotactically. 
During the procedure, when using local anesthesia, feedback 
from the patient is used to determine optimal placement of 
the permanent electrode. The generator is programmed to 
send continuous electrical pulses via the electrodes to the 
brain at specific frequencies. Pulse amplitudes can go up to 
4 V, with frequencies of 10–150 Hz and widths 0.1–0.5 ms 
depending on the disease being treated. 

In chronic pain, DBS is targeted on the periaqueductal 
gray, while the periventricular gray is targeted in nociceptive 
pain; for neuropathic pain the target is the internal capsule, 
ventral posterolateral nucleus, and the ventral posteromedial 
nucleus (Johnson et al. 2008). DBS has also been used for 
phantom limb pain (Kringelbach et al. 2007a).

Semi-invasive brain stimulation 

Semi-invasive brain stimulation methods, contrary to the 
DBS methods, do not need a permanently implanted wire 
or optical fiber. They need just nanoparticles incorporated 
into neural tissue and activated by an external non-invasive 
stimulus. Thus, cellular signaling deep inside the brain can 
be controlled remotely without permanent implants. In this 
context, the term “semi-invasive” is related to how nano-
particles are introduced into the body. In general, it can be 
injection, ingestion, and inhalation or via skin or wounds; 
currently, injection is only used for experimentation.

Protocols for nanomaterial-enabled neural stimulation 
differ according to the site where the nanoparticles are fi-
nally distributed, and what kind of primary and secondary 
stimuli are utilized. The nanomaterials can be dispersed or 
immobilized in the extracellular environment, attached 
to the membrane, bound to ion channels or internalized 
into the cytoplasm (Wang and Guo 2016). Then, a wire-
lessly (non-invasively) transmitted primary stimulus (light, 
magnetic fields or ultrasound) penetrates through the tis-
sues and is converted by the nanomaterial into a localized 
secondary stimulus, primarily electric fields or heat, at the 
nanomaterial-neuron interface, to stimulate the neuron 
(Wang and Guo 2016). Depending on to the primary and 
secondary stimuli, nanomaterial-enabled neural stimula-
tion techniques can be classified into opto-electric stimula-
tion (Lugo et al. 2012), opto-thermal stimulation (Eom et 
al. 2014), magneto-electric stimulation (Yue et al. 2012), 
magneto-thermal stimulation (Huang et al. 2010), and 
acousto-electric stimulation (Ciofani et al. 2010). The main 
benefits of nanomaterial-enabled neural stimulation tech-
nique are the significant improvement of spatial resolution 
and that nanomaterials can be surface-modified and bio-
conjugated for cell-specific targeting, can be delivered by 
injection, and can be matched to the dimensions of subcel-

lular components, such as those of the neuronal membrane 
and ion channels (Winter et al. 2005; Lugo et al. 2012). For 
example, wireless magneto-thermal deep brain stimulation, 
developed and tested on mice (Chen et al. 2015), works 
through heat-sensitive capsaicin receptors in nerve cells 
and the injection of magnetic nanoparticles into specific 
brain regions (nanoparticles heated by external alternating 
magnetic fields activate ion channel-expressing neurons).

Even those semi-invasive brain stimulation methods are 
not used for pain treatment yet; there is no principal obstacle 
to doing that.

Non-invasive brain stimulation 

New technological developments in non-invasive brain 
stimulation (NIBS) have boosted research in the fields of 
both therapeutic and neuroimaging. The growing use of 
NIBS in basic research and in clinical applications reflects its 
capabilities to modulate brain function in ways not feasible 
with other techniques. NIBS have continuously provided in-
novative insights into the functional relevance and plasticity 
of brain networks. 

Experiments using an electro-magnetic field to influence 
disease processes have been reported many times over the 
last fifty years. Ziskin and colleagues (Radzievsky et al. 2004; 
Ziskin 2013) successfully demonstrated that local exposure 
of skin to low intensity millimeter-length waves caused the 
release of endogenous opioids, and the transport of these 
agents by the blood to all parts of the body resulted in pain 
relief and other beneficial effects.

Relative to the underlying physical principle, NIBS is based 
on transcranial stimulation either by magnetic field or by electric 
current. Both transcranial magnetic stimulation (TMS, which 
includes repetitive TMS, rTMS) and transcranial electrical 
stimulation (tES, sometimes called transcranial current stimula-
tion, tCS) are utilized in neuroscience and clinical research, as 
well as in the diagnosis and treatment of neuropsychological 
disorders. TMS and tES can also be combined with EEG, fMRI, 
fNIRS, or guided navigation to improve clinical outcomes.

Transcranial stimulation using electromagnetic fields is used 
to modulate neuronal activity of the brain by applying external 
electric and magnetic fields to the surface of the scalp. Fields 
act on the tissues non-invasively up to a distance of a few cen-
timeters below the surface of the skull; thus, the fields can reach 
the gyri of the cortex and to a more limited extent the sulci in 
between the gyri. Fields affect brain tissue by inducing depolari-
zation or hyperpolarization of neuronal membranes, which is 
accompanied by a change in neuron excitability; when used at 
sufficiently high intensities, it can also lead to action potentials. 

From a  physiological point of view, TMS activates ax-
ons via short-pulsed stimulation that leads to new action 
potentials, whereas tES has the potential to manipulate the 
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membrane potential of neurons and modulate spontaneous 
firing rates, but is insufficient, on its own, to induce action 
potentials in resting neurons. Despite the very different 
modes of action between TMS and tES, prolonged applica-
tion of either technique can cause changes in the excitability 
of neurons and networks that outlast the actual stimulus 
application by minutes or even hours.

Both techniques produce a  combination of excitatory 
and inhibitory effects at the neuronal level. The polarization 
of neurons is changed and, depending on the stimulation 
parameters, regional cortical excitability either increases or 
decreases. Many different stimulation protocols have been 
developed over the years and it is common practice to label 
protocols as either inhibitory or excitatory. Even so, the 
effects on cortical excitability continue to be investigated 
with the goal of defining protocols as definitively inducing 
neuro-enhancement or neuro-plasticity within a specified 
neuronal population; frankly, there is still a long way to go. 
On the other hand, there are certain NIBS protocols that 
have become well established. 

Whether there will be enhanced or impaired effects at the 
perceptual, cognitive, or behavioral level depends not only on 
excitability changes but also on the functional properties and 
underlying mechanisms of all brain areas involved, as well 
as the interactions between them. This is exactly why both 
neuro-disruptive and neuro-enhancement effects are scien-
tifically valuable, i.e., in the proper theoretical framework, 
they allow us to begin teasing apart the affected functional 
neuronal architecture (Duecker et al. 2014).

Despite the current level of knowledge, many questions 
about the mechanisms of neuromodulation via NIBS remain 
open. There are basic physical facts, for instance, everyone 
agrees that NIBS affects neural activity and ultimately behavior 
through the generation of electric fields and the associated 
electric currents (Basser and Roth 2000; Wagner et al. 2007) or 
via magnetic fields (Oliviero et al. 2011), so it makes sense to 
refer to NIBS as having an electric component and a magnetic 
component. The biologic effects of all transcranial electromag-
netic stimulation techniques are mediated by exogenously 
generated electromagnetic fields. It is the spatial and temporal 
field characteristics that distinguish each stimulation modality. 
The problem of how transcranial electromagnetic stimulation 
affects brain function is generally parsed into a consideration 
of the characteristics of the electromagnetic fields generated in 
the brain during stimulation and how the fields modulate brain 
function to ultimately effect cognitive/behavioral changes 
(Hallett 2007; Peterchev et al. 2012).

NIBS: transcranial magnetic stimulation

In transcranial magnetic stimulation (TMS), the magnetic 
field is produced by passing a  strong current through an 

electromagnetic coil placed on the scalp, which in turn in-
duces an electric field and eddy-currents in the underlying 
cortical tissue, where it produces localized axonal depo-
larization. TMS has become a major tool in brain research 
and the treatment of various psychiatric and neurological 
disorders such as depression, schizophrenia, Parkinson’s 
disease, Alzheimer’s disease, and various addictions (Mc-
Namara et al. 2001; Ferreri et al. 2003; Fregni et al. 2005; 
George and Belmaker 2007; Politi et al. 2008; Prikryl et al. 
2013; Holtzheimer and McDonald 2014; Li et al. 2013; Shen 
et al. 2016, 2017). However, deeper structures such as the 
nucleus accumbens (NAc), ventral tegmentum area (VTA), 
amygdala, medial prefrontal cortex, and cingulate lie too 
deep inside the brain (6–7 cm) to be reached by the magnetic 
fields generated through standard TMS. Deep TMS (dTMS), 
which uses a novel coil design suitable for direct stimulation 
of deeper brain regions (by significantly reducing the decay 
rates), has recently been demonstrated (Lu and Ueno 2017). 

TMS involves administration of magnetic pulses to local-
ized brain areas. The effects of a single TMS pulse are brief 
and can affect ongoing neuronal processes. Rhythmic pulse 
sequences, on the other hand, can yield longer-lasting effects 
on the human brain (Hallett 2007). The effectiveness of dif-
ferent frequencies of repetitive TMS (rTMS) in the treatment 
of orofacial pain has been tested (Rokyta and Fricova 2012; 
Fricová et al. 2013; Kohútová et al. 2017). Beside TMS and 
rTMS, low-field magnetic stimulation (LFMS) and magnetic 
seizure therapy (MST) are also available. Another, lesser used 
method, is transcranial static magnetic stimulation (tSMS), 
which exposes the brain to a static magnetic field by posi-
tioning a magnet on the head (Oliviero et al. 2011; Paulus 
2011a). Pulsed magnetic fields have also been successfully 
used, to affect pain processing (Robertson et al. 2010), in 
the treatment of musculoskeletal chronic pain (Thomas et 
al. 2007), rheumatoid arthritis, and fibromyalgia (Thomas 
et al. 2001; Shupak et al. 2006).

NIBS: transcranial electrical stimulation

The history of transcranial electrical stimulation (tES) of 
the human brain is quite long. In ancient Rome, patients 
with unbearable head pain were sometimes treated with 
jolts from the electricity-producing black torpedo fish, or 
an electric ray. After Alessandro Volta’s invention (in 1800) 
of the electric battery (i.e., the “voltaic pile,” which was 
capable of producing a steady electric current), researchers 
began to investigate the application of direct current (DC) 
in a variety of neurological diseases. These early efforts were 
abandoned mainly because of a lack of sufficiently reliable 
evaluation methods. 

Priori (1998) was among the first to measure the effects of 
direct current application on the human cortex via changes 
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in evoked motor potentials. To get the electrical current to 
pass through brain matter, tES is applied over larger areas of 
the cortex compared to TMS (Paulus 2011b). tES uses a weak 
electric current (0.1–2 mA) applied via electrodes placed on 
the scalp. The current field, due to inhomogeneity and anisot-
ropy of the skull and tissues, is inhomogeneous, which leads 
to variance. Most of the electric current enters the surface 
layers (skin, etc.) and only a small portion enters the cerebral 
cortex, where it affects the membrane potential of neurons. 

tES is a  collection of techniques that includes: tDCS, 
high-definition transcranial direct current stimulation 
(HD-tDCS), tACS, transcranial random noise stimulation 
(tRNS), transcranial Pulsed Current Stimulation (tPCS), 
cranial electrical stimulation (CES), and electro-convulsive 
therapy (ECT). 

Safety of low intensity tES as well aws the ethical, legal, 
regulatory and application guidelines for tES use were 
reviewed recently by the tES scientific community at a con-
ference in Göttingen, Germany, on September 6–7, 2016 
(Antal et al. 2017).

tDCS

tDCS uses a uniform electric current intensity of 0.4–2 mA for 
5–30 minutes and is applied across surface electrodes placed 
on the head. Current changes are largest directly beneath the 
electrodes: the area under the cathode is targeted to reduce 
excitability of cortical neurons and the area under the anode 
is targeted to have the opposite effect. By changing the surface 
area of the electrodes, it is possible to vary the current density 
and thus the effect at both electrodes. Changes can persist 
for several hours after application. tDCS is reliable in terms 
of parameters such as stimulation intensity and duration, 
and validation of its plastic after-effects (Nitsche and Paulus 
2000, 2001; Nitsche et al. 2003, 2008). In order to achieve 
after-effects, stimulation needs to last for at least three min-
utes with an intensity of at least 0.6 mA (Nitsche and Paulus 
2000). Not surprisingly, the direction of electrode polarization 
is critical in terms of the after-effects. Through stimulation of 
the motor cortex, tDCS can be used for: chronic pain (Deer 
et al. 2014; Souto et al. 2014; Hodaj et al. 2016), pain after 
endoscopic retrograde cholangiopancreatography (Borckardt 
et al. 2011), trigeminal pain including refractory orofacial 
pain (Antal et al. 2010; Hansen et al. 2011; DosSantos et al. 
2012; Hagenacker et al. 2014; Fricova et al. 2016; Kreuzer et 
al. 2017), fibromyalgia (Valle et al. 2010; Cummiford et al. 
2016; Castillo-Saavedra et al. 2018), major depression (Vigod 
et al. 2014; Tortella et al. 2015; Brunoni et al. 2016; Liu et al. 
2017), bipolar disorder (Bersani et al. 2015; Pereira-Junior et 
al. 2015; Tortella et al. 2015), schizophrenia (Agarwal et al. 
2013; Palm et al. 2016; Gögler et al. 2017), Alzheimer’s disease 
(Nardone et al. 2012; Bystad et al. 2016; Narita and Yokoi 
2017), modulation of associative learning (Branscheidt et al. 

2017), Parkinson’s disease (Benninger et al. 2010; Hendy et 
al. 2016; Schabrun et al. 2016), pain after stroke (Schjetnan et 
al. 2013; Chhatbar et al. 2016; Russo et al. 2017) and tinnitus 
(Garin et al. 2011; Teismann et al. 2014).

tRNS

tRNS has a frequency spectrum that is typically divided into 
low frequency (0.1–100 Hz) stimulation and high frequency 
(100–640 Hz) stimulation. This is an effective method of 
avoiding directional sensitivity associated with standard 
tDCS and sinusoidal tACS. To screen for the most efficient 
frequencies, within a  physiological range, random noise 
frequency patterns are used (Terney et al. 2008), which have 
the potential to desynchronize (pathological) rhythms.

tACS

tACS, which uses non-uniform flow for non-invasive tran-
scranial stimulation, is still poorly understood. The simplest 
case involves stimulation using a single frequency harmonic 
signal in the range of 0.1–5000 Hz. tACS appears to interact 
with ongoing rhythms in the cortex from 0.1 Hz (delta waves) 
up to over 60 Hz (gamma waves) on an EEG. Sinusoidal tACS 
allows manipulation of intrinsic cortical oscillations with 
externally applied electrical frequencies. Of course, combina-
tions using any frequency are possible, the more frequencies 
involved, the closer the results approach the effects of tRNS. 
Evidence for a  relationship between alpha EEG activity 
(8–12 Hz) and pain has also been investigated. tACS at al-
pha frequencies (alpha tACS) permits direct manipulation 
of brain alpha activity and therefore an examination of the 
potential causal relationship between alpha activity and pain 
(Arendsen et al. 2018). While somatosensory alpha tACS 
can reduce pain (Gundlach et al. 2016), inter-regional phase 
synchronization with dual-site tACS could be beneficial for 
modulation of specific cognitive processes in the human 
brain (Saturnino et al. 2017). tACS has also been found to 
be a promising method for boosting memory (Marshall et 
al. 2006. The intensity of tACS applied frontally is usually 
limited to 400 mA to avoid retinal phosphenes, which can 
occur at higher intensities (Antal and Paulus 2008, 2016). 
Other evidence for the influence of tACS can be seen in the 
motor cortex, where 20 Hz has been shown to slow down 
voluntary movements (Pogosyan et al. 2009). Also, it is 
possible to increase alpha power, via stimulation, by using 
a tACS frequency within the individual’s EEG range (Zaehle 
et al. 2010). tACS seems set to open a new era of directly 
interfering with cortical rhythms and actively synchroniz-
ing cortical rhythms, although at present interference with 
phosphenes in the frequency range of about 10–40 Hz is 
a problem. This problem does not occur when tACS is used 
in the “ripple” frequency range (Moliadze et al. 2010). Ripples 
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Table 1. Overview of brain stimulation methods

Stimulation method Treatment References Advantages Disadvantages
DBS with implanted 
electrodes

Parkinson’s disease, epilepsy, 
dystonia, tremor, cluster 
headache, chronic pain, pain 
from stroke, amputation, 
trigeminal neuralgia, multiple 
sclerosis, obsessive–compulsive 
disorder, Tourette’s syndrome 
depression

Kringelbach et al. 2007; Pereira 
et al. 2007, 2013; Holslag 2018; 
Johnson et al. 2008

Strong effect, 
precise targeting, 
personalized tuning 
and targeting for 
intended structure  

Invasive electrode 
placement, 
pacemaker 
implanted under 
the patient’s skin

Wireless  
magneto-thermal 
DBS

Chen et al. 2015 Noninvasive 
application of the 
magnetic field 

Invasive application 
of magneto thermal 
particles

TMS Depression, schizophrenia, 
Parkinson’s disease, Alzheimer’s 
disease, various addictions 

Holtzheimer and McDonald 
2014; McNamara et al. 2001; 
George and Belmaker 2007; 
Prikryl et al. 2013; Fregni et al. 
2005; Ferreri et al. 2003; Li et al. 
2013; Politi et al. 2008; Shen et 
al. 2016, 2017

Non-invasive Low spatial 
targeting compared 
to DBS, higher 
cost compared to 
other non-invasive 
methods

rTMS pain Rokyta and Fricová 2012; 
Fricová et al. 2013; Kohútová et 
al. 2017; Robertson et al. 2010; 
Thomas et al. 2007, Shupak et al. 
2006; Thomas et al. 2001

Non-invasive, low 
cost

Less pronounced 
effect compared to 
rTMS

tDCS chronic pain, trigeminal pain 
including refractory orofacial 
pain, fibromyalgia, major 
depression, bipolar disorder, 
schizophrenia, Alzheimer’s 
disease associative learning, 
Parkinson’s disease, pain after 
stroke, tinnitus 

Souto et al. 2014; Hodaj et al. 
2016; Borckardt et al. 2011; 
Antal et al. 2010; Hansen et al. 
2011; DosSantos et al. 2012; 
Hagenacker et al. 2014; Kreuzer 
et al. 2017; Fricova et al. 2016; 
Castillo-Saavedra et al. 2018; 
Valle et al. 2010; Tortella et al. 
2015; Liu et al. 2017; Vigod et 
al. 2014; Brunoni et al. 2016; 
Pereira-Junior et al. 2015; 
Tortella et al. 2015; Bersani et al. 
2015; Palm et al. 2016; Gögler 
et al. 2017; Agarwal et al. 2013; 
Nardone et al. 2012; Narita and 
Yokoi 2017; Bystad et al. 2016; 
Branscheidt et al. 2017; Hendy 
et al. 2016; Schabrun et al. 2016; 
Benninger et al. 2010; Schjetnan 
et al. 2013; Russo et al. 2017; 
Teismann et al. 2014; Garin et 
al. 2011

Non-invasive, low 
cost

Less pronounced 
effect compared to 
rTMS

tRNS chronic pain, pain after stroke, 
tinnitus

Terney et al. 2008 Non-invasive, low 
cost

Less pronounced 
effect compared to 
rTMS

tACS Pain, modulation of cognitive 
processes  

Gundlach et al. 2016; Saturnino 
et al. 2017; Arendsen et al. 2018; 
Marshall et al. 2006; Antal et al. 
2008

Non-invasive, low 
cost promising

Less pronounced 
effect compared to 
rTMS

DBS, deep brain stimulation; TMS, transcranial magnetic stimulation; rTMS, repetitive transcranial magnetic stimulation; tACS, tran-
scranial alternating current stimulation; tDCS, transcranial direct current stimulation; tRNS, transcranial random noise stimulation.
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are short hippocampal oscillations with a frequency between 
100–250 Hz, which are associated with memory encoding. 

Interference tACS

Interference tACS (if-tACS), as an analog of interferential 
therapy used in physiotherapy for significant physiological 
effects, may have the potential to modulate pain associated 
with deep brain structures. The goal of interferential therapy 
is to produce low frequency effects at sufficient intensity 
and at sufficient depth to avoid patient discomfort in the 
superficial tissues (i.e., the skin). Skin discomfort is related 
to the impedance of the skin being inversely proportional 
to the frequency of stimulation. The lower the stimulation 
frequency, the greater the impedance to the passage of the 
current and the greater the discomfort as current is ‘pushed’ 
into the tissues against this barrier. Skin, under normal con-
ditions, (i.e., intact, room temperature, humidity 40–50%) at 
50 Hz has an impedance of approximately 3200 Ohms, while 
at 4000 Hz it drops to approximately 40 Ohms. The result of 
applying a higher frequency is that it will pass more easily 
through the skin and requires less electrical energy input to 
reach the deeper tissues, thereby causing less discomfort. 

The clinical application of interferential therapy is based 
on peripheral nerve stimulation (frequency) data. Above 
250 Hz, electrical stimulation is without associated painful 
or unpleasant side effects. There are four main clinical ap-
plications of interferential therapy: pain relief (Johnson and 
Tabasam 2003; Hurley et al. 2004; Jorge et al. 2006; McManus 
et al. 2006; Walker et al. 2006; Atamaz et al. 2012; Gundog 
et al. 2012; Rocha 2012), muscle stimulation (Bircan et al. 
2002; Bellew et al. 2012), increased local blood flow (Noble et 
al. 2000), and reduction of edema (Christie and Willoughby 
1990; Jarit et al. 2003).

The physiological effects of tissue stimulation with me-
dium frequency currents (1–100 kHz) are not completely 
understood. When two of these medium frequency currents 
pass through the tissues simultaneously and in a direction 
such that their paths cross, they literally interfere with each 
other. This interaction gives rise to an interference current 
that has the characteristics of low frequency stimulation (in 
effect the interference mimics low frequency stimulation). 
The exact frequency of the resultant interference frequency 
can be controlled by the input frequencies. If, for example, 
one current is 5000 Hz and its companion current is 5020 
Hz, the resultant frequency would be at 20 Hz, carried by 
median frequency (5010 Hz) amplitude modulated current 
(see Figure 3). The magnitude of the low frequency interfer-
ence current is approximately equivalent to the sum of the 
input amplitudes. Low frequency currents are physiologically 
effective for nerve stimulation.

Although the theoretical basis for interferential therapy 
is incomplete, the positive effects have been convincingly 

documented. Proven physiological effects include local 
blood flow increase, local stimulation of neurons, and lo-
cal muscle stimulation. Application of current interference 
to the brain (i.e., if-tACS) should be expected to produce 
effects in the brain similar to those seen in body tissues. 
Except for muscle stimulation, the potential should exist 
for increased local blood flow and local stimulation of neu-
rons. Based on calculations of technical parameters, there 
is promising potential for if-tACS to reach, with proper 
electrode configurations, deep brain structures involved in 
pain generation and transmission. Therefore, if-tACS may 
be capable of modulating pain associated with specialized 
thalamic nuclei. Compared to standard invasive DBS, the 
if-tACS has substantially higher respect to the brain tissue, 
thus a significant benefit for patients. Once tACS testing is 
successfully completed, if-tACS will compete with other non-
invasive neuro-modulatory methods (TMS, rTMS, tDCS, 
and tACS). A brief overview of brain stimulation methods 
discussed above can be found in Table 1. 

Conclusion

Contemporary methods of transcranial stimulation utilized 
in pain treatment are widely accepted in everyday clinical 
practice and there is an abundance of experimental experi-
ence indicating their most appropriate uses, limits, applica-
tion protocols, etc.

Invasive and non-invasive brain stimulation methods have 
been used, for more than two decades, as an alternative to pain 
pharmacotherapy or as the last choice in pharmaco-resistant 
pain. Even though the better-established techniques continue 
to evolve, there is still plenty of room for new approaches and 
new combinations of formerly verified methods. Because of 
the emergence of new techniques and technologies, future 
expansion can be expected in semi-invasive and non-invasive 
methods since they are safe and comfortable for the patient, are 
easy to apply, and are effective, i.e., affordable in routine use.
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