Role of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, K_\text{ATP} channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia

Sergey Y. Tsibulnikov1, Leonid N. Maslov1, Natalia V. Naryzhnaya1, Huijie Ma2, Yury B. Lishmanov1,3, Peter R. Oeltgen4 and Keith Garlid5

1Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk 634012, Russia
2Department of Physiology, Hebei Medical University, Shijiazhuang 050017, China
3Laboratory of Nuclear Medicine, National Research Tomsk State Polytechnical University, 634050 Tomsk, Russia
4Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
5UCLA Cardiovascular Research Laboratory, David Geffen School of Medicine, Los Angeles, CA, USA

Abstract. It was established that adaptation to chronic continuous normobaric hypoxia (CCNH) increases cardiac tolerance to ischemia and reperfusion. Coronary artery occlusion (20 min) and reperfusion (3 h) was performed in Wistar rats. CCNH promoted a decrease in the infarct size/area at risk ratio in 2-fold. CCNH promoted an increase in the nitrite/nitrate levels in blood serum and myocardium. Pretreatment with protein kinase C (PKC) inhibitor chelerythrine, NO-synthase (NOS) inhibitor L-NAME, iNOS inhibitor S-methylisothiourea, K_\text{ATP} channel blocker glibenclamide, mitoK_\text{ATP} channel blocker 5-hydroxydecanoic acid abolished the infarct-reducing effect of CCNH. The non-selective tyrosine kinase inhibitor genistein attenuated but not eliminated infarct-sparing effect of CCNH. The nNOS inhibitor 7-nitroindazole, sarcK_\text{ATP} channel blocker HMR 1098, MPT pore inhibitor atractyloside, PI3 kinase inhibitor wortmannin did not reverse infarct-limiting effect of CCNH. It was concluded that infarct-reducing effect of CCNH is mediated via PKC, iNOS activation and mitoK_\text{ATP} channel opening. While nNOS, PI3 kinase, sarcK_\text{ATP} channel, MPT pore are not involved in the development of CCNH-induced cardiac tolerance to impact of ischemia-reperfusion.

Key words: Chronic hypoxia — Myocardial infarction — Kinases — K_\text{ATP} channels — MPT pore

Abbreviations: AAR, area at risk; AIH, intermittent hypoxia; AMI, acute myocardial infarction; CCNH, chronic continuous normobaric hypoxia; DAG, diacylglycerol; ECG, electrocardiogram; iNOS, inducible NOS; IS, infarct size; mitoK_\text{ATP} channel, mitochondrial ATP-dependent K+ channel; MPT pore, mitochondrial permeability transition pore; nNOS, neuronal NOS; NOS, NO-synthase; ORs, opioid receptors; PKC, protein kinase C; PLC, phospholipase C; PLD, phospholipase D; PVCs, ventricular complexes; RT, receptor tyrosine kinase; sarcK_\text{ATP} channel, sarcolemmal K_\text{ATP} channel.

Introduction

In-hospital mortality from acute myocardial infarction (AMI) in Israel was 1–4% (according to Buber et al. 2015). In Denmark, during 30 days after hospitalization 7.9% patients with acute myocardial infarction died (Pedersen et al. 2014). In Germany, patients with AMI with ST segment elevation had a 30-day mortality rate of 5.6% (Zimmermann et al. 2013). However, in patients with cardiac arrest in the prehospital phase, the mortality rate was 26.6% (Zimmermann et al. 2013). Most of these patient lives could have been saved if they had been treated in advance with drugs which would increase cardiac resistance to ischemia/reperfu-
sion which occurs during acute coronary syndrome. In our opinion, the study of cardioprotective effect of adaptation to chronic hypoxia could provide invaluable assistance in the creation of such drugs.

Fitzpatrick et al. (2005) demonstrated that the cardioprotective effect of adaptation to chronic hypoxia in newborn rabbits can be maintained for 30 days after the last treatment of hypoxia. In another study, Ostadal et al. (1995) showed that the protective effect of adaptation to chronic hypoxia may persist for as long as 4 months. No pharmacological agent has ever been shown to induce such a prolonged increase in tolerance of the heart to the action of ischemia/reperfusion. Understanding the molecular mechanism(s) of adaptive increase of cardiac resistance to ischemia/reperfusion may have pharmacological implications and opens up the prospect for the creation of fundamentally new drugs that mimic the cardioprotective effect of adaptation to chronic hypoxia.

Our studies and those of others indicate that an adaptation to intermittent hypoxia (AIH) provides increased cardiac tolerance to ischemia and reperfusion (Nèkar et al. 2002; Kolar et al. 2005; Naryzhnaya et al. 2009; Estrada et al. 2016; Mičová et al. 2017). The number of publications devoted to the cardioprotective effect of continuous chronic normobaric hypoxia is also large (Tajima et al. 1994; Maslov et al. 2013, 2015; Alanova et al. 2015, 2017; Holzerova et al. 2015; Kasparova et al. 2015; Naryzhnaya et al. 2015; Kolar et al. 2017; Neckář et al. 2017). Some studies suggest that the adaptation of rats to chronic continuous normobaric hypoxia (CCNH) reduces tolerance of heart to the action of hypoxia/reoxygenation and allows for increasing cardiac resistance to ischemia and reperfusion and represents only adaptation to AIH (Milano et al. 2002, 2004, 2010, 2011). However, we and others have found that adaptation of the rats to CCNH has the infarct-limiting effect during coronary artery occlusion and reperfusion in vivo reducing myocardial infarct size by 1.5–2-fold (Maslov et al. 2013; Alanova et al. 2015, 2017; Kasparova et al. 2015; Neckář et al. 2017). CCNH increases an isolated heart resistance to global ischemia-reperfusion injury (Tajima et al. 1994; Maslov et al. 2015), and enhances tolerance isolated cardiomyocytes to the action of hypoxia/reoxygenation (Naryzhnaya et al. 2015). However, despite the large number of publications, the signal mechanism of cardioprotective action of CCNH remains poorly studied.

In planning this study, we assumed that the signaling mechanism of the infarct-limiting effect of adaptation to hypoxia is similar to the molecular mechanism of delayed ischemic preconditioning that it is involved protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase isoforms, KATP channels, MPT pore (Kis et al. 2003; Rajesh et al. 2003; Yellon et al. 2003). However, it is not possible to assert a priori that the signaling pathways of the infarct-limiting effect of adaptation to chronic hypoxia and preconditioning are identical. This is because the adaptive increase in cardiac tolerance to ischemia persists 1–4 months (Ostadal et al. 1995; Fitzpatrick et al. 2005) while that of delayed preconditioning lasts for only 72 hours (Baxter et al. 1997).

The main goal of the study is to evaluate the significance of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, KATP channels and MPT pore in the signal mechanism of the infarct reducing effect of chronic continuous normobaric hypoxia.

Material and Methods

Animals

The experimental protocol was approved by the Ethical Committee of the Research Institute of Cardiology and it conformed to the EU Direction 2010/63/EU. Male Wistar rats weighing 250–300 g were housed at 23 ± 1°C with a relative humidity of 60–70% and a light/dark cycle of 12 h with free access to water and standard rat chow. Further processing was performed as described previously (Maslov et al. 2013). Briefly, rats were exposed to continuous normobaric hypoxia for three weeks in a chamber (1.5 m³) equipped with a hypoxia generator Bio-Nova-204G4R1 (NTO Bio-Nova Company, Moscow, Russia). Concentrations of O2 and CO2 in the chamber were continuously measured by TCOD-IR and OLC 20 sensors, and maintained at 11.75–12.25% and 0.03%, respectively, by a MX32 controller (Oldham, France). Normoxic rats were used as a control group. It has been shown early that chronic hypoxia led to the right ventricle hypertrophied as a consequence of hypoxic pulmonary hypertension. While the relative right ventricle weight increased by 64% in these animals, the relative left ventricle weight did not differ from controls. CCNH resulted in a marked polycythemia as documented by increases in the number of red blood cells, hematocrit and the concentration of hemoglobin (Kolar et al. 2005)

Myocardial ischemia/reperfusion

The rats were anesthetized with pentobarbital sodium (60 mg/kg) 1 h after completion of the adaptation. After tracheotomy lungs were ventilated by SAR-830 Series device (Central Wisconsin Engineers Inc., Schofield, USA) with room air. Atelectasis was prevented by maintaining a positive end-expiratory pressure of 5–10 mm H2O. Arterial pH, PCO2, and PO2 were monitored throughout the experiment by a blood gas analyzer (Stat Profile M, Nova Biomedical Corporation, Waltham, MA, USA) and maintained within a normal physiological range by adjusting the respiratory rate and/or tidal volume. Body temperature was maintained at
37°C by a heating pad PhysioSuite (non-invasive monitoring system for mice and rats, Kent Scientific Corporation, Torrington, USA).

The left femoral artery was cannulated for blood pressure, heart rate, and blood gases measurements. Blood pressure and standard peripheral lead electrocardiogram (ECG) recordings were performed with a MP35 apparatus (Biopac Systems, Inc., Goleta, CA) and a computer using the BSL PRO 3.7.3 software (Biopac Systems Inc., Goleta, CA). The right femoral vein was cannulated for the administration of pharmacological agents or vehicles.

Regional myocardial I/R was induced as described by Neckar et al. (2005). Left thoracotomy was performed and after 10-min stabilization, regional myocardial ischemia was induced by tightening a ligature (6-0 Prolene) placed around the left anterior descending coronary artery near to its origin. Characteristic changes in the configuration of the ECG and a transient decrease in blood pressure verified the coronary artery occlusion. After a 20-min occlusion period, the ligature was released and reperfusion of previously ischemic tissue continued.

Infarct size determination

At the end of 3-h reperfusion, the hearts were excised and perfused with saline through the cannulated aorta. The area at risk and the infarct size were delineated by staining with 5% potassium permanganate and 1% 2,3,5-triphenyltetrazolium chloride, respectively (Neckar et al. 2005). The right ventricle was separated and the left ventricle was cut perpendicularly to its long axis into slices 1 mm thick and stored overnight in 10% neutral formaldehyde solution. The infarct size was determined by calculating the ratio of the infarcted area to the total area at risk.

Figure 1. Representative pictures of cardiac tissue after damage induced by infarct for each tested inhibitor. CCNH, chronic continuous normobaric hypoxia.
size (IS), the size of the area at risk (AAR) and the size of the left ventricle were determined by a planimetric method using Scanjet G4050 scanner (Hewlett-Packard, Palo Alto, USA). The IS was normalized to the AAR (IS/AAR) and the size of the AAR was normalized to the left ventricle (AAR/LV).

Incidence of arrhythmias

Ventricular arrhythmias were recorded from the ECG signal during 20-min coronary artery occlusion. The incidences of single premature ventricular complexes including salvos, ventricular tachycardia and ventricular fibrillation were evaluated separately.

Protocol

All compounds were administered intravenously 25 min before coronary artery occlusion with the exception of glibenclamide, hydroxydecanoic acid sodium salt (5-HD), atracyloside and S-methylisothiourea (Figs. 1, 2). Glibenclamide was given 45 min before ischemia as recommended by Schultz et al. (1997). 5-Hydroxydecanoate was injected 5 min before ischemia as recommended by Fryer et al. (2000). Atracyloside also was administered 5 min before ischemia (Rajesh et al. 2003). S-methylisothiourea was administered intraperitoneally 25 min before coronary artery occlusion (Jiang et al. 2004). The inhibitor protein kinase C (PKC) chelerythrine was administered at a dose 5 mg/kg (Maslov et al. 2009). The K\textsubscript{ATP} channel blocker glibenclamide was used at a dose 0.3 mg/kg (Schultz et al. 1997). The mitochondrial K\textsubscript{ATP} channel (mitoK\textsubscript{ATP} channel) blocker 5-HD was applied at a dose of 5 mg/kg and sarcolemmal K\textsubscript{ATP} channel (sarcK\textsubscript{ATP} channel) HMR 1098 was used at a dose of 3 mg/kg (Fryer et al. 2000). An inhibitor of all isoenzymes of NO-synthase (NOS) L-NAME was given at a dose of 10 mg/kg (Maslov et al. 2009). The specific inducible NOS (iNOS) inhibitor S-methylisothiourea was administered intraperitoneally 25 min before coronary artery occlusion (Jiang et al. 2004). The tyrosine kinase inhibitor genistein was given at a dose of 5 mg/kg (Maslov et al. 2009). The PI3 kinase blocker wortmannin was injected at a dose of 0.015 mg/kg (Gross et al. 2004; Tong et al. 2011). The mitochondrial permeability transition (MPT) pore opener atracyloside was administered at a dose of 5 mg/kg (Rajesh et al. 2003).

2,3,5-Triphenyltetrazolium, potassium permanganate, HMR 1098, pentobarbital, L-NAME, 5-HD, S-methylisothiourea, atracyloside were dissolved in isotonic saline. Other compounds were preliminary dissolved in 0.1 ml DMSO then dissolved in 0.9 ml 20% hydroxypropyl-β-cyclodextrin solution that was used for intravenous administration. This 20% hydroxypropyl-β-cyclodextrin solution was administered to control animals. Our previous investigation showed that this solution had no effect of the cardiac tolerance to impact of ischemia and reperfusion (Maslov et al. 2009).

Determination of NO metabolites

In order to estimate nitric oxide concentration in the blood and myocardial tissue, we had to determine its stable metabolites, the nitrites and nitrates (Bryan and Grisham 2007). Blood and myocardial tissue were taken 5 minutes after the end of ischemia (i.e. during reperfusion) for measurement of nitrate and nitrate concentrations. The resulting blood samples were centrifuged 10 minutes at 1100 × g. Serum samples were deproteinized by centrifugation in tubes Amicon Ultra-10k Merck Millipore (Billerica, USA) for 30 min at 14000 × g. Deproteinized serum were frozen and stored at -70°C (Bryan and Grisham 2007).

The heart was removed from the chest and was rinsed through the aorta with 5 ml of phosphate buffer containing 0.01 M KH\textsubscript{2}PO\textsubscript{4}, 0.01 M K\textsubscript{2}HPO\textsubscript{4}, 2.7 mM KCl, 137 mM NaCl, 2.5 mM EDTA, pH 7.4. 100-150 mg. Dissected tissue of the left ventricle from the area at risk was immediately frozen and stored in liquid nitrogen. Frozen myocardial tissue samples were homogenized in 1.5 ml of the same buffer and centrifuged for 15 minutes at 12000 × g. The supernatant was deproteinized and stored in the same way as described above for the serum (Bryan et al. 2007).

To determine the total content of nitrates and nitrates in deproteinized blood and tissue extracts, we used a colorimetric Nitrite/Nitrate Assay Kit, 23479-1KT-F from

![Figure 2. Protocol of experimental research. CCNH, chronic continuous normobaric hypoxia.](image-url)
Cardioprotection and chronic hypoxia

Sigma-Aldrich (USA). Absorbance measurement was performed with a spectrophotometer INFINITE 200M Tecan (Salzburg, Austria).

Chemicals used

Pentobarbital sodium was purchased from Sanofi-Aventis (France). 2,3,5-Triphenyltetrazolium chloride, Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), atractylside sodium salt, 5-5-HD, glibenclamide, genistein, wortmannin, S-methylisothiourea hemisulfate salt, 7-nitroindazole were purchased from Sigma-Aldrich (USA). HMR 1098 was a gift of Sanofi-Aventis Deutschland GmbH (Frankfurt am Main, Germany). Hydroxypropyl-β-cyclodextrin was purchased from Tocris Bioscience (Bristol, UK). Chelerythrine chloride was purchased from LC Laboratories (USA).

Statistical analysis

Results were expressed as means ± SEM from indicated number of experiments. One-way analysis of variance with Newman-Keuls post hoc test was used to detect differences in parametric variables among groups. The Chi squared test was used to detect differences in the incidence of arrhythmias among groups. Differences were considered significant at \(p < 0.05 \).

Results

Hemodynamics and ventricular arrhythmias

Mean blood pressure and heart rate did not differ between normoxic and CCNH groups. The blood pressure and heart rate values during ischemia and reperfusion were relatively stable (Tables 1, 2). None of the inhibitors used in this study had any significant effect on these variables (data not show).

All normoxic control rats exhibited premature ventricular complexes (PVCs) during 20-min coronary artery occlusion. Ventricular tachycardia was registered in 95% of rats, ventricular fibrillation was detected in 76% of rats. These heart rhythm disturbances were reversible and ended with the restoration of normal sinus rhythm. The incidence and severity of ischemic arrhythmias were significantly affected neither by CCNH, nor by the administration of inhibitors (data not shown).

<table>
<thead>
<tr>
<th>Table 1. Mean blood pressure of rats after chronic continuous normobaric hypoxia course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean BP</td>
</tr>
<tr>
<td>Before ischemia</td>
</tr>
<tr>
<td>After ischemia</td>
</tr>
<tr>
<td>After reperfusion</td>
</tr>
<tr>
<td>10 min</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>CCNH</td>
</tr>
<tr>
<td>Values are means ± SEM; (n = 15) (in each group). CCNH, chronic continuous normobaric hypoxia; BP, blood pressure.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2. Heart rate of rats after chronic continuous normobaric hypoxia course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate</td>
</tr>
<tr>
<td>Before ischemia</td>
</tr>
<tr>
<td>After ischemia</td>
</tr>
<tr>
<td>After reperfusion</td>
</tr>
<tr>
<td>10 min</td>
</tr>
<tr>
<td>Control</td>
</tr>
<tr>
<td>CCNH</td>
</tr>
<tr>
<td>Values are means ± SEM; (n = 15) (in each group). CCNH, chronic continuous normobaric hypoxia.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3. The content of nitrates and nitrites in blood serum and myocardium of rats after chronic continuous normobaric hypoxia course</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groups</td>
</tr>
<tr>
<td>Before ischemia</td>
</tr>
<tr>
<td>After ischemia</td>
</tr>
<tr>
<td>Serum (mM/l)</td>
</tr>
<tr>
<td>Myocardium (mM/mg)</td>
</tr>
<tr>
<td>Serum (mM/l)</td>
</tr>
<tr>
<td>Myocardium AAR (mM/mg)</td>
</tr>
<tr>
<td>Normoxia ((n = 12))</td>
</tr>
<tr>
<td>3.75 ± 0.49</td>
</tr>
<tr>
<td>0.20 ± 0.058</td>
</tr>
<tr>
<td>3.68 ± 0.376</td>
</tr>
<tr>
<td>0.17 ± 0.044</td>
</tr>
<tr>
<td>CCNH ((n = 10))</td>
</tr>
<tr>
<td>5.53 ± 0.65</td>
</tr>
<tr>
<td>0.43 ± 0.068</td>
</tr>
<tr>
<td>6.10 ± 1.34</td>
</tr>
<tr>
<td>0.367 ± 0.07</td>
</tr>
<tr>
<td>(p = 0.045)</td>
</tr>
<tr>
<td>(p = 0.021)</td>
</tr>
<tr>
<td>(p = 0.027)</td>
</tr>
<tr>
<td>(p = 0.03)</td>
</tr>
<tr>
<td>Values are means ± SEM. Blood and myocardial tissue were taken before and 5 minutes after the beginning of reperfusion. CCNH, chronic continuous normobaric hypoxia; AAR, area at risk zone; (p) is significance of differences with respect to normoxia rats.</td>
</tr>
</tbody>
</table>
The content of nitrates and nitrites in blood serum and myocardium

Chronic hypoxia resulted in a 1.5-fold increase in nitrite/nitrate in blood and in 2-fold increase in myocardial tissue (Table 3). Our data indicate that 5 min after start of reperfusion nitrite/nitrate content was approximately 2-fold higher in blood and myocardium (area at risk) of adapted rats as compared with non-adapted animals (Table 3).

Infarct size

Mean values of the normalized AAR ranged from 37.3% to 45.4% of left ventricle and did not differ significantly
among the groups. Mean values of infarct size normalized to AAR were similar in normoxic controls from three series of experiments, and the adaptation to CCNH resulted in a marked infarct-limiting effect as showed in Figs. 1, 3–6.

Our studies indicate that CCNH decreases the IS/AAR ratio approximately by 2-fold (Figs. 1 and 3). Pretreatment with chelerythrine completely abolished the infarct-reducing effect of CCNH (Figs. 1 and 3). The inhibition of NO synthesis with L-NAME completely eliminated the infarct-sparing effect of CCNH (Figs. 1 and 4). As shown in Figure 4, the selective iNOS inhibitor S-methylisothiourea also blocked the infarct-limiting effect of CCNH. In contrast the selective nNOS inhibitor 7-nitroindazole did not reverse adaptation-induced enhancement of cardiac tolerance to ischemia and reperfusion (Figs. 1 and 4). As shown in Figure 5, the selective tyrosine kinase inhibitor partially eliminated the infarct-reducing effect of chronic hypoxia. In contrast the selective PI3 inhibitor, wortmannin, did not alter the effect on the IS/AAR ratio in both adapted and non-adapted rats (Figure 5). Pretreatment with MPT pore opener, atractyloside, had no effect on the CCNH-induced enhancement of cardiac tolerance to ischemia and reperfusion (Figure 5). Pretreatment with non-selective K_{ATP} channel inhibitor, glibenclamide, completely reversed infarct-sparing effect of chronic hypoxia (Figs. 1 and 6). As shown in Figure 6 the selective mitoK_{ATP} channel blocker, 5-HD, exhibited the same effect. Pretreatment with the selective sarcK_{ATP} channel blocker, HMR 1098, did not abolish infarct reducing effect of CCNH (Figs. 1 and 6).

Discussion

We have previously shown that chronic continuous normobaric hypoxia causes adaptation to hypoxia and enhances cardiac tolerance to impact of ischemia/reperfusion due to activation of opioid receptors (ORs) by endogenous opioid peptides (Maslov et al. 2013). Our current studies demonstrate that PKC plays an important role in cardioprotective effect of CCNH. This result is consistent with our previously published data indicating that PKC is involved in the infarct-limiting effect of chronic hypoxia (Hlavackova et al. 2010; Holzerova et al. 2015). PKC plays an important role in cardioprotective effect of ischemic preconditioning (Yellon and Downey 2003). It has also been shown that PKCε can activate mitoK_{ATP} channel (Costa et al. 2005; Jaburek et al. 2006; Budas and Mochly-Rosen 2007). In turn, mitoK_{ATP} channel opening may promote an increase in production of reactive oxygen species which activates PKC (Costa et al. 2008).

The results of our experiments with atractyloside were somewhat unexpected since we had previously demonstrated that adaptation to chronic continuous hypoxia blocks the opening of MPT pore in response to ischemia/reperfusion of the isolated rat heart (Maslov et al. 2015). It has been shown that atractyloside abolished infarct reducing effect chronic intermittent hypoxia (Bu et al. 2015). Prior studies have shown that MPT pore plays an important role in the pathogenesis of apoptotic cell death (Halestrap 2010). However, its involvement in the mechanism of necrotic cell death has not been proved. We hypothesize that the MPT pore may be involved in the antiapoptotic effect of adaptation to hypoxia. To date this is our assumption because the antiapoptotic effect of adaptation to hypoxia has yet to be studied. It is possible that MPT pore participates in the infarct limiting effect of chronic intermittent hypoxia but it are not involved in the cardioprotective effect of CCNH.

Our studies indicate that iNOS is involved in the infarct-sparing effect of CCNH. This finding is consistent with our previously published data on the participation of NO/cGMP signaling pathway in the infarct-limiting effect of pre- and postconditioning (Costa et al. 2008). In addition, our data are consistent with other studies that have shown that the

Our follow-up experiments confirmed the important role of NO-synthase in the infarct reducing effect of adaptation to hypoxia. We demonstrated that chronic continuous normobaric hypoxia causes a 1.5-fold increase in the total content of nitrates and nitrites in the blood, compared to intact animals ($p < 0.05$, Table 3). The content of nitrates and nitrites in myocardial tissue after CCNH was twice as large as that in unadapted rats (Table 3). We observed similar changes following 5 min after exposure to ischemia. Nitrate and nitrite levels were elevated 1.65-fold in the blood and 2.1-fold in myocardium of rats subjected to CCNH, compared to control rats after ischemia (Table 3). These data indicate a significant increase in nitrite and nitrate content in rats with chronic hypoxia and can serve as an indirect measure of the intensity of nitric oxide synthesis with NO-synthase. Our next experiments were designed to identify the significance of these changes in the implementation of the infarct-limiting effect CCNH. We found that the selective inhibition of iNOS completely abolished infarct sparing effect of CCNH. This result demonstrates that this isoenzyme plays an important role in the adaptation increase in cardiac tolerance to the impact of the heart ischemia/reperfusion.

Signal transmission from the opioid receptor to PKC involves phospholipase C (PLC) (Chen et al. 1991; Jin et al. 1992; Okajima et al. 1993), phospholipase D (PLD) (Mangoura and Dawson 1993) and diacylglycerol (DAG) (Mangoura and Dawson 1993) which activates PKC. While the transmission signal from the opioid receptor, NO-synthase, involves a transactivation of receptor tyrosine kinase (RT), epidermal growth factor receptor and the following signaling pathway OR/RT/PI3K/AKT/nNOS/NO/K

There is also evidence that PKC may be involved in the infarct-limiting effect of continuous adaptation to hypoxia. While the role of the tyrosine kinase in the cardioprotective effect of CCNH may be of lesser importance. Our experiments indicate that the MPT pore and PI3 kinase do not play a significant role in the infarct-reducing effect of CCNH.

Acknowledgement. This project was supported by the Russian Science Foundation grant 16-15-10001. Experiments with chelerythrine were performed within the framework of the state task AAAA-A15-115120910024-0. The authors are grateful to Dr. Norbert Krass and Dr. Juergen Puenter for HMR 1098. The authors are grateful to Dr. I. Khaliulin for discussing the results.

Conflict of interest. The authors declare that there are no conflicts of interest.

References

https://doi.org/10.1152/japplphysiol.00671.2016
https://doi.org/10.1007/BF00786833
https://doi.org/10.1016/j.molimm.2009.10.029
https://doi.org/10.1016/j.freeradbiomed.2007.04.026
https://doi.org/10.1007/s12576-015-0376-5
https://doi.org/10.1016/j.ima.2010.00000000000276
https://doi.org/10.1042/BST0351052
https://doi.org/10.1371/journal.pone.0099823
Chen L, Marine LMH (1991): Sustained potentiation of NMDA receptor mediated glutamate responses through activation of protein kinase C by a μ opioid. Neuron 7, 319–326
https://doi.org/10.1016/0896-6273(91)90270-A
https://doi.org/10.1177/1074248411407071
Costa AD, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005): Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ. Res. 97, 329–336
https://doi.org/10.1161/01.RES.0000178451.08719.5b
https://doi.org/10.1093/cvr/cvm050
https://doi.org/10.1152/ajpheart.01189.2007
https://doi.org/10.1073/pnas.0914733107
https://doi.org/10.1007/s00395-016-0538-5
https://doi.org/10.1152/ajpheart.00701.2004
https://doi.org/10.1152/ajpheart.2001.280.3.H1346
https://doi.org/10.1161/01.RES.0000122392.33172.09
https://doi.org/10.1159/000340058
https://doi.org/10.1042/BST0380841
https://doi.org/10.1007/s11010-010-0581-8
https://doi.org/10.1161/01.RES.0000245106.80628.d3
Cardioprotection and chronic hypoxia

https://doi.org/10.1042/bj2900241

https://doi.org/10.1016/j.lfs.2003.10.036

https://doi.org/10.1007/s00395-008-0726-z

https://doi.org/10.1124/jpet.110.172593

https://doi.org/10.1016/j.jacc.2014.08.037

https://doi.org/10.1152/ajpheart.00954.2003

https://doi.org/10.1016/S0008-6363(03)00358-4

https://doi.org/10.1152/ajpheart.1997.272.6.H2607

https://doi.org/10.1093/cvr/28.3.312

https://doi.org/10.1016/j.lfs.2010.10.018

https://doi.org/10.1152/physrev.00009.2003

https://doi.org/10.1111/j.1745-7254.2005.00100.x

https://doi.org/10.1016/j.ijcard.2011.11.029

Received: February 5, 2018
Final version accepted: April 5, 2018