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ADAMs are a family of transmembrane proteins described for the first time in the 1990’s. ADAMs is an abbreviation of 
“A Disintegrin and Metallo-proteinases”. Their earliest known role was involvement in gamete fusion, and their adhesion 
properties in intercellular interactions also suggested involvement in tumor biology. Further research emphasized the 
importance of ADAM proteins in the regulation of neoplastic processes due to their influence on adhesion, cell migra-
tion, proteolysis and cell signaling. Variable ADAM expression in cancer and normal tissue was the basis for considering 
these proteins as diagnostic markers. Recent numerous studies have been published suggesting the prognostic value of 
this protein family members. The ADAMs transmembrane proteins regulate processes associated with carcinogenesis and 
neoplastic progression, including immune response evasion, growth induction and metastasis. Proteolysis and shedding 
of membrane proteins and binding integrins by ADAMs lead to the activation of numerous growth factors, changes in the 
extracellular matrix, adhesion proteins and angiogenesis. ADAMs potential as prognostic and diagnostic markers in cancer 
treatment is a particularly interesting issue and has great practical significance. There are many new studies concerning 
ADAMs’ roles in carcinogenesis, but there are no recent reviews of the latest developments in this field.

The aim of this systematic review is to analyze the results of studies published on ADAMs in the last 5 years, to present 
their roles in neoplasm pathogenesis and their potential utility in clinical oncology.
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Historical overview

ADAMs, originally also known as MDC proteins (metal-
loproteinase/disintegrin/cysteine-rich), were described for 
the first time in the late 1990’s. Their expression and role in 
regulation of cell biology were confirmed in many different 
species, from sea squirts to mammals, including humans [1]. 
Initially, study on ADAMs was limited to determining the 
role of the protein family in the regulation of reproduction 
and gamete functionalities, as fertilins (ADAM1 and 2) were 
involved in the fertilization process [2].

Expression of ADAMs1-5 was found in the testes and 
their activity affected sperm to egg adhesion and gamete 
fusion [3, 4]. ADAMs involvement in regulation of cell-to-

cell adhesion and in interactions between the cell and extra-
cellular matrix suggested the potential effect of adamaly-
sines not only in normal physiological processes, but they 
also provided a basis for considering participation in tumor 
biology and their ability to invade and metastasize [5, 6].

Subsequent scientific reports more and more often 
confirmed the differential expression of some ADAM 
proteins between the control of normal tissue and specific 
types of cancer which theoretically suggests their potential 
use as diagnostic-prognostic markers. In renal cancer, there 
was a statistically significant over-expression of ADAM9 
in cancerous tissue compared to normal tissue [7]. Further 
reports confirmed the differential expression of some ADAM 
proteins between the normal tissues and the specific type of 
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cancer. These suggest potential use of ADAMS as diagnostic 
and prognostic markers.

In pancreatic cancer, ADAM9 expression differed between 
normal control and cancer and correlated with a lesser degree 
of differentiation [8]. In the in vitro study of non-small cell 
lung cancer, the increased expression of ADAM9 positively 
correlated with a strongly metastatic cell phenotype [9]. 
The soluble form of ADAM9 protein in cancer tissue seems 
to promote the invasiveness of cancer. It increase adhesion 
capacity of cancer cells and regulates the influence of active 
cancer on the stroma properties which promotes the invasive-
ness [10].

Many studies suggest the potential of ADAMs as 
prognostic markers, since overexpression of these proteins 
has repeatedly been associated with worse prognosis, shorter 
survival periods and with more malignant biological cancer 
phenotype [7–9, 11, 12].

One of the processes vital for cancer development is the 
regulation of the immune response and induced immuno-
logical tolerance [13]. The function of ADAMs in the 
shedding of ectodomains results in the biological activation 
of numerous cytokines and CD membrane antigens that 
are important in the modification of inflammation [14]. In 
many types of cancers, there was a pathogenetic connection 
with inflammation which often determines the develop-
ment of a tumor and has an impact on the course of both 
disease and prognosis [15]. In some types of inflammatory 
response, elevated level of certain metalloproteinases was 

reported [16]. The structure of ADAM proteins includes 
the adhesive and (for some members) proteolytic domains 
and some of these proteins are expressed, among others, by 
human lymphocytes and they can interact with adhesion 
proteins located on the surface of other leukocytes [17]. The 
ability of some ADAMs to differentiate immunologically 
competent cells makes them important in immunological 
processes [18]. B cells, dendritic cells and various monocyte 
subpopulations are also able to express these proteins which 
(according to increasing number of scientific reports) makes 
ADAMs important in cancer prognosis [19].

The ADAMs’ properties mentioned above make them 
an important object of interest in oncology, especially in 
relationship to their application in diagnostics as well as in 
prognosis and monitoring of responses to the applied anti-
cancer treatment.

Current perspectives 

The ADAMs family is currently an object of considerable 
scientific attention. Due to their role in numerous signaling 
pathways associated with carcinogenesis, such as PI3K, 
Notch and TGF-β [20–22], research concerning ADAMs 
often focuses on their role in neoplasm formation and as a 
potential target of new anticancer therapies [23, 24].

The ADAMs family in humans consists of 20 transmem-
brane proteins, 12 of which have proteolytic properties. 
Their functions include ectodomain shedding of membrane 

Figure 1. ADAMs general structure. 13 of 20 human ADAM proteins have the consensus sequence HEx (HExGHxxGxxHD) which makes them pro-
teolytically active. Disintegrin domain contains xCD consensus sequence in all, but one family member – ADAM15, which has the RGD sequence. 
ADAM10 and 17 are missing the EGF-like sequence. 
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proteins and integrin binding in interactions between cells 
and those between cells and the extracellular matrix [1]. 
Certain family members which have a conservative repro-
lysin-type domain also have proteolytic properties [25]. 
ADAMs interact with a variety of substrates, therefore they 
affect different signaling pathways [26]. They play a role in 
numerous processes and their ontologies include: regulation 
of cellular adhesion, sperm-egg interaction, cellular growth, 
angiogenesis, development of neurons and muscles and 
modulation of the immune response [27].

The aim of this review is to discuss the results of studies 
published during the last 5 years concerning the role of 
ADAMs in neoplasms. The last reviews concerning this topic 
are over 10 years old and therefore do not describe recent 
developments in this field [28,29]. The detailed structure 
and mechanism of action of ADAM metalloproteases was 
thoroughly described in other studies [1, 26] and therefore 
will not be extensively discussed in this publication. Herein, 
we present the most important information on this subject.

The ADAM proteins belong to the family also known 
as adamylasins, which belongs to zinc metalloproteases. 
ADAMs have a common general structure (Figure 1). The 
N-terminus of the protein contains a signaling sequence 

that directs the protein towards the cell membrane and 
a pro-domain that is responsible for protein folding and 
enzyme latency. These parts are both cleaved during post-
translational modification in Golgi apparatus (see Figure  2 
for more details on ADAMs processing). Then, there is a 
metalloprotease domain and disintegrin, which interacts 
with integrins-adhesion molecules. Subsequently, there is a 
cysteine-rich regulatory domain and an EGF-like domain 
which occur not only in ADAMs 10 and 17. These are 
followed by the transmembrane region and a cytoplasmatic 
tail [1] on the C-terminus.

Role in neoplastic regulation

Table 1 and Figure 3 present a summary of all studies 
published during the last 5 years concerning the role of 
ADAMs in neoplasms. To provide more background of the 
ADAMs physiological functions, we summarised most of 
known substrates of proteolytically active ADAMs in Table 2. 
Table 3 and Figure 4 then summarise the effects of knock-
out and knock-down in mice. In the subsequent part of this 
publication the role of ADAMs in particular parts of carcino-
genesis is discussed.

Figure 2. ADAM regulation, processing and trafficking: ADAMs metalloproteases level and activity may be controlled on different levels. Transcription 
factors can be activated by numerous pathways, different for distinct family members. They are glycosylated in endoplasmic reticulum and in the trans- 
part of Golgi apparatus, cleaved by furin or other protein convertases. ADAM8 and 28 are able to auto-activate. Active proteins are packed in the vesicle 
which may remain in the cytoplasm or fuse with the cell membrane. Active ADAMs may be inhibited by specific TIMPs, SFRP, RECK. Distinct ADAMs 
may also have different inhibitors. Localization in the lipid rafts is necessary for activity of some ADAMs. Here, we present the factors processing and 
regulating the ADAM10 protein, thoroughly described by Vincent [201]. 
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Metastasis

Adhesion proteins and cell junctions stabilize tissues, thus 
determining their normal function and structure. Carcino-
genesis may be a result of a disruption of this homeostasis 
due to the changes in gene expression which in turn leads 
to cell differentiation, neoplastic progression and metas-
tasis [33]. Loss of adherens junctions alters the properties 
and polarity of cells which determine changed expression of 

Tumor growth and survival

The signaling pathway of the PI3K kinase is a significant 
part of carcinogenesis when it comes to the regulation of the 
cell cycle and cellular differentiation [30, 31]. In hepatocel-
lular carcinoma a lower expression of ADAM10 induced 
apoptosis of neoplastic cells and decreased the proliferation 
index which was correlated with decreased phosphorylation 
of Akt and PI3K [32].

Table 1. Current status of role ADAMs in tumorigenesis based on research articles from 2012–2017.

Name Synonyms Overexpressing tumors or sites Role & traits in tumors Type of study Other

ADAM8 CD156, CD156a, 
MS2

Osteosarcoma [72], pancreas 
[42,93], breast [94], head and 
neck [95]

tumor growth [42,72,94], 
metastasis [42,93,94], 
angiogenesis [94]

In vitro [42,93,94]
In vivo [42]
Clinical [72,94,95]

Elevated serum 
level in breast ca. 
[94]

ADAM9 KIAA0021, MCMP, 
MDC9, meltrin 
gamma, Mltng

NSCLC [51], glioma [84,96,97], 
breast [98,99], prostate [100], 
colon [101], pancreas [102]

Promotion of survival 
[51,97], growth [99,100], 
metastasis [51,96–102], 
osteolysis [100]

In vitro [51,96,98–102] 
in vivo [99,100]
Clinical [84,99,101,102]

ADAM10 CD156c, 
HsT18717, kuz, 
MADM

Lymphoma [103], esophagus 
[104] colorectal [105], uveal mel-
anoma [106], pancreas [107,108], 
breast [21,109,110], glioblastoma 
[111,112], nasopharyngeal [81], 
hepatocellular [113,114]
tongue [115],
bladder [82], oral [116], pituitary 
gland [85], NSCLC [117]

Immune evasion 
[103,104,109,110,112,114], 
chemoresistance 
[82,105,112,114], growth 
[81,105,107,113], metastasis 
[21,81,85,106,107,113,115–
117]

In vitro: [21,81,82,85,103–
105,107,108,110,112,115–
117], 
In vivo [105,114] 
Clinical: 
[81,82,85,103,104,106,108–
111,113,114,116,117]

Elevates serum 
level of Fat1 in 
pancreatic ca. 
[108]

ADAM12 MCMPMltna, mel-
trin alpha, MLTN

skin cancer [118], ovarian 
carcinoma [89], SCLC [119], 
osteosarcoma [120], melanoma 
[121], breast [73]

metastasis [118,119], 
growth [119], osteolysis 
[120], angiogenesis [73]

In vitro [73,89,118–120]
In vivo [118,120]
Clinical [73,89,118,119,121]

Elevated urinary 
level in gastric 
cancer [122], 
SCLC [119], se-
rum – in ovarian 
ca. [89]

ADAM15 MDC15, metar-
gidin

NSCLC [123] metastasis [123] In vitro [123]
Clinical [123]

ADAM17 CD156B, cSVP glioblastoma [112], melanoma 
[121], colon [124], gastric [125], 
ovary [22], prostate [126]

tumor growth [22,124], 
metastasis [124,126]
immune evasion [112], 
chemoresistance [112], 

In vitro [22,11,124,126]
clinical [12,125]

ADAM22 MDC2, metallo-
proteinase-like, 
disintegrin-like, 
and cysteine-rich 
protein 2

breast [127] chemoresistance [127],
metastasis [127]

in vitro [127]
in vivo [127]

ADAM28 ADAM23, eM-
DCII, MDC-Lm, 
MDC-Ls

B-cell leukemia [128,129], lung 
[130], breast [130], kidney [130], 
NSCLC [131]

tumor growth [131], 
Metastasis [128,130,131], 
survival [130]

In vitro [130]
In vivo [130]
Clinical [128,129,131], 

Elevated in serum 
in NSCLC [131],
Elevated CD200 
serum level in 
B-CLL [129]

ADAM29 cancer/testis 
antigen 73, CT73, 
svph1

Breast [132] tumor growth [132],  
metastasis [132]

In vitro [132],
clinical [132]

ADAM33 dJ964F7.1, DK-
FZp434K0521

laryngeal, sinonasal region [74]. Promotion of angiogenesis 
[74]

Clinical [74] 



ADAM PROTEINS IN CANCER 827

certain proteins and response to growth factors in the extra-
cellular matrix [34–36].

The cell surface glycoprotein CUB domain-containing 
protein 1 (CDCP1) is a transmembrane protein, the active 
form of which is over-expressed in various types of cancer 
[37]. In lung cancer the expression of CDCP1 is correlated 
with the expression of the ADAM9 metalloproteinase which 
facilitates metastasis [38]. The ADAM-9 metalloprotease 
affects the adhesive properties of prostate cancer cells. It is 
considered a pro-adhesive marker of the extracellular matrix 
which has an affinity for certain membrane integrins (alpha 
6 beta 1 integrin), and in some cases its elevated concen-
tration inhibits the adhesion to laminin [39]. The overex-
pression of integrin alpha 6 beta 1 is a common finding in 
neoplasms [40] and is correlated with metastasis and cancer 
cell invasion [41].

In pancreatic cancer, the process of neoplastic migration 
and invasion was shown to be correlated with the expression 
of ADAM8 which regulates the activity of MMP-2 metallo-
proteinase by influencing the ERK1/2 kinase and the EGF/
EGFR signaling pathway [42]. The expression of ADAM8 was 
reported to be significantly higher in colorectal cancer than 
in healthy tissues, and was correlated with poorer prognosis 
and faster recurrence [43]. Silencing of MMP-2 expression in 
colorectal cancer cell lines resulted in limited cell migration 
[44]. The CD44 membrane glycoprotein and c-met kinase 
seem to be the key factors in regulating the migration and 

Figure 3. ADAMs most popular functions in cancer. Numbers indicate 
the numbers of ADAMs family members, which were proved to play roles 
in specific aspects of cancer. For more details, see Table 1.

Table 2. ADAMs confirmed substrates. Metalloproteases function is determined by their substrates. Here, we present a summarized list of most im-
portant confirmed substrates of distinct ADAMs. Most were presented in previous reviews [26, 70]. Here, we present a table of ADAM substrates 
summarized in mentioned papers with recently discovered protein substrates. Notably, ADAM10 and 17 have the broadest range of confirmed sub-
strates. Most probably, there are many more undiscovered substrates; recent secretome protein identification revealed 91 highly probable substrates of 
ADAM10 [133], although these need to be confirmed in more detailed studies.
ADAM Substrates
ADAM8 ADAM 8 prodomain, APP, CD23, CD153, CHL1, L-selectin, MBP [26,70], TNFR-1 [134], CD31, Flk-1, Flt-1, Tie-2, EphrinB2 and B4, 

KL1, E-selectin, neuregulin-1β2, VE-cadherin [135] fibronectin [136]
ADAM9 ADAM10, APP, collagen XVII, DLL1, EGF, FGFR2IIIB , HB-EGF, IGFBP5, insulin-B chain, KL1, Laminin, p75 neurotrophin receptor 

[26,70], elastin, entactin, fibronectin [137], CD40, EphB4, Flk-1, Tie-2, VCAM, VE-cadherin [138],
ADAM10 APP, Axl, betacellulin, cadherin gamma C3 and B4, CD23, CD30, CD44, c-Met, collagen IV and XVII, CX3CL1, CXCL16, Desmoglein-2, 

DLL1, E-cadherin, EGF, Ephrin A2 and A5, FasL, HER2, IL6R, Klotho, L1-CAM, LAG-3, MICA, Notch, N-cadherin, PCDH-Gamma C3/
B4, prion protein, RANKL, TSHR, VE-cadherin [26,70], GPVI [139]

ADAM12 collagen IV, DLL1, fibronectin, gelantin, HB-EGF, IGFBP3, IGFBP5, transferrin [26,70], E-cadherin [140], Flk-1, Kitl1, Tie-2, VCAM-1, 
VE-Cadherin [73] 

ADAM15 amphiregulin, HB-EGF, CD23, E-cadherin, collagen IV, ADAM10 [26,70] desmoglein, TGF-B, epiregulin, betacellulin, Notch, [141] 
FGFR2IIIb [142], N-cadherin [143]

ADAM17 ACE2, ALCAM, amphiregulin, APP, CD30, CD40, CD44, collagen XVII, CSF-1, CX3CL1, DLL1, desmoglein, epigen, epiregulin, Growth 
hormone receptor, HB-EGF, HER4, ICAM-1, IL1R, IL6R, KL-1, Klotho, L1-CAM, LAG-3, L-selectin, MHC-class I-related chain A/B, 
N-CAM, Nectin 4, Neuregulin 1, Notch-1, NPR, P55 TNF Receptor, p75NTR, PTP-LAR, Pref-1, PrPc, RANKL, Semaphorin 4D, TGF-A, 
TrkA, TNF-A, TNF receptor I and II, VCAM-1, Vps10-p [26,70] betacellulin, c-kit, IL15RA, M-CSFR, NGFR, JAM-A, Meprin-B, Jagged, 
Mucin-1 [144] GPVI [139]

ADAM19 ADAM19, neuregulin, RANKL, TNFA, [26,70], PRR [145]
ADAM20 No substrates reported
ADAM21 No substrates reported
ADAM28 CD23, CTGF, IGFBP-3, MPB, [146], CD200, TNF-alpha, von Willebrand factor, [147]
ADAM30 cathepsin D, GKAP1, IRS4, [148]
ADAM33 CD23KITLG, 

invasion of neoplastic cells [45,46]. ADAM8 increases the 
expression of the phosphorylated form of Akt (pAkt) and 
phosphorylated extracellular-regulated kinase 1/2 (pErk1/2), 
thus affecting CD44 and c-met [20].
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Immune evasion

Chronic inflammation is an important cause of carcino-
genesis. Exogenous factors are responsible for most cases of 
certain types of cancer [47]. For some diseases characterized 
by local chronic inflammation (inflammatory bowel diseases 
and gastritis), there is a higher incidence of particular types 
of neoplasms [48]. Numerous proinflammatory cytokines are 
over-expressed in neoplastic cells and activate STAT family 
transcription factors, thus regulating cell division and differ-
entiation [49]. In pancreatic cancer, the JAK/STAT pathway, 
through the activated STAT3 factor, led to the expression of 
the PD-L1 gene which is responsible for T lymphocyte regula-
tion [50]. There was additive influence of the inhibition of 
STAT3 transcription factor and ADAM9 in non-small cell 
lung cancer on reducing the proliferation index and increasing 
the proportion of cells undergoing apoptosis. Silencing the 
expression of these two factors led to higher activity of initi-
ator caspases 3, 8 and 9. This not only induced apoptosis, but 
also limited the cell invasion and migration [51]. 

The ADAM8 metalloprotease regulates the expression 
of cytokines by its influence on the T-helper type 2 cells 
(Th2) which in turn induces and exacerbates local inflam-

mation [52]. The activation of the Notch signaling pathway 
in epithelial cells by ADAM10 through the Hes1 and Hey1 
factors results in release of proinflammatory interleukin-6 
[53]. The increased activity of IL-6 seems to be dependent 
on the proteolytic activity of the ADAM10 and ADAM17 
proteins which affect availability of the soluble form of 
the IL-6 receptor [54]. Chronic inflammation leads to the 
remodeling of epithelium and its dedifferentiation which is 
a common occurrence in the NF-kB pathway regulated by 
cytokines [55].

Some metalloproteases also decrease the susceptibility 
of neoplasms to cytotoxic lymphocytes and phagocytes. 
Glioma-derived cells produce ADAM10 which has immuno-
suppressive properties to CD8+ B cells – the main defense 
of the immune system. ADAM10 forces activated B cells to 
differentiate into regulatory B cells and TGF-B also plays an 
important role in this mechanism of immunosuppression 
[56]. The activation of PI3K in endothelial cells by ADAM10 
may also induce inflammation through the Notch signaling 
pathway and activation of gamma secretase, thus leading to 
increased expression of interleukin-6 [57]. The over-expres-
sion of pro-inflammatory cytokines is a common finding in 
many different types of cancer [53, 58].

Figure 4. ADAM knock-outs and knock-down in mice. This figure presents the effects summarized in Table 3.
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Chemoresistance

In spite of considerable progress, anti-cancer treatment 
has numerous long-term side effects [59]. Chemotherapy 
is one of the most commonly used methods, either on its 
own or with other treatment modalities, but it has many 
serious side effects and leads to complications [60]. Due to 

the constantly increasing incidence of neoplasms, these side 
effects and unsatisfying efficacy of currently used treatment 
regimens will continue to be an increasing financial burden 
for healthcare systems [61]. Unfortunately, more money 
spent on anti-cancer drugs does not reflect their efficacy [62]. 
The diverse molecular properties of neoplasms and various 
types of defense mechanisms of cancer cells against intro-

Table 3. Gene knock-out/knock-down effect in mice. Gene knock-out in mouse models allows us to recognize the most pronounced functions of down-
regulated protein. In case of ADAM10 and 17, knock-downs and conditional knock-outs mice were also studied, as classical knock-out mutations are 
lethal. Most of the effects were summarized in previous reviews [26, 70, 149], there were only a few new discovered in the last 5 years. ADAM1 and 3 
proteins are absent in humans (only as pseudogenes). 
ADAM Gene knock-out effect in mice
ADAM1 Sperm migration defect [150]
ADAM2 Sperm migration and egg fertilization defect [151,152]
ADAM3 Sperm migration defect [153,154], 
ADAM8 No major pathologies [155]. Reduced osteoclast response to TNF-A [156], attenuated immune response [157,158]
ADAM9 No major pathologies [159]. Reduced photoreceptor responses, retinal degeneration in older individuals (20 months) [160]; wound heal-

ing acceleration, increased keratynocyte migration [161]
ADAM10 Systemic knock-out: prenatal death at E9.5 [162]. Knock-out in endothelial cells: defects in the vasculature of the heart, liver, diaphragm, 

kidneys, small intestine, long bones; abnormal endochondral ossification, inhibited long bone growth, pathologic neovascularization 
after induced retinopathy [163,164]. Postnatal knock-out in brain: epileptic seizures, learning deficits, altered spine morphology, defective 
synaptic functions [165], aberrant neuronal migration, disorganized laminar architecture [166]. Postnatal epidermal knock-out: dysregu-
lation of epithelial differentiation, barrier function loss of hair, malformed vibrissae, hyperproliferation, cyst formation, thymic atrophy 
[167,168]. B-cell knock-out: diminished immune response [169]. Lymphoid and myeloid knock-out: no B cell development, delayed T cell 
development, systemic expansion of myeloid-derived suppressor cells [170]. 

ADAM11 No major pathologies, altered nociceptive response [171] impaired spatial learning and motor coordination [172]
ADAM12 30% postnatal lethality [173], reduced mammary tumorigenesis [174], increased keratynocyte migration [175] slightly reduced adipocytes 

proliferation [173,176], impaired muscle development [173].
ADAM15 No major pathologies. Reduced neutrophil chemotactic transmigration across, attenuated pulmonary inflammatory response [177], faster 

development of osteoarthritis [178]
ADAM17 Knock-out: Perinatal lethality [162], eyelid, hair, skin, lung development and heart valves defects [179,180]. Gene knock-down: eye, heart, 

skin defects, increased vulnerability to inflammation in DSS colitis [181]. Endothelial/smooth muscle knock-out: decreased pathological 
neovascularization [182]. 

ADAM19 Cardiac defects, high postnatal lethality (80-90%) [183–185]. Delayed sciatic recovery after nerve crush, delayed remyelination [186]
ADAM22 Postnatal lethality, ataxia and peripheral nerve hypomyelination [187,188]
ADAM23 Postnatal lethality (before 14 day), tremor, ataxia [189]
ADAM33 No major pathologies [190]. Remodeling and inflammation of lung suppressed even after allergen challenge [191]

Table 4. Chemoresistance mechanisms of ADAM proteins.

Drug Protein Chemoresistance associated process Type of tumor References
Trastuzumab ADAM10 Higher ADAM10 concentration by protein kinase B inhibi-

tion; shedding of HER3, releasing HER-3 bound heregulin, 
forming trastuzumab resistant HER-2/3 heterodimers.

HER2 positive breast and 
esophageal cancer 

[192] 

[110]
Gemcitabine ADAM10 Shedding of Amyloid Precursor Protein (APP) to sAPPα Pancreatic cancer [107,193]
Temozolomide ADAM8 Activation of pERK1/2 and/or pAkt. Glioblastoma [194]
Fluorouracil ADAM9 Downregulation of miR-20b elevates the expression of 

ADAM9 and EGFR
Colorectal cancer [195]

Fluorouracil ADAM17 Maintaining stem cell phenotype of cancer cells, cleavage of 
Notch1, Jagged-1 and Jagged-2

Colorectal cancer [196]

Doxorubicin ADAM10 Activation of the PI3-K/Akt pathway Hepatocellular carcinoma [197]
Fluorouracil, oxaliplatin ADAM10

ADAM17
Higher rate of glycolysis, promoting the epithelial-mesen-
chymal transition of cancer cells

Colorectal cancer [198]

Selumetinib (AZD6244) ADAM17 JAK1/2-dependent activation of STAT3, c-met KRASMT colorectal cancer [199]
Cisplatin ADAM17 Hypoxia → activation of EGFR/PI3K/Akt pathway Hepatocellular carcinoma [200]
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duced treatment modalities are significant problems that 
decrease the efficacy of chemotherapy [63–65].

The activation by ADAMs of particular signaling pathways 
and regulation of protein expression may be potential impor-
tant causes of chemo-resistance to currently used chemo-
therapeutic agents (Table 4).

Angiogenesis

During the development of neoplasm, new thin-walled 
blood vessels are formed on the base of an already existing 
vascular bed. Angiogenesis occurs in the early stages of 
carcinogenesis. It is complex process with multiple stages 
that allows progression and growth [66]. Among many 
neo-angiogenesis models proposed, endothelial cell-
sprouting remains one of the most popular and described 
models. It assumes progressive growth and ramification of 
existing vessels towards an avascular zone [67].

The initiating factors show significant importance in tumor 
angiogenesis. One of these is the Delta-like 1 (DLL1) – ligand 
of Notch. Most notably, it activates proliferation motility of 
endothelial cell, therefore contributing significantly to angio-
genesis [68]. This ligand can be activated by some ADAM 
proteases (9/12/17) which in turn activates Notch signaling 
pathway [69]. Notch itself is a substrate of ADAM 10/15/17 
[70]. The activation of Notch in vascular endothelial cells is a 
potent inducer of angiogenesis [68].

Regulation of neo-vascularization by ADAM proteases 
also results from the effects on known inhibitors of angio-
genesis. Endostatin is a globular protein belonging to strong 
endogenous inhibitors of the formation of new blood vessels 
[71]. Although endostatin is not a confirmed substrate of 
any ADAM, its expression in primary osteosarcoma was 
linked with ADAM8 in tumor level, and both proteins were 
positively correlated with tumor size, stage and distant 
metastasis [72].

Some of the metalloproteinases are characterized by 
increased expression in the tumor vascular bed. In the vascu-
lature of infiltrating ductal breast carcinoma, ADAM12 
showed a tendency to over-expression compared to normal 
tissue. This may be caused by increased production of metal-
loproteinase, induced by cytokine secreted by tumor cells. 
The promotion of neo-vascularization by ADAM12 most 
likely results from shedding of adhesion molecules and 
proangiogenic receptors [73]. Similar relationship was found 
for ADAM33 in laryngeal cancer; there protein was localized 
predominantly intracellularly and in tumor vasculature [74].

Although the aforementioned Notch signaling modula-
tion by ADAMs plays an important role in the initiation 
of sprouting angiogenesis, these metalloproteases influ-
ence other proteins involved in this process. Knockdown of 
ADAM17 (Notch sheddase) develops a different blood vessel 
phenotype than seen in Notch knockout mice. Inhibition of 
ADAM17 (but not ADAM10) induced the expression of a 
Thrombospondin 1 – inhibitor of angiogenesis [75].

These results indicate that determining the importance 
of ADAM proteins in the regulation of tumor-induced 
neo-vascularization requires further study.

ADAMs as diagnostic and prognostic markers

The Ki67 proliferation index is widely used to assess the 
grade of tumor histological malignancy. This is correlated 
with cancer patient cell proliferation, time to recurrence and 
shorter survival rate [76]. Ki67 and the histological tumor 
grade are also correlated with changes in phenotype of lymph 
node metastases compared to the primary tumor, together 
with certain molecular markers associated with malignancy 
and a poorer prognosis [77].

Tumor cyto-architectonics is not the only example of 
trait corresponding with expression of certain proliferation 
markers. The Ki67 proliferation index seems to be commonly 
approved as a factor correlating with the clinical staging and 
survival curves, however its utility has been questioned [78, 
79]. The heterogeneity of molecular markers in neoplasms is 
certainly not limited to several proteins and its complexity 
indicates that new potential diagnostic and prognostic 
markers must be searched for.

ADAM sheddases could be such potential markers. 
There has been increasing recent data linking ADAMs with 
neoplastic progression, grading and TNM staging in certain 
neoplasms.

Oral squamous cell carcinoma

The expression of ADAM10 is dependent on staging and 
correlates with the tumor diameter expressed in TNM classi-
fication. Patients with more advanced disease had lower 
expression of ADAM10 than both the control group and 
patients with less advanced disease. Interestingly, there was a 
similar level of ADAM10 expression in the latter two groups. 
Moreover, the expression of ADAM10 seems to be dependent 
on sex: it is significantly lower in males than in females [80].

Nasopharyngeal cancer

The expression of ADAM10 is also elevated in nasopha-
ryngeal cancer where it is correlated with clinical stage (pT 
parameter of TNM classification). The increased expression of 
ADAM10 also decreases survival rates in these patients [81].

Bladder cancer

There is a positive correlation between ADAM10 expres-
sion and tumor grade (G1 versus G2–G3) [82].

Brain tumors

The expression of ADAM10 mRNA is higher for more 
malignant glial tumors. ADAM10 has mainly been reported 
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in cell membranes and blood vessel walls. In high-grade 
gliomas, the ADAM10 expression is significantly higher than 
in grade I/II gliomas and in the control group [83]. Similar 
findings were reported for ADAM9. The expression of this 
sheddase in gliomas was found to be dependent on tumor 
histological grading; for instance, the expression of ADAM9 
in glioblastoma is significantly higher than in less malignant 
gliomas. It is also associated with poorer prognosis. In malig-
nant astrocytic tumors, it is higher than in oligodendroglioma 
– therefore, the expression depends on tumor type [84]. 
ADAM10 is over-expressed in many neoplasms, including 
pituitary adenoma. In vitro and in vivo research conducted 
by Pan et al. shows that invasion and cleavage of CD44 and 
L1 are correlated with ADAM10 expression. The expression 
of ADAM10 is increased in high-grade pituitary adenomas 
compared to low-grade adenomas and healthy pituitary 
glands. The elevated CD44 and L1 cleavage is regulated by 
ADAM10 through calcium cellular signal (CD44), Src and 
ERK1/2 (L1). ADAM10 inhibitors may block cell migration 
mediated by L1 and decrease CD44-dependent cell migra-
tion and invasion. Pituitary adenoma is another neoplasm 
where ADAM10 could be a potential target for clinical 
therapy [85]. ADAM12 was found to be up-regulated in 
human pituitary adenomas with cavernous sinus invasion 
compared to non-invasive adenomas. Additionally, there is 
a positive correlation between ADAM12L isoform and the 
Ki-67 proliferation index. In vitro experiments showed that 
ADAM12 silencing inhibited cell invasion and migration and 
even suppressed cell proliferation. ADAM12 could therefore 
be a therapeutic target in pituitary adenomas to determine 
disease severity [86].

Thyroid cancer

Xiong et al. concluded that miRNA-126-3p plays a 
suppressive role in thyroid cancer cells. Lower expression of 
miRNA-126-3p was observed in larger primary tumors and 
in cases with extrathyroidal invasion and high-risk groups 
for recurrent thyroid cancer. It was also found to be signifi-
cantly lower in thyroid cancer than in follicular adenomas. 
On the other hand, the overexpression of miRNA-126-3p was 
reported to inhibit thyroid cancer cell proliferation, spheroid 
formation, migration, VGF secretion and lung metastasis in 
vivo. The authors determined that the two direct targets of 
miRNA-126-3p are SLC7A5 and ADAM9. This suggests that 
these genes, in particular, mediate the suppressive effects of 
miRNA-126-3p [87].

ADAM17 and ADAM10 take part in the Notch signaling 
pathway as a second receptor cleavage. The third receptor 
cleavage is gamma-secretase. Available data suggests that 
in papillary thyroid cancer MAML2, MAML3, JAG1 and 
Notch1 (members of the Notch family) are up-regulated. 
Monoclonal antibodies targeting Notch receptors or Notch 
ligands, as well as γ-secretase inhibitors (GSI), are potential 
drugs for various solid tumors. Some antibodies and GSIs 

are in early clinical trials; however, further studies are neces-
sary [88].

Ovarian carcinoma

ADAM12 has been investigated as a prognostic factor in 
ovarian carcinoma. The expression of this metalloproteinase 
is low in healthy tissues, but increases in certain types of 
cancer. Cheon et al. proved that high serum protein levels 
of ADAM12 and ADAM12 mRNA are associated with poor 
survival in patients with high-grade serous ovarian carci-
noma. The high expression of ADAM12 mRNA is corre-
lated with lymphatic and vascular tumor invasion and the 
residual tumor after cyto-reduction. These authors suggest 
that tumors which produce high levels of ADAM12 are more 
aggressive [89].

Lee et al. [90] first demonstrated that ADAM15 is 
secreted as an exosomal component and they suggested 
ADAM15-rich exosomes as potential tumor inhibi-
tors. According to the results of subsequent studies, the 
ADAM15 ectodomain is shed from secretory exosomes 
and can suppress vitronectin-induced cancer cell migra-
tion and MEK/ERK signaling pathway activation. On the 
other hand, shedding of the ADAM15 ectodomain was 
induced after incubation with human ovarian carcinoma 
cell line MDAH2774, and this process was associated with 
serine protease activity [90].

ADAM17 was suggested as a potential immunothera-
peutic target due to its ability to control angiogenesis and 
cellular proliferation and migration [91]. Richards et al. 
tested cell lines with specific anti-human ADAM17 IgG 
antibody and pituitary clone D1. D1(A12) was found to 
inhibit the proteolysis of ADAM17 substrates, particularly 
that of TNF-α, and the in vitro effect was dose-depen-
dent. In contrast, TNF-α shedding in vivo was similar to 
the control group – mice without D1(A12) treatment. 
Although ADAM17 was considered to play a crucial role 
in shedding TNF-α, other ADAMs most likely take over 
the role of ADAM17 in vivo. Investigators suggested that 
the simultaneous inhibition of ADAM17, ADAM 10 and 
ADAM19 might be required to stop TNF-α shedding in vivo 
[22]. On the other hand, epigenetic repression of ADAM19 
due to impaired SMAD4 nuclear translocation, as in the 
TGF-β signaling pathway, may contribute to ovarian cancer 
progression [92].

Conclusions

ADAMs provide a promising field of research in contem-
porary oncology. Their role in the pathogenesis of neoplasms 
and their potential clinical utility as diagnostic and prognostic 
markers is reflected in the constantly increasing number of 
studies with ADAMs. However, further studies are required 
to elucidate the precise functions of ADAMs and to establish 
their potential clinical applications.
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