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Role of epigenetic deregulation in hematogenous dissemination of malignant 
uveal melanoma 
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It has become increasingly clear that epigenetic deregulation plays a fundamental role in cancer. Although the under-
standing of molecular, genetic and transcriptional alterations involved in the initiation and progression of uveal melanoma 
(UM) has grown significantly in recent years, little attention has been paid to the role of epigenetic changes. In cancer, 
epithelial-to-mesenchymal transition (EMT) enables trans-differentiation of epithelial tumor cells, endowing them with 
migratory and invasive properties. EMT-inducing transcription factors have been shown to interact with multiple epigen-
etic modifiers, thus reflecting the reversible nature of EMT. Therefore, the epigenetic therapy targeting these interactions 
may provide a promising therapeutic option, especially since no improvement in survival of patients with metastatic UM 
has been achieved using traditional approaches.

This review summarizes current knowledge of epigenetic regulation of EMT in UM and emphasizes the need for deeper 
understanding of these highly dynamic and reversible processes. The potential for targeting individual members of the 
epigenetic machinery is also addressed.
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Uveal melanoma (UM) is the most frequent intraocular 
tumor in adults, representing approximately 83% of ocular 
and 3% of all melanomas [1]. The average annual incidence 
varies widely according to age, ethnicity and latitude and 
the highest incidence is in white Caucasians (5.5–6.0 per 
million) [2]. Risk factors for the development of UM include 
white race, fair skin and light iris color, dysplastic nevus 
syndrome, ocular melanocytosis and germline BRCA1-
associated protein 1 (BAP1) mutations [3]. The UM tumors 
arise from melanocytes located in the uveal layer of the eye, 
with the choroid the most frequent site (82%), followed by 
the ciliary body (15%) and iris (3%) [4]. Both cutaneous 
melanomas (CMs) and UMs originate from neural crest-
derived melanocytes but they have a distinct spectrum of 
chromosome aberrations and gene mutations and different 

metastatic routes and tropism. [5]. While UM tumors lack 
BRAF or NRAS mutations in the mitogen-activated protein 
kinase (MAPK) pathway typical for CM [6], the constitu-
tive activation of the MAPK pathway in UM is mediated 
by GNAQ and GNA11 mutations in the G-protein pathway 
[7, 8]. Patient management has changed in the recent past 
to eye-conserving approaches: the most common are radio-
therapy, laser therapy and surgical resection [3, 9]. Large 
tumor size, involvement of the optic disc and irrecoverable 
total vision loss are indications for the enucleation, required 
in 20–40% of UM cases [10].

Despite highly effective treatment of the primary disease, 
development of metastases, often observed more than 5 
years later, occurs in up to 50 % of patients [11, 12]. Tumor 
dormancy has been considered the leading reason for the 



EPIGENETIC REGULATION IN METASTATIC SPREAD OF UVEAL MELANOMA 841

delayed appearance of metastasis [13]. Various clinical, 
pathological, molecular and cytogenetic markers predict 
metastatic risk and survival (Table 1). 

The main clinical characteristics associated with the 
poor prognosis are large tumor diameter and thickness, 
ciliary body involvement and extra-ocular spread [14]. The 
unfavorable histopathological prognostic factors are epithe-
lioid melanoma cytomorphology, extra-vascular matrix 
pattern, high mitotic rate and inflammatory infiltration [15]. 
Chromosome 3 loss, often co-occurring with BAP1 inacti-
vating mutations, is one of the most significant cytogenetic 
alterations that correlates with development of metastases 
[16, 17]. Gene expression profiling that allows prediction of 
metastatic risk with higher accuracy than clinical stage or 
chromosome 3 status, categorizes UM tumors as Class 1 (low 
metastatic risk) and Class 2 (high metastatic risk) [18, 19]. 
Increased gene expression of preferentially expressed antigen 
in melanoma (PRAME) positively associated with SF3B1 
mutations, predicts metastatic risk in patients with Class 1 or 
disomy 3 tumors [20]. Metastatic UM has a clear predilection 
for the liver which is afflicted in almost all Class 2 patients, 
while other metastatic sites, mostly in Class 1 tumors, include 
lung, bone and stomach [20]. Metastatic disease is associated 
with poor prognosis and median overall survival ranging 
from 4 to 15 months [21].

Epigenetic mechanisms, such as DNA methylation, 
histone modification and the action of non-coding RNAs are 

essential for normal development and maintenance of tissue-
specific gene expression patterns in mammals. Their disrup-
tion can lead to altered gene function, malignant cellular 
transformation and metastatic progression. 

Although numerous studies have addressed the genetic 
events in the development of UM (reviewed in [7, 22]), 
only a few have focused on epigenetic changes (reviewed in 
[23, 24]). However, a recently published study applying an 
enormously comprehensive array of biomedical techniques 
including analysis of methylomes and non-coding RNAs 
has provided complex insight into UM pathogenesis [8]. 
The authors demonstrated that monosomy 3 is associated 
with a distinct global DNA methylation pattern, suggesting 
that BAP1 aberrancy results in a metastasis-prone methyla-
tion state. Moreover, monosomy 3 UM is divided into two 
subsets by copy number alterations, RNA/non-coding, 
RNA expression and cellular pathway activity profiles [8]. 
Expression levels of a number of histone-modifying genes 
and polycomb family members are significantly lower in 
monosomy 3/Class 2 UMs, thus supporting the role of 
general deregulation of epigenetic modifiers in UM with a 
poor prognosis [25]. Deregulation of the UM microRNA 
(miRNA) network has been shown to promote cell-cycle 
progression, resistance to apoptosis, invasion and metas-
tasis [24].

This article summarizes the current evidence on the role of 
epigenetic deregulation in UM metastatic spread. Because of 

Table 1. Clinical, histological and genetic markers for prediction of metastatic risk.

Prognostic predictors Risk factor Genes Incidence/Prognosis Reference
Clinical High tumor diameter, thickness, 

ciliary body involvement, extra-
ocular spread

[14]

Pathological Epithelioid melanoma cytomor-
phology, extravascular matrix 
pattern, high mitotic rate

[15]

Cytogenetic Monosomy 3 CTNNB1, SOX2 ~50 % of UM [16]
Chromosomal abnormalities of 
chromosomes 1, 6 and 8 

GNAQ, GNA11, LZTS1, 
DDEF1, PTP4A3, TCEB1, 
BAP1

17–63% depending on abnormality [8, 22]

Molecular Class 2 gene expression signature 40% of Class 2 patients metastasize [18, 19]
Aberrant gene expression PRAME 15% of Class 1 patients metastasize [20]

Genetic Germline/ somatic mutations BAP1 Germline mutations 1.6% -3%, somatic 
mutations <50% 

[8, 17, 126]

Oncogenic mutations in genes 
associated with the G-protein-α 
subunits

GNAQ, GNA11 ≥80% of primary UM (44% each) [8, 127]

Other driver mutated genes EIF1AX, SF3B1 EIF1AX (17%) associated with Class 1 
tumors, good prognosis; SF3B1 (24%) as-
sociated with younger age, good prognosis

[8, 127, 128]

Genetic/Epigenetic Somatic copy number alterations/ 
RNA expression 

EIF1AX-, SRSF2, SF3B1 Bad prognosis UMs differ by copy number 
variations and distinct mRNA/ lncRNA/ 
miRNA transcription profiles

[8]

Epigenetic DNA methylation Bad prognosis UMs have distinct methyla-
tion profile

[8]
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the lack of data on UM dormancy we link UM related discov-
eries with the relevant findings in the other cancer types to 
emphasize the need for deeper understanding of these highly 
dynamic and reversible changes.

Metastatic dissemination and tumor cell dormancy in UM

Metastasis itself is a complex process, because the 
successful metastatic cell must traverse multiple steps in 
order to develop into a clinically relevant metastatic lesion. 
The major role in the initiation of metastases in UM is attrib-
uted to epithelial-to-mesenchymal transition (EMT); the 
trans-differentiation of epithelial tumor cells into motile 
mesenchymal cells. EMT plays a physiological role during 
development and wound healing, but contributes patho-
logically to fibrosis and cancer. Increasing evidence suggests 
that epigenetic mechanisms have important roles in EMT/
mesenchymal-to-epithelial (MET) transitional changes [26, 
27]. As UM disseminates almost exclusively via hematog-
enous spread, the study of epigenetic deregulation during 
EMT/MET is highly relevant. It has been demonstrated that 
hematogenous dissemination of UM cells correlates with 
patient outcome and that a change in the number of circu-
lating tumor cells (CTCs) during treatment is predictive of 
therapy response [28–31]. 

EMT is the process in which epithelial cells from the 
primary tumor lose their cell polarity and cell-cell adhesion, 
gain migratory and invasive properties and become CTCs. 
Catenin beta 1 (CTNNB1) gene product β-catenin is part 
of a protein complex that is necessary for the creation and 
maintenance of epithelial cell layers and regulating cell 
growth and adhesion between cells [32]. The main binding 
partner of β-catenin is E-cadherin, encoded by the CDH1 
gene that is often down-regulated in tumor progression [33]. 
The loss of E-cadherin is considered a fundamental event in 
EMT which allows tumor cells to enter the bloodstream and 
become CTCs [34]. EMT is induced by interplay of soluble 
growth factors, extracellular matrix or hypoxic conditions 
that activate signaling pathways leading to the expression or 
post-transcriptional and post-translational modification of 
EMT transcription factors [35]. 

The Snail family transcription repressors (SNAI1 and 
SNAI2), zinc-finger E-box-binding (ZEB) and basic helix-
loop-helix transcription factors (TWIST) are key transcrip-
tion factors involved in EMT [36]. It was shown that down-
regulation of ZEB1, Twist1, and Snai1 in vitro reduced the 
invasive properties of UM cells. Moreover, the elevated 
mRNA levels of ZEB1 and Twist1 were associated with a 
more aggressive clinical phenotype in primary UM samples 
[37]. Cells undergoing EMT can also acquire cancer stem 
cell (CSC) properties including the capacity for self-renewal, 
re-differentiation, dormancy, active DNA repair and drug 
resistance [38]. The re-programming of gene expression 
during EMT and reciprocal MET is facilitated through 

the rapid regulatory mechanism controlled by a variety of 
epigenetic regulations that are critical in integrating signals 
from multiple transcription factors [35, 39].

After remission, a considerable number of UM patients 
relapse. Metastatic UM can re-occur several months or even 
years after complete tumor resection [40]. As CTCs were 
found in UM patients who had been enucleated several 
years earlier, it was suggested that CTCs can colonize distant 
organs, remain dormant for several years and sporadically 
seed new tumor cells into circulation [41]. Several groups 
reported the presence of occult, dormant, sub-clinical single 
cells or micro-metastatic foci in the bone marrow or livers of 
patients with a history of UM [42–46]. 

Experimental dormancy has been described as cancer cell 
quiescence, including altered cellular signaling (extrinsic 
and/or intrinsic), pre-angiogenic micro-metastases with 
balanced cell division, apoptosis and immune evasion [47]. 
EMT programming in cancer cells enables in the remodeling 
of extracellular matrix to break the dormancy of relapse-
initiating CSCs [48]. The product of SRY-related HMG-box 
(SOX2) contributes to cell proliferation and de-differen-
tiation through the regulation of a set of genes controlling 
G1/S transition and EMT phenotype. This gene is involved 
in CSC maintenance, with the capacity to impair cell growth 
and tumorigenicity [49–51]. Emerging evidence proposes 
that cancer dormancy is driven by the flexible nature of the 
epigenetic machinery [52–54]. The ability of the epigenetic 
drugs to reduce cancer relapses supports this hypothesis 
and the identification of epigenetic regulatory mechanisms 
during EMT/MET can provide novel therapeutic opportuni-
ties [55]. 

Although histone deacetylase (HDAC) inhibitors were 
proven successful in inducing prolonged dormancy of micro-
metastatic disease in UM, the roles of epigenetic regulation 
in UM dormancy have not been studied [56, 57].

While the established animal models serve as powerful 
tools for identifying relevant pathways and developing novel 
therapeutic strategies [58], they exhibit several limitations 
which may have led to the delay in development of novel, 
efficient drugs for metastatic UM. Reliable testing of novel 
therapeutic regimes and accurate evaluation of therapy 
response will be possible only by refinement of potent animal 
models which mimic UM development and progression. 
These should integrate unique UM characteristics, including 
genetic attributes, specific features of the ocular immune 
system, the hematogenous dissemination and colonization 
of the liver and also the dormancy and angiogenic switch of 
hepatic micro-metastases [58, 59].

Epigenetic changes in UM progression

The expression of proteins dynamically changes during 
EMT from epithelial (E-cadherin, desmoplakin, cytokera-
tins, occludins and mucins) to mesenchymal (N-cadherin, 
vimentin, vitronectin, fibronectin and α-smooth muscle 
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The reduced levels of E-cadherin identified in 56.2% of 
UM samples inversely correlated with promoter methyla-
tion [70]. The reactivation of E-cadherin through promoter 
demethylation may therefore present a promising thera-
peutic strategy. It has been proven that treatment of UM cell 
lines with methylation and deacetylation inhibitors results 
in up-regulation of E-cadherin expression accompanied by 
phenotypic change from a spindle to more epithelial cell 
type [6].

Post-translational modifications of histones

Post-translational covalent modifications of histones 
by histone-modifying enzymes lead to changes in the state 
of chromatin compaction which facilitates DNA-based 
processes such as transcription, replication, recombination 
and repair. The combination of local chromatin marks, such 
as methylation, acetylation, phosphorylation, ubiquitination 
and sumoylation, all with different degrees of modification 
(mono-, di-, tri-), affect chromatin mobility and stability and 
regulate DNA packing into transcriptionally silent hetero-
chromatin or active euchromatin. 

Histone acetylation is associated with active gene 
transcription, and while trimethylation of lysine residue K27 
on histone 3 (H3K27met3) catalyzed by the polycomb group 
proteins represses gene activity [71], trithorax group proteins 
activate gene expression via histone 3 lysine 4 trimethylation 
(H3K4met3) [72]. Snai1 promotes EMT by suppressing 

actin) [27]. This plasticity is enabled by underlying shifts in 
epigenetic regulation and by interaction between multiple 
layers of epigenetic control mechanisms. 

DNA methylation

DNA methylation is a covalent modification with addition 
of a methyl group (-CH3) to the cytosine residue in the CpG 
dinucleotide sequence, and methylation/demethylation is an 
important mechanism in maintaining cell- or tissue-specific 
gene expression. The global DNA hypomethylation and 
inactivation of tumor suppressor genes by their promoter 
hypermethylation are common epigenetic events in the 
development of a variety of tumors [60]. When UMs were 
clustered according to the global DNA methylomes, they were 
divided into the same classes as when clustered according to 
their gene expression profiles; thus suggesting an epigenetic 
contribution to the underlying molecular pathology that 
produces this transcriptome [8, 25]. 

Aberrant hypomethylation of PRAME, resulting in its 
transcriptional activation, is associated with increased 
metastatic risk mainly in Class 1 UMs [61]. Most of the 
hypermethylated genes in UM (p16, TIMP3, RASSF1A, 
TIMP3, RASEF, hTERT and EFS) [62–68] are involved in cell 
cycle regulation (Table 2). Few of these, namely RASSF1A 
and p16, were also aberrantly methylated in CM, while the 
others (PTEN, TNFSF10D, COL1A2, MAGE or CLDN11) 
have not been reported in UM [69]. 

Table 2. DNA methylation in UM.
Gene Location Nb Function Presence of methylation Method Reference
APC 5q22.2 23 PTs antagonist of the Wnt signal-

ing pathway, *
0% MS-SSCA and MS-

DBA
[67]

BAP1 3p21.1 66 PTs and blood DNA deubiquitinating enzyme, * 0% Bisulfite sequencing [129]
RASSF1A 3p21.3 39PT/23 PTs Moulin * 50% / 70% /  

13%
Melting temperature 
analysis / RT-QMSP /  
MS-SSCA and MS-
DBA

[65, 66] [67]

RARB 3p24.2 40 / 20 / 23 PTs Nuclear transcriptional 
regulators

7.5% / 0% / 13% Bisulphite genomic 
sequencing and MSP/ 
RT-QMSP / MSMS-
SSCA and MS-DBA

[64, 66, 67]

RAB31 18p11.22 63 PTs/ 12 control 
tissues

RAS oncogene superfamily 
member

47,8% hypermethylated 
(better prognosis)

Methylation-specific 
PCR

[130]

LZTS1 8p21.3 6 PTs * association with class 2B 
expression signature 

Methylation-sensitive 
restriction endonucle-
ase EagI digestion

[131]

ALCAM 3q13.11 40 PTs Cell adhesion molecule 0% Bisulphite genomic 
sequencing and MSP

[64]

CDH1 16q22.1 40 PTs Calcium-dependent cell 
adhesion protein

0% Bisulphite genomic 
sequencing and MSP

[64]

RB1 13q14.2 40 PTs * 0% Bisulphite genomic 
sequencing and MSP

[64]

VHL 3p25.3 40 PTs Ubiquitination and subse-
quent proteasomal degrada-
tion

0% Bisulphite genomic 
sequencing and MSP

[64]
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Gene Location Nb Function Presence of methylation Method Reference
CDKN2A 
pINK4a 
p16

9p21.3 22/ 23 / 40 PTs * 32% / 7.5% / 4% MS-SSCA and MS-
DBA

[62, 64, 67]

RASEF 9q21.32 35 PTs GTPase 31% Melting temperature 
analysis

[68]

MGMT 10q26.3 DNA repair protein Mean 5% RT-QMSP [66, 132]
hTERT 5p15.33 23 PTs Moulin Ribonucleoprotein poly-

merase
52% MS-SSCA and MS-

DBA
[67]

FHIT 3p14.2 40 PTs / 23 PTs Hydrolase involved in purine 
metabolism

0% / 0% MS-SSCA and MS-
DBA

[64, 67]

TRAIL decoy 
receptors DcR1 
and DcR2

3q26.31 Cytokine that belongs to the 
TNF ligand family

[133]

CXCR4 2q22.1 Chemokine receptor specific 
for stromal cell-derived fac-
tor-1

[134–136]

CCR7 17q21.2 G protein-coupled receptor [134–136]
TIMP3 22q12.3 23 PTs; 1 TIMP3 nega-

tive PT
Inhibitor of the matrix me-
talloproteinases

n.a. / 9% MSP, MS-SSCA and 
MS-DBA

[63, 67]

DAPK 9q21.33 Calcium/calmodulin-depen-
dent serine/threonine kinase

Mean 5% RT-QMSP [66]

RUNX3 1p36.11 Transcription factor Mean 25% RT-QMSP [66]
CACNA1G 17q21.33 Voltage-sensitive calcium 

channel
Mean 5% RT-QMSP [66]

CTNNB1 3p22.1 Downstream component of 
the canonical Wnt signaling 
pathway

0% Bisulphite genomic 
sequencing and MSP

[64]

SOCS1 16p13.13 Suppressor of cytokine 
signaling

Mean 0% RT-QMSP [66]

IGF2 11p15.5 Growth factor Mean 0% RT-QMSP [66]
NEUROG1 5q31.1 Transcriptional regulator Mean 5% RT-QMSP [66]
KDM4B 19p13.3 19 PTs Histone demethylase 0% Bisulfite Sequencing [25]
KDM6B 17p13.1 19 PTs Histone demethylase 0% Bisulfite Sequencing [25]
KAT2B 3p24.3 19 PTs Histone acetyltransferase 0% Bisulfite Sequencing [25]
PRAME 22q11.22 80 PTs Hypomethylation, transcrip-

tional repressor
Infinium HumanMeth-
ylation 450K BeadChip

[61]

EFS 14q11.2 16 PTs Docking protein Full 50%, partial 15%, 
no 35%

Bisulfite sequencing [137]

Abbreviations: MSP: methylation-specific PCR; RT-QMSP: Real-Time Quantitative Methylation-Specific PCR; methylation-sensitive single-strand confor-
mation analysis (MS-SSCA) and methylation-sensitive dot-blot assay (MS-DBA), PT: primary tumor; *tumor suppressor 

Table 2. Continued 

E-cadherin expression both directly, through its direct 
interaction with its promoter, and indirectly by inducing 
the synthesis of other repressors, including Zeb1. The 
binding of Snai1 to the E2-boxes of its target gene promoters 
elicits transcriptional-repressing epigenetic modifications, 
including H3K9 deacetylation, H3K4 demethylation and 
H3K9 and H3K27 methylation [73, 74]. 

Depletion of BAP1 protein leads to hyperubiquitination 
of H2A in melanoma cells and melanocytes leading to loss 
of differentiation and gain of stem-like properties [56, 75]. 
The H2A hyperubiquitination was reversed by treatment 
with HDAC inhibitors in vivo in a xenograft model that may 
have therapeutic potential for inducing differentiation and 
prolonged dormancy of micrometastatic UM disease [56]. 

The HDAC inhibitors were suggested as adjuvant treatment 
in high-risk patients because of their ability to initiate a shift 
from de-differentiated Class 2 UM cells to more differenti-
ated, less aggressive cells [56, 76]. However, it is likely that 
more than one mechanism by which HDAC inhibitors alter 
UM cell function will be revealed [77]. 

The current findings for aberrant histone modification 
pattern in UM are summarized in Table 3. Hyperactivation 
of the histone-lysine N-methyltransferase enzyme EZH2 
that also mediates transcriptional inactivation of E-cadherin 
and higher expression of histone-lysine N-methyltransferase 
SETDB1 has been reported in the CM. [69]. The dormancy 
and recurrence periods have been shown to be regulated by 
epigenetic regulations in various cancer types [52]. In ovarian 



EPIGENETIC REGULATION IN METASTATIC SPREAD OF UVEAL MELANOMA 845

cancer the tissue inhibitor of metalloproteinase 3 (TIMP3) 
and CDH1 were epigenetically activated in dormant cells 
and subsequently repressed in re-growing neoplasms [78]. 
Elevated CDH1 expression during dormancy was associated 
with an increase in both H3K4me3 and H3K9Ac. TIMP3 and 
CDH1 expression is also inversely related to DNA methyla-
tion of their promoters in cell cultures and xenografts. 
Notably, DNA methyltransferase (DNMT) and HDAC 
inhibitors counteract CDH1 and TIMP3 silencing, thereby 
hampering re-activation of dormant cells [78].

miRNA-based epigenetic mechanisms

Micro RNAs (miRNA) are short, phylogenetically 
conserved single-stranded RNA molecules involved in the 
silencing of messenger RNAs (mRNA). The interaction 
between miRNAs and their target mRNA is responsible 
for the inhibition of translation initiation, elongation and 
mRNA decay. The miRNAs have been proven to function as 
either suppressors or oncogenes and are involved in EMT in 
various cancer types [79–81]. Although a number of miRNAs 
were identified to be up- or down-regulated in UM (Table 4), 
only a few have been studied in relation to hematogenous 
dissemination (reviewed in [24]).

As shown recently, the miRNA expression landscape is 
concordant with transcriptional UM subsets and it reveals the 
four main miRNA clusters clearly associated with monosomy 
3 and DNA methylation state [8]. The following paragraphs 
investigate miRNAs’ importance in UM and other cancers.

Class 2 UM has been accurately distinguished from Class 
1 by the two most significant discriminators, let-7b and 
miR-199a [82]. Consistent with these findings, miR-199a-
3p/5p, miR-199b-3p and let-7b-5p were up-regulated in 
monosomy 3 UM [8]. It has also recently been demonstrated 
in vitro that miR-199a contributes to E-cadherin regulation 
in hepatocellular and other carcinomas [83–85]. The expres-
sion of several miRNAs, including oncomiR miR-21-5p, is 
influenced by DNA methylation in UM [8]. miR-21 is one of 
the first microRNAs to be associated with tumor progression 
and metastasis in several cancers [86]. 

Successful reversal of EMT and CSC phenotype by 
hsa-miR-21 antagomir in breast cancer cells could be a 
novel therapeutic approach in other malignancies [86]. It 
was shown that miR-9, which suppresses UM cell migration 
and invasion partly through down-regulation of NF-κB1 
signaling, is significantly reduced in highly invasive UM 

cell lines [87]. In contrast, this miRNA has been related to 
EMT, stem cell phenotype and tumor progression in breast 
cancer samples, where a high level of miR-9 was found an 
independent prognostic factor of disease-free survival [88]. 
miR-9 directly targets CDH1 and increases breast cancer 
cells motility and invasiveness in vitro [89]. Further, miR-9 
interacts with the 3’-untranslated region of E-cadherin and 
down-regulates its expression in esophageal squamous cell 
carcinoma. This then induced β-catenin nuclear translo-
cation and subsequent up-regulation of c-myc and CD44 
expression [90].

It has been shown that miR-34a inhibits UM cell prolif-
eration and migration through down-regulating c-Met [91]. 
The decreased expression of miR-34a and also miR-34b/c 
was associated with proliferation and migration in UM cells 
and primary tumor samples [92]. Their up-regulation was 
induced by doxorubicin and epigenetic drugs [92]; similar 
to miR-137 whose expression was increased through treat-
ment with DNA hypomethylating agent 5-aza-2’-deoxycyt-
idine (decitabine) and the trichostatin A HDAC inhibitor 
[93]. Both miR-34a and miR-137 act as Snail suppressors, 
negatively regulating EMT and the invasive and sphere-
forming properties of ovarian cancer cells [94]. miR-137 
was also dramatically down-regulated in clinical speci-
mens of gastrointestinal stromal tumors, and in vitro 
experiments have demonstrated that it increased expres-
sion of E-cadherin and inhibited cell migration via Twist1 
down-regulation [95]. Similar results were found in tongue 
squamous cell carcinoma, thus indicating that miR-137 
suppresses EMT [96].

The successful restoration of miR-124a expression by 
treatment with decitabine and trichostatin A in UM cell 
lines suggests its epigenetic regulation [97]. This miRNA is 
thought to be involved in the EMT of retinal pigment epithe-
lium in the pathogenesis of proliferative vitreo-retinopathy 
[98]. SNAI2 and ZEB2 were identified as direct functional 
target genes of miR-124 in breast and prostate cancer cells, 
respectively [99, 100]. 

It has been shown that miR-145 is one of the miRNAs 
significantly down-regulated in UM compared to healthy 
tissues [101, 102], and its up-regulation can inhibit EMT, 
invasion and metastasis by regulating the expression of 
Snai1 in osteosarcoma cell lines [103]. In the lung adenocar-
cinoma-initiating cells, miR-145 down-regulated the CSC 
properties and EMT process by targeting the Oct4 [104]. 
Furthermore, miR-145 inhibits gastric cancer cell invasive-

Table 3. Histone modifications in UM.
Gene Histone modification Function Method Reference
histone methyltransferase EZH2, 
MHC2TA 

H3K27me3 EZH2 contributes to silencing 
of MHC2TA in UM via histone 
modification

RT-PCR, Bisulphite sequencing, 
Chromatin immunoprecipitation 

[71, 138]

LncRNA PAUPAR H3K4 demethylation PAUPAR acts as UM suppressor RT-PCR, Chromatin immunopre-
cipitation [139]
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Table 4. List of miRNAs and lncRNAs up- or down-regulated in UM.

miR Specimen Expression in UM Target genes/clinical 
relevance Method Refer-

ence
miR-9 MUM-2B, C918, MUM-2C 

and OCM-1A UM cell lines
↓* in invasive cell lines NFKB1 signaling and 

its downstream genes 
MMP2, MMP9 and 
VEGFA

qRT-PCR [87]

miR-20a 10 PTs and 10 control tis-
sues, MUM-2B, MUM-2C 
UM and D78 cells

↑+ in UM cells and 
tissues

qRT-PCR [140]

miR-34b/c SP6.5 UM cell line, 5 PT ↓ in UM cells and 
clinical samples

MET, p-Akt, and some 
cell cycle proteins

qRT-PCR [92]

miR-124a M17, M21, M23, SP6.5, 
um95# and HEK-293 cells, 6 
primary UMs

↓* in UM cells and 
clinical samples

CDK4, CDK6, CCND2 
and EZH2

qRT-PCR [97, 141]

miR-137 M17, M23, SP6.5, um95# 
and HEK-293 cells

↓ in UM cell lines than 
in uveal melanocytes

MITF and CDK6 qRT-PCR [93]

miR-144 5 PTs and control mela-
nocytes, MUM-2B, C918, 
MUM-2C, OCM-1A UM 
and D78 cells

↓ in UM cells and 
tissues

MET qRT-PCR [142]

miR-146a 14 serum and tissue samples 
from UM patients and 
serum from 14 healthy 
controls

↑ in UM tissues and 
serum

TaqMan Low Density ar-
rays/ qRT-PCR

[143]

miR-155 25 PTs and adjacent normal 
tissues, OCM-1A, MUM-
2C, C918, MUM-2B and 
D78

↑ in UM cells and 
tissues

NDFIP1 qRT-PCR [144]

miR-181 3 UMs and 3 healthy tissues, 
SP6.5, VUP, OCM1, 92-1 
and RPE cells

↑ in UM tissues and 
most UM cells

CTDSPL qRT-PCR [145]

miR-182 M23 and SP6.5 UM cell 
lines; HEK-293 cells

↓* in UM cell lines MITF, BCL2, CCND2, 
MET

qRT-PCR [106]

miR-367 28 PTs and adjacent healthy 
tissues; M17, M23, MUM-
2B, C918 and um95# cells

↑ in UM cells and 
tissues

PTEN qRT-PCR [146]

miR-454 25 PT and adjacent control 
tissues; OCM-1A, MUM-
2C, C918, MUM-2B UM 
and D78 cells

↑+ in UM cells
and tissues 

PTEN qRT-PCR [147]

miR-20a, miR-125b, miR-
146a, miR-155, miR-181a, 
and miR-223&

Plasma samples and fine 
needle aspiration biopsies 
from 6 UMs and 26 healthy 
donors

↑ in patients Plasma level increased 
and miR-181a decreased 
when metastasis mani-
fested

qRT-PCR [114]

miR-92b, miR-199-5p, miR-
223&

55 PTs ↑ in monosomy 3 UM Illumina miRNA profiling 
chip/ qRT-PCR

[115]

let-7b, miR-199a, miR-143, 
miR-193b&, and miR-652 

24 PTs ↑ in class 2 tumors Association with class 2 
gene expression signature

Agilent microarray/qRT-
PCR

[82]

miR-549, miR-497, miR-
885-5p, miR-585, miR-640, 
miR-512-5p, miR-556-5p, 
miR-135b, miR-325, miR-99a, 
miR-33a, miR-196a,

1 invasive tumor with liver 
metastasis,
1 noninvasive PTs

↑ in metastatic tumor Tumor suppressor and 
metastasis suppressor 
genes

Agilent microarray [111]

miR-586, miR-493, miR-377, 
miR-376c, miR-369-3p, 
34c-5p, miR-26a-2, miR-
218&, miR-19b-1, miR-181a, 
miR-154, miR-133a, miR-129, 
miR-10a, miR-1, Let-7e, miR-
495, miR-18a

1 invasive tumor with liver 
metastasis,
1 noninvasive PTs

↓ in metastatic tumor Tumor suppressor and 
metastasis suppressor 
genes

Agilent microarray [111]

miR-20a, miR-106a, miR-17, 
miR-21, miR-34a

4 PTs and 4 normal uveal 
tissues

↑ in tumors Microarray/RT-PCR [101]
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ness through targeting N-cadherin and ZEB2 [105], and the 
double-negative feedback loop between ZEB2 and miR-145 
regulates EMT and stem cell properties in prostate cancer 
cells [100]. 

The expression of miR-182 was decreased in UM tissue 
samples while its over-expression suppressed the in vivo 
growth of UM cells, thus suggesting its tumor suppressor role 
in UM [106]. This miRNA has been proven to be involved 
in EMT regulation in prostate and colorectal cancer cells via 
different targets (VIM, ZEB1, and SNAI2) [107, 108]. Finally, 
TGF-β receptor 2 and SNAI2 were confirmed to be direct 
targets of miR-204, and reduced miR-204 expression in 
fetal human retinal pigment epithelium cells led to reduced 
expression of claudins; the most important components of 
cell tight junctions [109].

Although not yet studied in UM dormancy models, 
non-coding RNAs appear deeply involved in regulation 

of dormancy-proliferation cycles in other cancer types. A 
consensus-set of 19 miRNAs governed the phenotypic switch 
from dormant to fast-growing tumors in breast carcinoma, 
glioblastoma, liposarcoma and osteosarcoma in vivo experi-
mental dormancy models [110]. Two of these, miR-193b and 
miR-218, were significantly up- and down-regulated in UM, 
respectively [82, 111]. miR-34a was one of three miRNAs 
identified as regulators of dormancy in a mouse model of 
human osterosarcoma [112]. In the breast cancer metastasis 
models, four miRNAs secreted by tumor-associated stroma 
cells induced cancer cell dormancy, thereby providing a 
mechanistic substrate for CTC survival [113]. miR-223 was 
one of these four miRNAs, and its expression is up-regulated 
in monosomy 3 and metastatic UM tumors [114, 115]. 
miRNA expression profiling has identified several miRNAs, 
some of which are also associated with UM, which have a 
crucial role in cell proliferation, migration, and invasion. 

miR Specimen Expression in UM Target genes/clinical 
relevance Method Refer-

ence
miR-145, miR-204 4 PTs and 4 normal uveal 

tissues
↓ in tumors Microarray/RT-PCR [101]

miR-214, miR146b, miR-143, 
miR-199a and miR-134

3 M3 PTs and 3 D3 PTs/ 
11 metastatic and 40 
non-metastatic M3 PTs, 
6 metastatic and 29 non- 
metastatic D3 PTs

Differentially expressed SMAD4, WISP1, HIPK1, 
HDAC8 and KIT

Agilent microarray/qRT-
PCR

[148]

miR378d and miR378g 12 normal controls, 11 PTs; 
MUM-2B and OCM-1 cell 
lines

↑ in tumors Agilent microarray/qRT-
PCR

[102]

miR204-5p, miR143-3p, and 
miR145-5p 

12 normal controls, 11 PTs; 
MUM-2B and OCM-1 cell 
lines 

↓ in tumors IRS-1 Agilent microarray/qRT-
PCR

[102]

miR-199a-3p/5p, miR-199b-
3p, let-7b-5p/
miR-142, miR-150, miR-21, 
miR-29b, miR-146b and 
miR-155

80 UMs ↑ in M3 cluster3 / ↑ in 
M3 cluster4

miRNA expression 
landscape concordant 
with transcriptional UM 
subsets

miRNA-Seq [8]

LncRNA PAUPAR 12 PTs, and 5 normal 
tissues, MUM2B, OCM1, 
OM431 and
293T UM cell lines, ARPE-
19 cells

↓ in UM cell lines and 
PTs

HES1 via H3K4 demeth-
ylation

qRT-PCR [139]

LncRNA ROR MUM2B, OM431 ↑ in tumor cells TESC qRT-PCR [149]
LncRNA HOXA11-AS 5 PTs; OCM-1A, MUM-2C, 

C918, MUM-2B and D78 
cells

↑ in UM tissues and 
cells

p21 and miR-124 via 
EZH2

[150]

LncRNA FTH1P3 25 PTs, OCM-1A, MUM-
2C, C918, MUM-2B and 
D78 cells

↑ in UM tissues and 
cells

LncRNA FTH1P3 target 
gene of miR-224-5p

qRT-PCR [151]

LncRNA PVT1 80 UMs ↑ associated with 
malignant behavior

Data mining [152]

LncRNA CYTOR, BANCR 
and PVT1/NEAT1 and 
MALAT1

80 UMs ↑ or differentially 
expressed in clusters 
3 and 4

RNA-seq [8]

mi-RNAs involved in EMT in various cancers are highlighted by bold; &miRNAs involved in tumor dormancy; Abbreviations: PT primary tumor; M3 
monosomy 3; D3 disomy 3; # primary human melanocytes; ↓ down-regulated/decreased; ↑ up-regulated/over-expressed; *putative tumor suppressor 
miRNA; +putative oncogenic miRNA

Table 4. Continued
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This profiling also identified miRNAs involved in the CM 
immune response and cellular apoptosis [116].

The significance of individual miRNAs in UM pathogen-
esis should be interpreted in appropriate biological contexts 
because miRNAs interact widely with other signaling 
cascades and they behave differently in particular histolog-
ical subtypes. Since miRNAs can have a dual effect on EMT 
in different cancers, it is necessary to assess the functions of 
miRNA specifically for UM. However, increasing evidence 
of the association of miRNAs with EMT in various types of 
cancer strengthens the probability of their involvement in 
UM metastasis, and this calls for its comprehensive investi-
gation.

Conclusions and future strategies

In contrast to genetic factors, the epigenetic inactivation 
of gene expression is a reversible mechanism and its under-
standing promises to be susceptible to treatment. Epigenetic 
therapies have been approved for hematological malignancies 
by regulatory bodies. Several agents have been studied for 
solid tumors and are currently used in clinical trials as mono- 
or combination therapy [117]. Despite favorable results in 
several cancers, such as non-small cell lung cancer, ovarian 
and breast cancer, other solid tumors including pancreatic 
ductal adenocarcinoma have proven less successful [118]. 
Two types of epigenetic therapies (DNMT and HDAC inhib-

itors) have been in the phase of clinical testing for UM [119, 
120]. The rationale behind this is the DNMT and HDAC 
inhibitors’ ability to reverse the epigenetic inactivation of 
tumor suppressors and other cancer-related genes [121]. 

Most experimental epigenetic therapies in UM focus 
on the role of BAP1 protein; trying to reverse the pheno-
typic effects of BAP1 loss [56]. Recently, HDAC inhibitor 
LBH-589 successfully converted UM cells from Class 2 to 
Class 1 and induced G0/G1 arrest and epigenetic reprogram-
ming, which was consistent with melanocytic differentiation 
and dormancy in micrometastatic disease [56]. Similarly, 
low concentration of 5-aza-2’-deoxycytidine also known as 
decitabine, has suppressed proliferation and promoted CM 
cellular differentiation [122] and reduced growth, invasive-
ness, and clonogenicity of UM and CM cells in vitro [123]. 
Reactivation of epigenetically inactivated E-cadherin could 
be a promising therapeutic strategy for metastatic UM 
(Figure 1). 

Beyond DNMT and HDAC inhibitors, new epigenetic 
players have emerged. They include the inhibitors of bromo-
domain and extra-terminal motif (BET) proteins, histone 
lysine methyltransferases EZH2 and DOT1L or lysine-specific 
demethylase 1A (LSD1). These have been used in clinical 
trials for different cancer indications [124]. In addition to 
the indirect modulation of miRNA profiles via DNMT or 
HDAC inhibition, the replacement of miRNAs can also be 
used as a therapeutic strategy. miRNAs can be targeted by 

Figure 1. Schematic illustration of possible involvement of different epigenetic regulatory mechanisms in epithelial-to-mesenchymal transition in 
uveal melanoma. Abbreviations: HDAC, histone deacetylase; DNMT, DNA methyltransferase; HAT, histone acetyltransferase; HMT, histone methyl-
transferase; HDACi, histone deacetylase inhibitor; DNMTi, DNA methyltransferase inhibitor; TET, Ten-eleven translocation enzymes; yellow circles, 
methylated CpG dinucleotides; white circles, repressive histone modifications; red circles, histone marks associated with active transcription.
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the antagomirs, novel class of chemically engineered oligo-
nucleotides, which are able to silence endogenous miRNA 
expression. Emerging data suggests that epigenetic drugs can 
also improve the responses to cancer immunotherapy [125]. 
However, comprehensive understanding of the molecular 
mechanisms epigenetic drugs use to elicit their immuno-
modulatory effects is essential for the development of novel 
combination therapies for metastatic UM.
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