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S$0OX9, miR-495, miR-590-3p, and miR-320d were identified as
chemoradiotherapy-sensitive genes and miRNAs in colorectal cancer patients

based on a microarray dataset
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We aimed to identify chemoradiotherapy (CRT)-sensitive biomarkers in colorectal cancer (CRC) patients. The GSE15781
dataset used in this study contains 42 samples: 22 CRC tissues (non-CRT: n=13; CRT: n=9) and 20 normal colorectal tissues
(non-CRT:n=10; CRT: n=10). Following pretreatment, differentially expressed genes were selected using the limma package.
Potential CRT-sensitive genes were identified with Venn analysis and then enriched in function and pathway clusters using
the DAVID online tool. Moreover, protein-protein interaction (PPI) network analysis was implemented using the STRING
database. The TRRUST database was used to establish a transcription factor (TF)-target transcriptional network. A miRNA-
mRNA network was constructed based on relevant databases. miRNA and mRNA expression levels were analyzed using
real-time quantitative PCR. A group of 259 candidate CRT-sensitive genes were identified that were mainly enriched in
cell cycle regulation, adhesion-associated processes, and the p53 signaling pathway. A PPI network was established that
contained striking nodes, including ITGA2, MYC, ESR1, and dihydropyrimidine dehydrogenase (DPYD), among which
ESR1 was linked to MYC, and the two nodes were also highlighted in the TF-target regulation network. SRY-box 9 (SOX9)
was another key TE Hsa-miR-590-3p, hsa-miR-495, hsa-miR-320c¢, and hsa-miR-320d were predominant in the miRNA-
mRNA network. Expression levels of SOX9, DPYD mRNA, miR-495, and miR-590-3p were clearly reduced after X-ray
treatment in irradiated HT-29 cells, whereas that of miR-320d was notably enhanced. SOX9 may be a CRT-sensitive gene in
CRC patients, and hsa-miR-590-3p, hsa-miR-495, and hsa-miR-320d may be CRT-sensitive microRNAs in CRC patients.
Therefore, SOX9, hsa-miR-590-3p, hsa-miR-495, and hsa-miR-320d may be used as sensitive biomarkers in CRC patients..
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Colorectal cancer (CRC) is the fourth leading cause
of cancer-related death globally and the third in the USA
[1, 2], with an estimated 50,310 deaths and 136,830 new
cases in 2014, accounting for 8% and 9% of all cancer
cases, respectively [3]. However, the incidence of CRC has
recently decreased in several countries because of improve-
ments in early detection methods, such as sigmoidoscopy
and colonoscopy [4, 5]. Successful surgery and the use of
advanced neoadjuvant therapies also likely contributed to the
decreased mortality and improved survival rates.

At present, standardized surgery following preoperative
chemoradiotherapy (CRT) with 5-fluorouracil (5-FU) is the
standard therapy for advanced CRC [6]. However, several
studies have reported that after a follow-up period of 46

months, the survival benefit of preoperative CRT diminishes
compared with that of postoperative CRT [7]. Therefore, it
is important to elucidate molecular mechanisms that are
activated after preoperative CRT administration.

Tumor responses to multiple treatments differ among
reports, from complete resistance to complete regression
[7, 8]. Thus, the identification of CRT-sensitive molecular
biomarkers is important to establish clinical guidelines for
CRC treatment. A recent study established an in vitro model
using 12 CRC cell lines exposed to 5-FU-based CRT and
found distinct sensitivities of these cell lines to CRT. Using a
linear model analysis, the study identified 4,796 CRT-sensi-
tive genes, including STAT3, DOK3, and ERBB2, which
are related to cell cycle regulation or involved in the Wnt
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signaling pathway [9]. The use of gene expression profiling
(GEP) from 52 rectal cancer patients receiving preopera-
tive radiotherapy identified 33 crucial genes differentially
expressed among responders and non-responders, and most
were predicted to be associated with cell adhesion, prolif-
eration, and apoptosis [10]. Despite these valuable findings,
neither of these studies considered normal controls. A recent
GEP study by Snipstad et al. on 21 rectal cancer patients with
resectable adenocarcinomas, which included 10 patients who
received preoperative CRT, to determine the different effects
of CRT on gene expression profiles in CRC tumors and
normal controls identified multiple differentially expressed
genes (DEGs) that were mainly associated with cell adhesion
and leukocyte transendothelial migration [11]. Neverthe-
less, potential correlations of these genes, especially at the
transcriptional and protein levels, were not investigated.

MicroRNAs (miRNAs/miRs) play important roles in
responses to CRT for locally advanced rectal cancer [12]. To
date, several key miRNAs have been identified to be dysreg-
ulated in CRC in response to CRT, including miR-125b,
miR-137, miR-21, and miR-143 [13, 14]. Therefore, the GEP
GSE15781 was re-analyzed to identify DEGs in CRC patients
by comparing tumor and normal tissues, as well as tumor
tissues after preoperative CRT and untreated samples, under
the more rigorous criteria of [log , fold change (FC)| > 1 and
false discovery rate of <0.05. The main focus of the present
study was to identify DEGs that were up-regulated in tumor
samples, yet down-regulated in tumor-CRT samples. Enrich-
ment analyses of these DEGs were performed. In addition,
protein—protein interaction (PPI) networks and transcrip-
tion factor (TF)-target regulatory networks were established
to explore potential correlations of these genes at the protein
and transcriptional levels. Importantly, a miRNA-mRNA
regulatory network was established to identify key miRNAs
that targeted these DEGs. Using these comprehensive bioin-
formatics methods, study aimed to provide novel insights
into gene alterations and identify preoperative CRT-sensitive
biomarkers in CRC patients.

Materials and methods

Data resource. A GEP that was deposited in the public
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/
geo) database under the accession number GSE15781 [11]
was downloaded and utilized in this study. Expression
profiling was conducted on 42 samples, consisting of 22 CRC
tumor tissues (non-CRT: n=13; CRT: n=9) and 20 normal
colorectal tissues (non-CRT: n=10; CRT: n=10). All tumor
and normal tissues were collected from 21 patients with
rectal cancer (10 who received preoperative CRT and 11
who underwent only surgery). The platform for GSE15781
was GPL2986 (ABI Human Genome Survey Microarray
version 2). The study protocol was approved by the Regional
Ethics Committee of North-Norway, and written consent
was obtained from all participants.

Pretreatment of the dataset. Raw data in the series matrix
were downloaded to the above platform. A gene expression
matrix was obtained according to the probe annotation infor-
mation. In the conversion process, if more than one probe
corresponded to the same gene, probe values were averaged
to calculate gene expression. Then, gene expression was
normalized with the preprocessCore package in R (http://
www.bioconductor.org/packages/3.0/bioc/html/preprocess-
Core.html) based on the median method.

Selection of DEGs. Following normalization, DEGs
between different samples (normal-CRT vs. normal-non-
CRT, tumor-CRT vs. tumor-non-CRT, and tumor vs.
normal) were assembled according to the Bayesian adjusted
t-statistics in the linear models for microarray analysis
(limma) package of R (http://www.bioconductor.org/
packages/release/bioc/html/limma.html) [15]. Two criteria
(|log, FC|>1 and false discovery rate <0.5) were implemented
to select DEGs for each comparison. Since the aim of this
study was to identify CRT-sensitive genes in tumor tissues,
DEGs in the normal-CRT vs. normal-non-CRT group were
filtered from the crucial gene list. Thereafter, Venn analysis
using the VennDiagram package, a useful tool to generate
high quality Venn diagrams for four sets [16], was used to
identify common DEGs in the remaining two groups. Genes
that were up-regulated/down-regulated in tumor vs. normal
tissues and simultaneously down-regulated/up-regulated in
tumor-CRT vs. tumor-non-CRT samples were regarded as
potential CRT-sensitive genes. Then, two-way hierarchical
clustering analysis was applied for these CRT-sensitive genes
using the heatmap package [17].

Enrichment analysis of DEGs. The Gene Ontology
database (http://www.geneontology.org/), which stores
vast information of gene sets, and the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database (http://www.
genome.jp/kegg/pathway.html), which provides informative
pathways for substantial genes (http://www.genome.jp/kegg/
pathway.html), were used to identify potential functions
and pathways of three sets of DEGs. Then, these sets were
further explored using the Database for Annotation, Visual-
ization and Integrated Discovery online tool (http://david.
abcc. Ncifcrf.gov/), which is based on the hypergeometric
t-test to calculate significance [18]. A probability (p) value of
<0.05 was set as the selection criterion to identify significant
function and pathway categories.

The clusterprofiler package (http://bioconductor.org/
packages/2.8/bioc/html/clusterProfiler.html) was used to
draw enriched pathways to visually display different pathways
of DEGs. Furthermore, to directly identify the functions of
potential CRT-sensitive genes, interconnected biological
networks of biological process categories and KEGG pathway
clusters were integrated using the ClueGO (http://www.ici.
upmc.fr/cluego/) and CluePedia (http://www.ici.upmc.fr/
cluepedia/) plug-ins included with the Cytoscape software
package, with a p-value of <0.05 set as the threshold for the
selection of significant items.
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Establishment of PPI network. Potential protein
interactions of these genes were extracted by integrating
CRT-sensitive genes with information in the Search Tool of
the Retrieval of Interacting Genes database (http://string-db.
org/) [19]. With this selection criterion and combined score
of >0.4, a PPI network was constructed and then visualized
using the Cytoscape software platform to identify complex
networks (http://cytoscape.org/). A node was defined as
a gene-encoded protein in the PPI network. The igraph
package [20] was used to calculate the connectivity of each
node, namely the number of linked proteins in the network,
which was deemed as the degree. Hub nodes were consid-
ered as those with high degree values.

Construction of a transcriptional regulation network.
Based on the TF-target regulatory information in the
TRRUST (Transcriptional Regulatory Relationships Unrav-
eled by Sentence-based Text-mining) database of human
transcriptional regulatory interactions [21], potential TFs of
identified CRT-sensitive genes, as well as target genes, were
identified to build a TF-target network, which was then
visualized using Cytoscape software.

Construction of a miRNA-mRNA regulatory network.
The miRecords (http://cl.accurascience.com/miRecords/),
MiRWalk  (http://mirnablog.com/mirwalk-2-0-available/),
miRanda (http://www.microrna.org/), MirTarget2 [22],
PicTar (http://www.pictar.mdc-berlin.de/), PITA (https://
genie.weizmann.ac.il/pubs/mir07/mir07_data.html), and
TargetScan (http://www.targetscan.org/vert_71/) databases
were used to establish a miRNA-mRNA network with the
prerequisite that all interactions were recorded in at least
three of these databases. Similarly, the network was visual-
ized using Cytoscape software.

Cell culture and treatment. Human colon carcinoma
HT-29 cells were provided by Shanghai Iyunbio Co., Ltd,
(Shanghai, China) and maintained in 90% Dulbecco’s
modified Eagle’s medium (Gibco, Carlsbad, CA, USA) +
10% fetal bovine serum (Gibco) + 1% penicillin/strepto-
mycin (Gibco) at 37°C in a humidified chamber supple-
mented with 5% CO,. Cells were divided into two groups: a
control group (3 samples) and an X-ray treatment group (3
samples). Cells in the X-ray treatment group were irradiated
with a single radiation dose of 4 Gy. All cells in both groups
were harvested 6 h after irradiation.

Real-time quantitative PCR (qRT-PCR). First-strand
cDNA was synthesized using the miRNA First-Strand cDNA
Synthesis Kit (EY001; Shanghai Iyunbio Co., Shanghai,
China). qRT-PCR was performed using the Power SYBR
Green kit (1504490; ABI, Foster City, CA, USA) on an
ABI 7500 FAST real-time PCR system kit (ABI) with the
following cycling parameters: 50 °C for 3 min, 95°C for 3
min, 95°C for 10 s, and 60 °C for 30 s, followed by 40 cycles
of 95°C for 10 s. Melting curve analysis was used to verify
the specificity of the primer amplicons. Target mRNA and
miRNA expression was quantified using the comparative
Ct method and normalized to GAPDH and U6 expres-

Table 1. Primers of each gene and miRNA

Name Primers (5’-3’)

MYC-F TACAACACCCGAGCAAGGAC
MYC-R AGCTAACGTTGAGGGGCATC
ITGA2-F GTGGCTTTCCTGAGAACCGA
ITGA2-R GATCAAGCCGAGGCTCATGT
SOX9-F AACTCCAGCTCCTACTACAGCCA
SOX9-R TCTGCGGGATGGAAGGGA

DPYD-F TGTTCCACTTCGGCCAAGAA
DPYD-R CTCACCAAGAGTCGTGTGCT
miR-495-F TGGTACCTGAAAAGAAGTTGCC
miR-320c-F AAAAGCTGGGTTGAGAGGGT
miR-320d-F TCTAAAAGCTGGGTTGAGAGGA
miR-590-3p-F GCGCGCTAATTTTATGTATAAGCTA
U6-F CTCGCTTCGGCAGCACA

U6-R AACGCTTCACGAATTTGCGT
GAPDH-F TGACAACTTTGGTATCGTGGAAGG
GAPDH-R AGGCAGGGATGATGTTCTGGAGAG

sions, respectively. Primers used in this study are listed in
Table 1.

Statistical analysis. All data are expressed as the mean
+ standard deviation and differences between the two
groups were compared using the Student’s t-test. All statis-
tical analyses were performed using IBM SPSS Statistics for
Windows, version 22.0 (IBM Corp., Armonk, NY, USA), and
results were mapped using GraphPad Prism 5 (GraphPad
Software, San Diego, CA, USA). A p-value of <0.05 was
considered statistically significant.

Results

DEGs in different types of samples. Important DEGs
among different samples were identified in accordance with
the aforementioned selection criteria. There were 398 up-
and 501 down-regulated DEGs in tumor samples compared
with those in the normal tissue controls, and 1,433 up- and
1,168 down-regulated DEGs were identified in tumor-CRT
samples compared with those in tumor-non-CRT samples.
The top 10 DEGs in each group are shown in Table 2. A Venn
diagram showed that 148 genes were up-regulated in tumor
samples and simultaneously down-regulated in tumor-CRT
samples, whereas 111 genes were down-regulated in tumor
samples and up-regulated in tumor-CRT samples (Figure 1).
A heat map of gene clustering analysis of the three sample
types (normal, tumor, and tumor-CRT) is shown in Figure 2.

Enriched functions and pathways of DEGs. Results
showed that 148 genes were up-regulated in tumor samples
and those down-regulated in tumor-CRT samples were
mainly enriched in the functions of cell cycle-related regula-
tion (e.g., mitotic cell cycle process, meiotic cell cycle
process, and regulation of the cell cycle phase transition),
cytokine-associated regulation (e.g., cytoskeleton-dependent



CRT-SENSITIVE BIOMARKERS IN CRC PATIENTS

11

Table 2. Top 10 of DEGs in each group.

Tumor vs. normal up- regulation Tumor vs. normal down- regulation Tumor vs. tumor-CRT up-regulation Tumor vs. tumor-CRT down-regulation

Gene symbol  Adjusted p-value Gene symbol  Adjusted p-value  Gene symbol  Adjusted p-value Gene symbol Adjusted p-value
ETV4 1.57E-04 OTOP2 1.57E-04 FLJ30435 3.03E-07 MPST 1.36E-06
INHBA 3.32E-04 CARD14 1.57E-04 FGF2 3.03E-07 DKFZP4341216 1.36E-06
CHRNA5 3.32E-04 C90rf100 1.61E-04 SELM 3.03E-07 EPHA1 1.66E-06
IFITM1 3.32E-04 SPIB 1.61E-04 BNC2 4.40E-07 CDS1 1.70E-06
KDELC1 3.32E-04 CA7 1.61E-04 EMILIN1 5.28E-07 EPSSL3 2.71E-06
CXCL2 3.71E-04 PDE6A 3.02E-04 FGF7 1.36E-06 ICA1 2.72E-06
Cl2orfl1 4.16E-04 PYY2 3.02E-04 MEIS1 1.36E-06 CDCA2 3.09E-06
IFITM3 4.74E-04 SST 4.46E-04 TPST1 1.36E-06 BRI3BP 3.55E-06
CXCL3 5.36E-04 SLC4A4 4.74E-04 JAM3 1.36E-06 KRTCAP3 3.55E-06
MYC 5.36E-04 PCSKIN 5.25E-04 GYPC 1.36E-06 BDH 3.55E-06
DEGs, differentially expressed genes; CRT: chemoradiotherapy.
tumor irradiated UP tumor irradiated DOWN

tumor vs normal UP

Figure 1. Venn diagram of genes between different comparisons.

cytokinesis and regulation of cytokinesis), and ubiquitin-
protein activity (e.g., regulation of ubiquitin-protein ligase
activity, regulation of ubiquitin-protein transferase activity,
and regulation of ubiquitin-protein ligase activity involved
in mitotic cell cycle) (Supplementary Figure 1). In contrast,
111 genes were down-regulated in tumor samples and
up-regulated in tumor-CRT samples. These genes were
significantly (p<0.05) enriched in the functions of apoptosis-
related categories (e.g., positive regulation of extrinsic
apoptotic signaling pathway and regulation of epithelial
cell apoptotic process) and adhesion-related functions (e.g.,
positive regulation of focal adhesion assembly and regulation
of focal adhesion assembly) (Supplementary Figure 2).

A comparison of the most enriched pathways of DEGs
showed that tumor-induced genes were significantly

tumor vs normal DOWN

correlated with cytokine-cytokine receptor interaction
(p=1.36E-04; genes: CXCL11, CXCL6, CXCL1), the p53
signaling pathway (p=8.29E-03; genes: CCNB1, CCNB2,
SERPINB5), cell cycle regulation (p=6.53E-07; genes: MYC,
CCNB1, PTTG1), and DNA replication (p=2.23E-03;
genes: PRIM1, RFC3, POLD1), whereas down-regulated
genes in tumor-CRT samples were significantly related to
metabolic pathways, cell cycle regulation (p=7.49E-07; genes:
ORC6L, PTTG1, CDC6), DNA replication (p=3.14E-04,
genes: PRIM1, RFC3, LIG1), the PPAR signaling pathway
(p=1.19E-03; genes: SCD, PPARG, PCK2), protein digestion
and absorption, and the p53 signaling pathway (p=1.02E-02;
genes: CCNB1, CCNB2, SERPINB5). Notably, genes involved
in the cell cycle regulation, DNA replication, and the p53
signaling pathway were common in these comparisons,
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suggesting that genes up-regulated in tumor samples
* and down-regulated in tumor-CRT samples were tightly
i.r |. associated with these three pathways (Figure 3, Table 3).
: “ PPI network of CRT-sensitive genes. A PPI network
of 75 nodes was established based on the predefined
parameters (combined score >0.4). Hub nodes with
degrees of >15 in the network were KPNA2 (degree=45),
ITGA2 (degree=27), RACGAP1 (degree=26), MYC
(degree=25), ESR1 (degree=28), dihydropyrimidine
dehydrogenase (DPYD; degree=17), and CXCLI12
(degree=16), of which the first four were up-regulated
in tumor samples and down-regulated in tumor-CRT
samples, whereas the expression of the remaining three

was opposite (Supplementary Figure 3).

Transcriptional regulation network of CRT-sensi-
tive genes. A TF-target transcriptional regulation
network of the 259 CRT-sensitive genes was constructed
using the TF-target information in the TRRUST
database, in which 15 of the 259 genes were TFs [i.e.,
MYC, ESR1, NR3Cl1, ETS2, SRY-box 9 (SOX9), ETV4,
PTTGI1, PROX1, PITX2, MAF, TRIB3, DACHI1, SIM2,
MCM4, and SOXS5]. As revealed in this transcriptional
network, several TFs had numerous targets, including

“ MYC, ETS2, SOX9, ESR1, and NR3Cl1 (Figure 4).

H MiRNA-mRNA network of CRT-sensitive genes.
As a result, a set of 295 miRNAs was selected. In the
miRNA-mRNA network, miRNAs with the greatest
number of targets were hsa-miR-590-3p (targets: MAF,
SIM2), hsa-miR-495 (targets: PDGFD, ETS2), hsa-miR-
320c (targets: CECR1, CCNA2), and hsa-miR-320d
(targets: ESR1, TRAP1) (Figure 5).

Expression of MYC, ITGA2, SOX9, DPYD mRNA,
miR-495, miR-590-3p, miR-320d, and miR-320c.
qRT-PCR results revealed that expression levels of
SOX9, DPYD mRNA, miR-495, miR-590-3p were
clearly reduced in irradiated HT-29 cells, whereas that
of miR-320d was notably enhanced (Figures 9 and 10).
Furthermore, there were no significant differences in
- the expression patterns of MYC, ITGA2, and miR-320c
between the two groups (Figures 6 and 7).
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The results of bioinformatics analyses showed that 259
preoperative CRT-sensitive critical genes were identified
in CRC patients, and most of them were highly corre-
lated with cell cycle regulation, adhesion-associated
processes, and the p53 signaling pathway. ITGA2, MYC,
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Figure 2. Heat map of gene expression levels in normal, tumor, and
tumor-CRT samples. Expression profiles of samples are shown on

ZZZZ the X-axis, whereas gene names are shown on the Y-axis. Genes in

red were up-regulated and those in green were down-regulated.
CRT: chemoradiotherapy.
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Figure 3. Pathway enrichment analysis of DEGs in different samples.
Table 3. Enriched pathways of DEGs.
Pathway term Count Genes p-value
SET1 hsa04110:Cell cycle 16 CDC7, CDC6, TTK, ORC6L, MYC et al. 6.53E-07
hsa04060:Cytokine—cytokine receptor interaction 19  CXCL1,IL6, FLT1, IL8, CXCLS5 et al. 1.36E-04
hsa03030:DNA replication 6 PRIMI, REC3, POLDI, LIG1, RNASEH2A et al. 2.23E-03
hsa04115:p53 signaling pathway 7 CCNB1, CCNB2, SERPINB5, SERPINE1, CHEK?2 et al. 8.30E-03
hsa04512:ECM-receptor interaction 7 COL4A2, COL4A1, CD44, ITGA2, COL1A1, THBS2, SPP1 2.20E-02
hsa04621:NOD-like receptor signaling pathway 6 CXCL1, IL6, IL8, CXCL2, IL1B et al. 2.23E-02
hsa04914:Progesterone-mediated oocyte maturation 7 CCNBI1, MAD2L1, CCNB2, BUB1, ANAPC7 et al. 2.44E-02
hsa03440:Homologous recombination 4 POLD1, BRCA2, RAD54B, RAD54L 3.56E-02
hsa00250:Alanine, aspartate and glutamate metabolism 4 CAD, CPS1, GPT2, PPAT 4.61E-02
hsa00330:Arginine and proline metabolism 5 ODC1, ALDHI1B1, ARG2, NOS3, CPS1 4.89E-02
SET2 hsa04110:Cell cycle 25 CDC6, E2F5, TP53, ORC6L, MYC et al. 7.49E-07
hsa03030:DNA replication 10 PRIM1, RFC3, POLE2, LIGI, POLD?2 et al. 3.14E-04
hsa03320:PPAR signaling pathway 13 SCD, EHHADH, PPARG, PCK2, DBI et al. 1.19E-03
hsa00100:Steroid biosynthesis 6 EBP, CYP51A1, SQLE, DHCR24, FDFT1 et al. 3.33E-03
hsa00480:Glutathione metabolism 10 GSS, GPX2, ODC1, GSR, OPLAH et al. 3.79E-03
hsa00983:Drug metabolism 9 XDH, UGT1A10, CYP3A5, CES2, UGT1AS8 et al. 5.01E-03
hsa00330:Arginine and proline metabolism 10  ODCI, PYCRI, ABP1, GOT1, ACY1 et al. 5.67E-03
hsa00520:Amino sugar and nucleotide sugar metabolism 9 NANS, GMDS, GFPT1, GNPNAT1, HK2 et al. 5.86E-03
hsa04115:p53 signaling pathway 11~ CCNBI, CASP3, CCNB2, SERPINB5, RRM2 et al. 1.02E-02
hsa00512:0-Glycan biosynthesis 7 GALNT3, GCNT3, GALNT7, GALNT6, GALNTS5 et al. 1.03E-02

SET1: Genes up-regulated in tumor samples and down-regulated in tumor-CRT samples; SET2: Genes down-regulated in tumor samples and up-
regulated in tumor-CRT samples. CRT: chemoradiotherapy. Count: Gene numbers enriched in a specific pathway category.

ESR1, and DPYD were the most striking nodes in the PPI
network. Notably, MYC and ESR1 were also highlighted
in the TF-target regulation network, whereas SOX9 was a
crucial TF in the transcriptional network. Interestingly, MYC

was enriched in the cell cycle-related pathways and ITGA2 in
the extracellular matrix (ECM)-receptor interaction pathway.
SERPINB5 was dramatically enriched in the p53 signaling
pathway and was indirectly linked to the crucial node DPYD.
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Figure 4. The TF-target network of 259 CRT-sensitive genes. Diamond represents TFs and rectangle denotes targets. Blue represents genes/TFs up-
regulated in tumor samples and down-regulated in tumor-CRT samples, and purple represents genes/TFs down-regulated in tumor samples and up-
regulated in tumor-CRT samples. CRT: chemoradiotherapy, TF: transcription factor.

The MYC oncogene encodes the TF c¢-MYC, which addition, the deregulated expression of c-MYC could result
regulates the cell cycle in tumor development. ¢-MYC is  in abnormal tumor cell proliferation and immortalization
associated with metabolic alterations during tumorigen-  [24]. MYC is induced by the activation of the Wnt/f-catenin
esis and induces energy metabolism in cancer cells [23]. In  pathway, which plays an important role in CRC progres-
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Figure 5. A miRNA-mRNA regulatory network of 259 CRT-sensitive genes. Diamonds represent miRNAs and circles represent genes. Blue represents
genes up-regulated in tumor samples and down-regulated in tumor-CRT samples, and purple represents genes down-regulated in tumor samples and
up-regulated in tumor-CRT samples. CRT: chemoradiotherapy.

sion [25]. More recently, the Desmoglein 3 (DSG3) gene  DSG3 contributes to cancer cell growth via mediation of the
was identified as a prognostic target in rectal adenocarci-  DSG3-plakoglobin-TCF/LEF-MYC/CCND1/MMP signaling
noma patients receiving preoperative CRT [26]. Report-  pathway [28]. These findings collectively imply that MYC is
edly, plakoglobin serves as an inhibitor of the Wnt/B-catenin  linked to DSG3, which may also be sensitive to preopera-
signaling pathway, and DSG3 knockdown reportedly facili-  tive CRT. The results of the present study showed that MYC
tates the inhibitory effect of plakoglobin [27]. Furthermore,  was up-regulated in tumor samples, but down-regulated in
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Figure 6. Expression levels of (A) MYC, (B) ITGA2, (C) SOX9, and (D)
DPYD in HT-29 cells with and without X-ray treatment, as assessed using
qRT-PCR. *p<0.05. qQRT-PCR: real-time quantitative polymerase chain
reaction.

tumor-CRT samples and significantly enriched in cell cycle-
related pathways. Additionally, MYC was a hub node in both
PPI and TF-target networks.

The integrin subunit alpha 2 (ITGA2) gene is associ-
ated with cell adhesion, and ECM and plays an important
role in CRC development [35]. The protein is abundant
in the extracellular vesicles of primary CRC SW480 cells
compared with those of metastatic SW620 cells [36]. More
importantly, a recent study found that ITGA2 is a candidate
gene for the prognosis of locally advanced rectal cancer in
response to preoperative CRT [37]. These findings strongly
supported our prediction that ITGA2 is a CRT-sensitive gene
that is up-regulated in tumor samples and down-regulated
in tumor-CRT samples. Additionally, activation of ITGAI, a
paralog of ITGA2, is enhanced by ¢-MYC in CRC [38]. In
accordance with this result, ITGA2 was linked to MYC in the
predicted PPI network. However, mRNA levels of MYC and
ITGA2 in HT-29 cells were not obviously affected by X-ray
treatment, possibly because the cells used in the present study
were only irradiated with a single radiation dose of 4 Gy and
harvested 6 h after irradiation, whereas patients (GSE15781)
received 50 Gy delivered in 25 2-Gy fractions over a 5-week
period. Therefore, we speculated that the genes associated
with cell cycle regulation and cell adhesion were not affected
by the single radiation dose or the relatively short cell culture
duration. Thus, further studies are warranted to determine
whether MYC and ITGA2 can be used as therapeutic targets
for CRC patients after preoperative CRT.

The Wnt pathway controls the proliferation of crypt cells
and plays a key role in CRC onset and progression [39].
SOX9 is a member of this pathway that maintains epithelial
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Figure 7. Expression levels of (A) miR-495, (B) miR-590-3p, (C) miR-
320d, and (D) miR-320c in HT-29 cells with and without X-ray treat-
ment, as assessed using qQRT-PCR. *p<0.05, ***p<0.01. qRT-PCR: real-
time quantitative polymerase chain reaction.

homeostasis in the crypts. Hence, SOX9 deregulation could
alter cellular activities that contribute to colorectal carcino-
genesis [40], as SOX9 mutation has been reported in CRC
samples [41]. However, to our knowledge, no study has yet
investigated the response of SOX9 to CRT. Based on these
findings, SOX9 was predicted as a crucial CRT-sensitive TF
that was up-regulated in tumor samples and down-regulated
in tumor-CRT samples, whereas the expression of this gene
was clearly reduced in irradiated HT-29 cells, suggesting that
SOX09 is a possible novel preoperative CRT-sensitive gene in
CRC patients.

DPYD is involved in various pathways, including purine
metabolism and drug metabolism [42]. In advanced CRC,
haplotype polymorphisms of DPYD are predictive of severe
toxicity of the drug capecitabine [43], suggesting that altered
gene expression of DPYD is potentially CRT-sensitive. In the
present study, this gene was a crucial node in the PPI network
that was down-regulated in tumor samples and up-regulated
in tumor-CRT samples, whereas DPYD mRNA levels were
down-regulated in irradiated HT-29 cells. As a possible expla-
nation of this finding, the patients in the study of Snipstad et
al. received capecitabine (Xeloda; Roche, Basel, Switzerland)
at 825 mg/m? two times per day during the entire radiation
period. Thus, we speculated that DPYD was a CRT-sensitive
gene in CRC patients who received capecitabine treatment
via a drug metabolism pathway. Nonetheless, further studies
are needed to validate these predictions.

Regarding miRNAs, hsa-miR-590-3p is reportedly
up-regulated in CRC [47]. The microarray analysis results
showed that hsa-miR-495 was also increased in CRC stromal
tissue compared with normal stromal tissue [48].In the present
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study, the expression levels of miR-590-3p and miR-495 were
down-regulated in irradiated HT-29 cells. However, neither
has been identified as a CRT-related miRNA. Hsa-miR-320
was predicted as a regulator of CDC42 expression, which is
involved in G1 arrest and inhibition of CRC cell invasion
[49]. Notably, the results of an in vitro experiment indicated
that miR-320 enhanced the sensitivity of human CRC cells
in response to CRT via targeting FOXMI, an important
regulator of the cell cycle, tumor cell invasion, and apoptosis
[50]. Consistent with these observations, the results of the
present study showed that the miR-320d expression level
was enhanced in irradiated HT-29 cells and hsa-miR-590-3p,
hsa-miR-495, and hsa-miR-320d were major miRNAs in
the regulation of CRT-sensitive DEGs, suggesting that they
might also be CRT-sensitive in CRC patients.

There was a major limitation to this study, as the sensi-
tive genes and miRNAs were only identified in human colon
carcinoma cell lines. Therefore, further studies with larger
sample sizes are needed to verify these results.

In conclusion, several sensitive genes, such as SOX9
and DPYD, in response to preoperative CRT were identi-
fied in CRC patients that may function via the mediation of
pathways related to cell cycle regulation, the Wnt/B-catenin
and p53 signaling pathways, and drug metabolism. Hsa-miR-
590-3p, hsa-miR-495, and hsa-miR-320d may be sensitive
to preoperative CRT in CRC patients. Therefore, SOX9,
hsa-miR-590-3p, hsa-miR-495, and hsa-miR-320d may be
useful as sensitive biomarkers of CRC.

Supplementary information is available in the online version
of the paper.
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based on a microarray dataset
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Supplementary Figure 1. Functional enrichment analysis of 148 genes up-regulated in tumor samples and down-regulated in tumor-CRT samples. The
abscissa represents the ratio of the numbers of up-regulated genes enriched in the GO term to the total number of genes in that GO term. The Y-axis
represents the name of GO-term and the numbers in the figure indicate the up-regulated gene numbers enriched in the GO term. CRT: chemoradio-
therapy.
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Supplementary Figure 2. Functional enrichment analysis of 111 genes down-regulated in tumor samples and up-regulated in tumor-CRT samples.
CRT: chemoradiotherapy. The abscissa represents the ratio of the numbers of down-regulated genes enriched in the GO term to the total number of
genes in that GO term. The Y-axis represents the name of GO-term and the numbers in the figure indicate the down-regulated gene numbers enriched

in the GO term.
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Supplementary Figure 3. Protein-protein interaction network of 259 CRT-sensitive genes. Blue circles represent genes up-regulated in tumor samples

and down-regulated in tumor-CRT samples, whereas purple circles represent genes down-regulated in tumor samples and up-regulated in tumor-CRT
samples. CRT: chemoradiotherapy.



