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ABSTRACT
BACKGROUND: FUS reduces the proliferator factors such as cyclin D1 and Cdk6, and increases Cdk and p27. 
Therefore, FUS prevents the growth of prostate cancer cells.
METHODS: This review tried to summarize data about FUS gene expression in correlation with the degree of 
prostate cancer. To fi nd the relevant studies, the search in PubMed, Science Direct, and Scopus were performed.
RESULTS: Increasing the expression of FUS decreases and increases the rate of apoptosis of prostate cancer 
cells, respectively. In fact, FUS reduces the proliferator factors such as: cyclin D1 and Cdk6, and increases 
Cdk (an anti-proliferation factor) and p27 (a proliferative inhibitory factor). Therefore, FUS prevents the growth 
of prostate cancer cells. An immuno-histochemical analysis showed that FUS gene expression had an inverse 
correlation with the degree of prostate cancer, which suggests that patients with higher levels of FUS are more 
likely to survive and less likely to have bone pain.
CONCLUSION: The key to FUS is the signaling of the androgen receptor and the progression of the cell cycle 
in prostate cancer. Based on these fi ndings, we might be able to consider exogenous expression of FUS as a 
treatment for prostate cancer (Fig. 1, Ref. 32).
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Introduction

The prostate gland is a small gland located below the bladder 
and covers the upper portion of the urethra. In developed coun-
tries, prostate cancer is the second most common cancer (after skin 
cancer) and the second leading cancer (after lung cancer) in men. 
Prostate malignancies were shown in 1 out of 6 people.

Epidemiological studies (epidemiology) showed that heredi-
tary factors contribute to this disease in 10 % of the cases (1, 2). 
The highest occurrence of prostate cancer was found in African 
population and the lowest numbers were found in the Asian popula-
tion. Several studies were conducted on family history of prostate 
cancer. The main reason for this study is to investigate the involved 
genes. Prostate cancer is a disease, in which malignant cells pycno-
cline from prostate tissues erratically and increasingly proliferate 
and lead to an increase in prostate gland size (3).

It is estimated that more than 300,000 new cases are discov-
ered every year, of which 41,000 defi nitely lead to death (3). Due 
to the high incidence of this disease in each community, special 

attention to timely diagnosis and also effective treatment seems 
necessary.Prostate cancer is almost invariably dependent on the 
androgen receptor (AR) pathway, which,when activated, stimu-
lates cell proliferation. Androgen receptor (AR) is required for the 
survival and growth of prostate cancer cells.

Prostate cancer is almost invariably related to the Androgen 
Receptor (AR) pathway, androgen receptor is a member of the 
receptor family of transcription factors. As soon as it is bonded 
to the androgen, the transcript of the androgen receptor regulates 
the target gene expression (4).

This receptor is activated when cell proliferation is stimulated. 
Several factors are involved in the progression of the cell cycle, 
which is regulated in response to androgens, for example, cyclin 
D1 increase (7‒5). The endogenous amino zone (NTD) of the an-
drogen receptor is essential for the activity of both the ligand and 
the unrelated receptor ligand (8). However, none of these cases 
of prostate cancer are treated with LHRH. Although the hormone 
blocks the production of androgens or anti-androgens, binds to AR 
and keeps it in an inactive state, this treatment is initially success-
ful, later the treatment is failing and the tumor progresses. Most 
of the evidence illustrates that the receptor still grows in these 
conditions (9). 

Androgen receptor (AR) is associated with survival and growth 
of prostate cancer cells. At fi rst, it seemed that progressing prostate 
cancer could be treated with eradication of androgens.

Unfortunately, this treatment eventually fails, and the disease 
leads to death, which is called a castration resistant prostate can-
cer (CRPC). However, ongoing follow ups in the development 
of drugs can be useful for improving the understanding of the 
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protein-protein interactions, which are involved in AR. In this re-
gard, considering the genes involved in prostate cancer and inter-
actions with the androgen receptor can lead to new and effective 
therapies in the future.

One of the new genes which are mentioned in this regard, 
is FUS RNA binding protein. This gene, characterized by FUS, 
is a kind of protein encoding gene. Also known as TLS, ALS6, 
ETM4, FUS1, POMP75 and HNRNPP2 (11). The gene encodes 
a multifunctional protein consisting of non-homogeneous nuclear 
ribonucleolase complex (hnRNP).

The hnRNP complex is involved in interacting with the pre-
mRNA and sending out of the mRNA product to the cytoplasm. 
This protein belongs to the FET family of RNA-binding proteins 
that play a role in cellular processes including the gene expres-
sion, genome protection, and the mRNA / microRNA process [10].

Methods for review

An extensive search was performed in PubMed, Science Di-
rect, Scopus and Google scholar to identify clinical and animal 
studies on the Structure and Function of FUS gene in prostate can-
cer published from inception up January 15, 2018. Search terms 
were (“prostate cancer” AND “FUS” AND “androgen receptor” 
AND “cyclin D1”). The search was performed in titles and ab-
stracts that were restricted to articles published in English and 
sometimes French languages. All titles, abstracts, and full texts of 
potentially relevant studies were assessed for eligibility. 

In this study, we mention the structure and function of the FUS, 
then review the related article, while explaining the various studies 
that have been done in the past few years, study the association 
of this gene with prostate cancer and the mechanism involved in 
this fi eld. At the end, we give a fi nal conclusion.

Structure and function of the gene

This gene (FUS) has 16 introns and 15 exons with16p11.2 
chromosomal position, which is presented in Figure 1 (10).

Mutation in the FUS gene causes Amyotrophic Lateral Scle-
rosis (ALS) in 2009 (11, 12). In ALS disease, motor neurons have 
problems and lead to obstacle in muscle and movement control, 
at the end patient is unable to move (13). Approximately, about 
40 mutations have been reported, most of which were present in 
the second richest G and C-terminal NLS-containing region. The 
P525L mutation in the FUS is associated with the primary attack 
in ALS, in contrast, the subsequent attack of ALS is due to the 
R521C mutation in the FUS gene. Although the mutation in the 
FUS is responsible for only a small percentage of ALS (4.3 %), 
the FUS protein is a common cytoplasmic component in an ALS 

that is unrelated to SOD1 (most ALS cases are due to mutations 
in SOD1). The common FUS mutations that cause ALS include 
R521C (11, 12, 14), R521H (11, 12), H517Q (15), R521S (16), 
R514S (11), and R521L (15). . All of the FUS mutations occur 
in Axon 15 (16).

Also, the mutation S462F has recently been reported and re-
cently known one polymorphism called Q210H, all associated with 
ALS. It has been suggested that ALS is associated with single nu-
cleotide polymorphisms (SNPs) in various genes such as FUS (17).

The FUS encodes a multi-functional protein that requires the 
pre-mRNA interconnections (18), has a stable chromosome (19), 
expands the cell (20), and transcribes (22, 21).

The gene is member of a protein cell group called FET / TET. 
This family of proteins includes Fused in Sarcoma (FUS) / Trans-
located in LipoSarcoma (TLS), EWig, Sarcoma Protein (EWS), 
TATA binding protein-Associated Factor, and TAF15. FET proteins 
showed various functions including transcriptional combinations, 
binding, cell propagation, and DNA modifi cation.

FET proteins have similar transcriptional active domains 
(TADs) at the end of the second amino acid (NTD) and have a 
main form of detected RNA (RNA recognition motif or RRM) and 
repeat the RGG tripeptide at the end of their carboxyl (23, 24). It 
has been shown, that FUS have interaction with DNA banding- 
domains (DBDs) of retinoid X receptors, estrogen, thyroid, and 
glucocorticoid receptors (25).

FUS bonding to other DBDs of hormone receptors does not 
interfere with DNA bonding activity, although the role of the FUS 
in its transcriptional activity has not been clear (25).It has also been 
shown that FUS has a strong active transfer site that is function-
ally active in the prostate cancer cells (4).

Gene and cancer correlation ‒ mechanism and review of re-
search

As stated, the AR target is involved in the growth of prostate 
cancer cells therefore is valuable in recognition of new therapies. 
On the other hand, the FUS reduces a target protein of AR in re-
sponse to androgen. Increasing the expression of FUS signifi cantly 
delayed growth of androgen-caused prostate cancer cells both in 
in-vivo and in-vitro.

Regulation of expression of several factors, which are involved 
in the cell cycle (such as cyclin D1), FUS effect on them, prevents 
the entry into the G1 phase and the activation of apoptosis. Thus, 
the FUS illustrate tumor suppression characteristics.

Brooke et al (26) performed a proteomic imaging of LNCaP 
of the prostate cancer cell following stimulation with androgen 
and results showed a decrease in FUS expression at the level of 
RNA and protein.

Perrotti et al (27) showed that FUS was regulated at the pro-
tein level by c-jun, and Velasco et al (28) reported that c-jun was 
regulated by androgen. In support of these fi ndings, Brooke et al 
(26) observed an increase in c-jun protein after eight hours of an-
drogen injection. Whereas FUS decreased with increasing c-jun, 
scientists assumed that androgen might reduce FUS by increas-
ing c-jun. However, c-jun suppression did not have an effect on Fig. 1. FUS chromosome position.



Bratisl Med J 2018; 119 (10)

660 – 663

662

the decrease in androgen receptors associated with FUS. Scien-
tists concluded that reducing FUS in response to androgens was 
done at the transcriptional level (26). As FUS levels decreased by 
increasing androgen receptors, scientists assumed, FUS might be 
a suppressor of prostate cancer. In LNCaP cells, it was observed 
that FUS expression signifi cantly prevented cell growth and this 
is because the FUS expression causes inhibition of the G1 phase 
and apoptosis increase (26).

It has been shown that AR played an important role in regulat-
ing regulatory factors in development of the cell cycle, especially 
in development of G1 / S, since androgen depletion can inhibit G1 
(29). According to these fi ndings, Brooke et al (26) reported that 
in LNCaP cells followed the elimination of androgens, prevented 
from entering the G1 phase, while the addition of androgen led to 
an increase in number of progressive cells to S and G2 / M phases. 
In any case, the increased expression of FUS blocked the effect 
of androgen and prevented the G1 phase and also increased the 
number of the G1 subtypes.

Increasing activity of caspases and division of PARP confi rmed 
that this G1 subtypes contained apoptotic cells, consequently, FUS 
increased apoptosis in prostate cancer cells (26).

The analysis of the cell cycle regulators showed that manipu-
lation of FUS levels affected the expression of several important 
factors, especially cyclin D1, CDK 6 and P 27 in the G1 / S stage. 
It has been shown that cyclin D1 and P27 were targets for andro-
gen, which caused an increase in cyclin D1 and a decrease in P 
27 and also the  prolongation of G1 stage (29‒31). It has also been 
observed that the expression of exogenous FUS resulted in a de-
crease in expression of cyclin D1 and increase in the expression 
of P 27, which suggests that FUS inhibits G1 and thus inhibits 
androgenetic proliferation, which is partly through mediation of 
cyclin D1 and P 27 factors.

FUS directly uses the CCND 1 regulatory area encoding the 
cyclin D1 by stranded noncoding RNA (ncRNA) that is transcribed 
from different locations in the / 5 upstream region.

This effect results in interference with the complex transcrip-
tional complexion, and hence the expression of cyclin D1 decreases 
(27). The cyclin D1 regulation has been observed in response to 
increasing or decreasing FUS at the level of RNA.

Brooke et al (26) showed that FUS levels were regulated by 
androgens, and Canduson et al (32) showed that reduction of their 
cyclin D1 was an androgen receptor suppressor. Therefore, there is 
a complex interaction between FUS, androgen receptor and cyclin 
D1, which should be further investigated in the future. However, 
it has been shown that the manipulation of FUS levels affected 
multiple levels of regulatory protein in the cell cycle, and it has 
been shown that FUS might be a vital link between androgen sig-
naling and cell cycle progression.

Information from both the laboratory and the human body has 
shown that FUS has anti-tumor features (26).

FUS expression in the prostate tumor samples is correlated 
with the degree of prostate cancer, and patient information analy-
sis showed that patient with higher FUS levels had the chance of 
more survival and lower bone pain (a major cause of illness in 
Prostate cancer patients) (26).

Therefore, the lack of FUS expression might be important 
in the progression of the disease. Although increased levels of 
FUS have reduced tumor growth, with a deletion of FUS induc-
ing expression, tumor growth has increased again, while the FUS 
repression has reduced tumor volume by one-half a week (26).

Conclusion

Androgen signaling reduces FUS and subsequently increases 
the growth of prostate cancer cells as the result of important regu-
latory factors in the progression of the cell cycle. 

In the same vein, FUS expression declines in the advanced 
stage of prostate cancer, therefore, loss of FUS may increase an-
drogen signaling and subsequently increase the growth of prostate 
cancer cells. However, increased expression of FUS in the human 
body reduces tumor growth and prevents the G1 stage and increases 
apoptosis in prostate cancer cells.

Perhaps FUS induces this effect through the reductive effect 
on cyclin D1 and an increasing effect on P27. Therefore, FUS 
manipulation can be considered as a treatment for prostate cancer. 
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