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Inhibition of cytochrome P450 by proadifen diminishes 
the excitability of brain serotonin neurons in rats
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Abstract. The aim of this study was to investigate the effect an inhibitor of cytochrome-P450, proad-
ifen hydrochloride (SKF525), on the excitability of serotonin neurons. Adult male Wistar rats were 
administered SKF525 forty-eight, twenty-four, and one hour before electrophysiological assessments. 
Control animals were injected saline. Rats were anesthetized with chloral hydrate and glass electrodes 
were stereotaxically inserted into the dorsal raphe nucleus (DRN). Serotonin neurons were identified 
and their firing activity was recorded. It was found that the SKF525 inhibits the excitability of 5-HT 
neurons. We suggest that corticosterone might play a key role in the SKF525-induced inhibition of 
5-HT neurons. 
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Cytochrome-P450 (CYP) is a superfamily of microsomal and 
mitochondrial enzymes which catalyze oxidation of various 
endogenous and exogenous biological molecules, such as 
steroid hormones, arachidonic and fatty acids, catechola-
mines, lipid-soluble vitamins, various medications including 
antidepressant drugs, and carcinogens (Rendic 2002; Munro 
et al. 2018). CYP irreversibly metabolizes corticosterone into 
6β-corticosterone in rodents and cortisol into 6β-cortisol in 
humans (Peng et al. 2011). 

Brain serotonin (5-HT) system consists of 5-HT-secreting 
neurons, located in several brain nuclei, such as rostral, 
median, and dorsal raphe nucleus (DRN). The axons of 
these neurons innervate various areas of the central nervous 
system. The 5-HT neurons of the DRN densely innervate the 
limbic areas of the brain and play a key role in depression, 
anxiety, and in response to antidepressant drugs (Pavlovicova 
et al. 2015).

Brain 5-HT neurotransmission regulates hepatic CYP 
activity, and vice versa. The selective lesion of 5-HT neurons 

or inhibition of 5-HT synthesis led to a robust activation 
of the hepatic CYP (Kot and Daniel 2011). An injection 
of a 5-HT precursor 5-hydroxytryptophan into the lateral 
cerebral ventriculi increased brain 5-HT concentrations 
and diminished the activity of CYP in the liver (Rysz et al. 
2016). It was found that rats with higher hepatic CYP activity 
had also higher brain monoamine oxidase A (MAO-A, an 
enzyme metabolizing the 5-HT) activity and reduced 5-HT 
levels in the plasma (Tseilikman et al. 2016). Finally, CYP 
inhibitor proadifen hydrochloride (SKF525) was reported 
to reduce MAO-A activity (Kozochkin et al. 2016). Since 
CYP is inhibited by literally all antidepressant drugs (Nassan 
et al. 2016; Ornoy and Koren 2018), and since brain 5-HT 
system is one of their primary targets of therapeutic action, 
interaction between CYP inhibition and excitability of brain 
5-HT neuron is of special interest. The aim of the present 
study was to investigate the effect of the CYP inhibition by 
SKF525 on the excitability of 5-HT neurons of the DRN, 
using in vivo electrophysiology.

Adult male Wistar rats (200–250 g) were ordered from the 
Breading Facility of the Institute of Experimental Pharma-
cology and Toxicology, Centre for Experimental Medicine, 
Slovak Academy of Sciences (Dobrá voda, Slovakia) and 
housed in a temperature-controlled room (22–24°C) with 
a 12:12 hours light-dark cycle, and had ad libitum access to 
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food and water. All experimental procedures were approved 
by the Animal Health and Animal Welfare Division of the 
State Veterinary and Food Administration of the Slovak 
Republic (Permit number Ro 3054/17-221/3) and conformed 
to the Directive 2010/63/EU of the European Parliament 
and of the Council on the Protection of Animals Used for 
Scientific Purposes. Rats were allowed to acclimatize for 
one week after their arrival in our animal facility. SKF525 

was ordered from Abcam (Cambridge, UK) and dissolved 
in saline. To achieve the steady-state inhibition of the CYP, 
the rats received three intraperitoneal (i.p.) injections of 
SKF525 (25 mg/kg): forty-eight, twenty-four, and one hour 
before electrophysiological assessments. Control animals 
were injected saline using the same protocol.

One hour after the last saline or SKF525 injection, rats 
were anesthetized with chloral hydrate (Sigma-Aldrich, 
0.4 g/kg, i.p.) and mounted into the stereotaxic frame (David 
Kopf Instruments, Tujunga, CA). Rat body temperature was 
maintained at 37°C with a  heating pad (Gaymor Instru-
ments, Orchard Park, NY, USA). The scalp was opened 
and a  3  mm hole was drilled in the skull for insertion 
of electrodes. Glass-pipettes were pulled with a  DMZ-
Universal Puller (Zeitz-Instruments GmbH, Martinsried, 
Germany) to a fine tip approximately 1 μm in diameter and 
filled with 2 M NaCl solution. Electrode impedance ranged 
from 7 to 8 MΩ. The pipettes were lowered into the DRN, 
7.8–8.3 mm posterior to bregma and 4.5–7.0 mm ventral 
to brain surface (Paxinos and Watson 2014), by a hydraulic 
micro-positioner (David Kopf Instruments, Tujunga, CA). 
Serotonin neurons were identified by their regular, low-
frequency (less than 5 Hz) firing rate and positive bi- or 
tri-phasic action potential of the total duration of 2.0–5.0 ms 
and cumulative duration of depolarization and repolariza-
tion phases of 0.8–1.2  ms, as described in the previous 
studies (Aghajanian and Vandermaelen 1982; Dremencov 
et al. 2017) and recorded for at least two minutes using the 
Power Lab data acquisition system and Lab Chart software 
(AD Instruments, Dunedin, New Zealand). 

We found a  significant (p = 0.03, two-tailed Student’s 
t-test) 18%-decrease in 5-HT neuronal firing activity in 
SKF525-administered rats (1.75 ± 0.12 Hz, 119 cells from 
7 rats) in comparison to controls (2.14 ± 0.14 Hz, 97 neurons 
from 8 rats; Fig. 1). The mean number of the spontaneously 
active 5-HT neurons per electrode track was not statistically 
different between the groups (SKF525: 5.67 ± 0.95; control: 
3.69 ± 0.57; p = 0.08, two-tailed Student’s t-test).

As a  potent CYP inhibitor, SKF525 was previously re-
ported to increase the plasma levels of corticosterone in 
rats (Magus et al. 1968). On the other side, corticosterone 
inhibits the excitatory glutamatergic input to 5-HT neurons 
of the DRN (Wang et al. 2012). It is therefore possible that 
corticosterone mediates, at least in part, the inhibitory effect 
of SKF525 on brain 5-HT neurons. 

It was previously reported that the suppression of 5-HT 
neurons by intra-DRN injection of γ-aminobutyric acid 
(GABA) induced depression-like behavior in mice (Xiao 
et al. 2017). It is possible that the partial inhibition of 5-HT 
neurons by SKF525 have a depressogenic effect as well. It was 
indeed reported that SKF525 reversed the antidepressant-
like behavioral effect of imipramine and desipramine in rats 
(Maj et al. 1981).

Figure 1. Effect of SKF525 on the excitability of 5-HT neurons. A. 
Representative recording from a 5-HT neuron from the DRN of 
a control rat. B. Representative recording from a 5-HT neuron from 
the DRN of an SKF525-adminstered animal. C. Summary effect cal-
culated from 97 neurons from eight control rats and 119 neurons from 
seven SKF525-adminstered rats. * p < 0.05, two-tailed Student’s t-test. 
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Brain 5-HT system is a target of literally all antidepres-
sant drugs and liver CYP is their major metabolizer. As CYP 
substrates, antidepressants inhibit CYP activity (Nassan et 
al. 2016; Ornoy and Koren 2018). Since CYP suppression 
attenuates 5-HT neurotransmission, the inhibition of this 
enzyme by antidepressants may interfere with their primary 
therapeutic effect. 

The main limitations of this study are the using of a non-
selective CYP inhibitor and non-distinguishing between 
brain and hepatic CYP inhibition. In the future studies, the 
effect of the selective inhibitors of the specific CYP subtypes, 
such as CYP3A1, CYP3A2, CYP3A4 and CYP3A5, which 
are fundamental in glucocorticoid metabolism (Peng et al. 
2011), should be tested. 
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