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EXPERIMENTAL STUDY

Induction of miR-31 causes increased sensitivity to 5-FU and 
decreased migration and cell invasion in gastric adenocarcinoma
Korourian A1, Madjd Z1,2, Roudi R2, Shariftabrizi A3, Soleimani M4,5

Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University 
of Medical Sciences, Tehran, Iran. zahra.madjd@yahoo.com

ABSTRACT 
Drug resistance is the main obstacle in the treatment of gastric cancer, the third most common cause of can-
cer-related death in the world. Due to their small size, easy entrance to cells and multiple targets, microRNAs 
(miRs) are considered novel and attractive targets. In the current study, parental MKN-45, MKN-45-control vec-
tor, and MKN-45-miR-31 populations were compared in terms of cell cycle transitions, migration, cell invasion, 
and proliferation. In addition, downstream targets of miR-31, including E2F6, and SMUG1 were examined using 
Real-time RT-PCR and western blotting. MKN-45-miR-31 showed an increased sensitivity to 5-FU, decreased 
migration and cell invasion compared to the control groups (p = 0.0001, p = 0.01 and p = 0.01, respectively). 
There was a signifi cant increase in the percentage of cells in G1/pre-G1 phase in MKN-45-miR-31 relative to the 
control groups (p = 0.001). Induction of miR-31 expression in MKN-45 caused a signifi cant reduction of E2F6 
and SMUG1 genes. Our fi ndings indicated that induction of miR-31 expression could increase drug sensitivity, 
and diminish tumor cell migration and invasion of gastric cancer cells. Therefore, miR-31 can be considered as 
a potential target molecule in the targeted therapy of gastric cancer (Fig. 2, Ref. 43). Text in PDF www.elis.sk.
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Introduction

Gastric cancer is the third most common cause of cancer-as-
sociated death, thus accounts for a considerable burden of global 
cancer-related mortality and morbidity (1, 2). The overall survival 
rate of gastric cancer has improved resulting from earlier surgical 
intervention, and chemo/radiotherapy regimens; however the vast 
majority of patients eventually develop drug resistance, recur-
rent disease and distant metastasis (2, 3). Therefore, fi nding new 
strategies for potentiation of the current therapeutic approaches or 
potential target molecules is an urgent clinical necessity. 

MicroRNAs (miRNAs) are small non-coding RNA (20–22 
nucleotides) involved in RNA silencing and post-transcriptional 
regulation of gene expression. In the last decade, miRNAs have 
been the focus of many research projects considering their role 
in tumorigenesis, drug resistance, invasion, metastasis and tumor 
relapse (4). Emerging evidence indicates that co-administration 

of miRNAs with conventional chemotherapy drugs increases their 
anti-cancer effects (5–8). Co-administration of miR-200c and 
chemotherapeutic drugs enhances the therapeutic effects of these 
regimens on clear cell renal cell carcinoma (5). In addition, over-
expression of miR-7 increases the sensitivity of cisplatin-resistant 
breast cancer cells to cetuximab and also non-small cell lung cancer 
cells (NSCLC) to paclitaxel (6, 9). It is also shown that restoration 
of miR-143 and miR-145 expression results in the re-sensitization 
colorectal cancer cells to cetuximab (10). 

miR-31 may act as oncomiRs by targeting tumor suppressor 
genes or as tumor suppressor miRs by targeting oncogenes in a 
tissue-dependent manner (11). The preliminary studies indicated a 
strong association between decreased expression of miR-31 with 
advanced stage, lymph node metastasis and poor survival in gastric 
cancer (12, 13). A more recent experiment showed that induction 
of miR-31 by targeting of E2F2 can decrease the viability of gas-
tric tumor cells, reduction of tumor cell invasion, and inhibition of 
in vivo tumorigenesis (13). Up-regulation of miR-31 by targeting 
integrin α5 (ITGA5) is shown to suppress the invasion and me-
tastasis in SGC7901 gastric tumor cells (14). Additionally, Ruom-
ing and co-workers demonstrated that increase in miR-31 through 
SGPP2, Smad4 and STAT3 molecules can result in the inhibition 
of cell proliferation and migration and increase in apoptosis (15). 

Our recent immunohistochemical analysis showed the E2F6Low/
SMUG1High expression pattern is associated with poorly differenti-
ated tumors and with the omental involvement in gastric adenocar-
cinoma (16). In addition, the RhoAHigh/SMUG1High phenotype was 
more often found in poorly differentiated gastric adenocarcinoma 
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clinical tumor samples. In the following study, induction of miR-31 
caused an increased sensitivity to 5 fl uorouracil (5-FU), inhibition 
of cell proliferation and invasion compared to the parental gas-
tric adenocarcinoma cells, which are mediated by suppression of 
RhoA expression (17). E2F6, a member of E2F family, is targeted 
by Wnt signaling pathway and can act as a brake on the cell cycle 
progression (18). Up-regulation of E2F6 is more frequently found 
in gastric cancer compared to normal tissues (19). Base excision 
repair (BER) pathway is triggered by SMUG1, as DNA glyco-
sylase, which eliminates non-bulky damaged bases after 5-FU 
chemotherapy treatment (22). Based on our previous study and 
new potential target molecules of miR-31, the current study was 
conducted to analyze the tumor-promoting effect of miR-31 on 
the malignant phenotype of gastric adenocarcinoma cells possibly 
through the E2F6 and SMUG1 downstream molecules.

Materials and methods 

Cell lines and culture conditions
The gastric adenocarcinoma cell lines AGS (NCBI Code: 

C131) and MKN-45 (NCBI Code: C615) as well as human embry-
onic kidney cells (HEK 293) (NCBI Code: C497) were purchased 
from the Pasteur institute, Tehran, Iran. The cell lines were grown 
in DMEM medium (GIBCO) supplemented by 10% fetal bovin 
serum (FBS), 100 units/mL penicillin, and 100 mg/mL strepto-
mycin in 37 °C incubator. 

RNA extraction, cDNA synthesis, and quantitative RT-PCR 
Total RNA was extracted from MKN-45-miR-31 or the con-

trol groups using RNX-plus solution (Cat No. RN7713C, Cin-
naGen Inc., Tehran, Iran) using the manufacturer’s instructions 
(23). cDNA synthesis was performed using a kit for mRNA syn-
thesis (Cat No. K1641, Fermentas Life Sciences, Germany) and 
Expand™ Reverse Transcriptase (Cat No. 11785826001, Sigma-
Aldrich, USA) for miRNA synthesis. The real-time PCR reac-
tions were carried out using a Rotor-Gene 6000 system (Corbett, 
Concorde, NSW, Australia) and the data were normalized with 
the reference genes SNORD47 for miR-31 and β-actin for E2F6 
and SMUG1(24). In all experiments, we compared the MKN-45-
miR-31 (termed “test”), MKN-45-control vector (termed “con-
trol”) and parental MKN-45 (termed “control”). 

Retroviral transduction and GFP expression assay 
For induction of miR-31, HEK293 cells were transduced 

with psPAX2, pMD2G, and pLEX-miR-31 or pLEX-control (Bon 
Yakhteh Cell Bank, Tehran, Iran). Purifi ed lenti-miR-31 and len-
tiviruses containing control vector were used for transduction of 
MKN-45 cells. After that, transduced cells were exposed to puro-
mycin for 24 h and the transduction effi ciency was assessed by the 
visual analysis of GFP expression under a fl uorescence microscope.

Viability and proliferation of MKN-45 miR-31-expressing cells 
Effect of 5-FU on the viability and proliferation of the test 

(MKN-45-miR-31) and the control groups (MKN-45-control vec-
tor and parental MKN-45 cells) was evaluated using the MTT 

assay. For this purpose, 1 × 10 4 cells from each population were 
seeded in 96-well plates and treated with a wide range of 5-FU 
(0.5, 1, 2, 4, 8 and 16 nanomolar) concentrations for 48 h.

Cell cycle analysis using fl ow cytometry 
The test or the control group cells were harvested, washed with 

phosphate-buffered saline (PBS) and the single cell suspensions 
were fi xed in 70 % ethanol. Subsequently, these cells were stained 
using propidium iodide (PI) staining solution, containing PI (50 
mg/L), RNase A (1 g/L), and 0.1 % Triton X-100. Finally, the cell 
cycle analysis was performed using a fl uorescence-activated cell 
sorting (FACS) fl ow cytometer (Partec, Germany) and the results 
were analyzed using FlowJo software (Tree Star, Ashland, OR) (25). 

Cell migration and invasion assay
Examination of cell migration was undertaken using transwell 

inserts with a pore size of 8 μm (SPL, cat number: CBA-100, Life 
Bioscience, Korea). For this purpose, 3 × 105 cells from each cell 
population were plated in the upper chamber and incubated for 
24 h. Subsequently, the media in the lower chambers were col-
lected and the cells in the chambers were harvested and counted. 

For investigation of cell invasion, transwell inserts coated 
with Extracellular Matrigel Matrix (ECM, cat number: ECM550, 
Sigma-Aldrich, USA) were used. Briefl y, 3 × 105 cells/well from 
the test or the control groups were plated and after incubation for 
24 hr, the invaded cells at the bottom of the fi lters were counted. 

Western blotting 
The effect of miR-31 induction on E2F6 and SMUG1 protein 

expressions were assessed using western blotting. For this purpose, 
the protein was extracted from the three cell lines using RIPA buf-
fer containing a protease inhibitor. Equal amounts of whole cell 
lysates from each group were separated by SDS-PAGE; the sepa-
rated proteins were transferred to nitrocellulose membrane and 
incubated with the primary antibodies against E2F6 (ab152151, 
Abcam, Cambridge, UK), SMUG1 (ab11572, Abcam, Cambridge, 
UK), and β-actin. Primary antibodies were detected using second-
ary anti-rabbit or anti-mouse IgGs linked to horseradish peroxi-
dase and then visualized using the ECL detection kit (Amersham, 
Life Science, USA). 

Statistical analysis
Data were analyzed using the SPSS software version 20 us-

ing one-way ANOVA method (SPSS, Chicago, IL, USA). All the 
results are expressed as the mean ± standard error. For all the 
analysis, a two-sided p-value of less than 0.05 was considered 
statistically signifi cant. RT-qPCR results were analyzed using 
REST®2009 software.

Results

Low expression of miR-31 in MKN-45 cells compared to AGS cells 
Expression levels of miR-31 in both cell lines, MKN-45 and 

AGS, were evaluated using quantitative real-time RT-PCR. The 
expression of miR-31 was signifi cantly lower in MKN-45 cells 
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compared to AGS cells, so MKN-45 was used for transduction of 
miR-31 (Fig. 1a). 

Stable miR-31 expression in MKN-45 cells 
Stability of MKN-45 transduction with miR-31 was confi rmed 

by the observation of green color in more than 85 % of cells un-
der a fl uorescence microscope. Validation of miR-31 expression 
using qRT-PCR assay showed a signifi cant up-regulation of this 
transcript in MKN-45-miR-31 cell population compared to the 
MKN-45-control vector (p = 0.01) and parental MKN-45 cells 
(p < 0.001). 

Expression of miR-31 increases sensitivity of MKN-45 cells to 5-FU 
The effects of 5-FU on MKN-45 cells stably transduced by len-

ti-miR-31 or the control vector and the parental MKN-45 cells were 

determined using MTT assay. Stably transduced MKN-45 cells with 
pLEX-miR-31 displayed more obvious sensitivity to 5-FU than 
the control groups (p=0.0001), whereas we did not fi nd signifi cant 
difference between the two control groups (p = 0.098) (Fig. 1a). 

Overexpression of miR-31 decreased cell proliferation, migra-
tion, and invasion of MKN-45 cells 

To understand the probable roles of miR-31 on cell cycle, we 
examined three populations. Percentage of cells in G1/pre-G1 
and S phases in MKN-45 cells expressing miR-31 displayed a 
signifi cant difference relative to the control groups (p < 0.001), 
while all the groups showed similar cell distribution in G2 phase 
(p = 0.28) (Fig. 1b).

Our analysis demonstrated a decreased migration ability in 
MKN-45 cells expressing miR-31 than the control groups (p = 
0.01), whereas there was no signifi cant difference between the 
control groups (p = 0.99) (Fig. 1c). In addition, cell invasion analy-
sis revealed a signifi cantly lower invasion capability in MKN-45-
miR-31 cells (p = 0.01), but not between the control subgroups 
(p = 0.75) (Fig. 1d). 

Decreased expression of SMUG1 and E2F6 genes in MKN-45-
miR-31 cells

The effect of miR-31 induction on E2F6 and SMUG1 ex-
pressions was assessed using qRT-PCR. Our analysis showed a 
down-regulation of SMUG1 in MKN-45-miR-31 compared to the 
MKN-45-control vector and parental MKN-45 cells (p < 0.001 
and p < 0.001, respectively). Furthermore, expression of E2F6 
was signifi cantly lower in the test group compared to the control 
groups (Fig. 2a). 

Fig. 1. The effect of miR-31 on the sensitivity of MKN-45 to 5-FU, cell 
proliferation, invasion, migration. (a) miR-31 increased the sensitiv-
ity of MKN-45 cells to 5-FU compared to control groups. (b) miR-31 
decreased cell proliferation, (c) migration (d) invasion.

a

b

c d

Fig. 2. The effect of miR-31 on E2F6 and SMUG1 expressions. Com-
parison of E2F6 and SMUG1 expressions in MKN-45-miR-31 com-
pared to MKN-45-control vector and parental MKN-45 in terms of (a) 
genes using qRT-PCR and (e) protein using western blotting analysis 
(From left to right: MKN-45-miR-31, MKN-45-control vector and 
parental MKN-45).

a

b
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Down-regulation of SMUG1 protein expressions in MKN-45-
miR-31 cells

Expression of SMUG1 and E2F6 proteins were examined 
using western blotting. MKN-45-miR-31 cells showed a signifi -
cant decrease in SMUG1 protein expressions compared to MKN-
45-control vector and parental MKN-45 cells, whereas there was 
no signifi cant difference in E2F6 protein expression between the 
test and the control groups (Fig. 2b).

Discussion 

Gastric cancer ranks as the third leading cause cancer asso-
ciated-death worldwide (1). The alarming trend of gastric cancer 
incidence rates is the most likely the result of the two facts: diag-
nosis of disease in advanced stages and drug resistance (26). Re-
sistance to conventional chemo/radiotherapy regimens is a major 
obstacle in curing gastric cancer (27). 

Alternations of signaling networks are evident in several ma-
lignant tumors. Importantly, elimination of cancer cells and cancer 
stem cells (CSCs) through aberrant specifi c pathways provides a 
new approach for targeted therapy. Wnt signaling pathway is a 
conserved network in CSCs, a subset of cancer cells, which exhibit 
tumor initiation capacity, metastasis, recurrence as well as drug 
resistance (28, 29). Base excision repair (BER) is major pathway 
in repair of DNA damages induced by cellular metabolism. Acti-
vation of Wnt signaling cascade recruit E2F6 and Ras homolog 
gene family, member A (RhoA), two main downstream molecules 
(29, 30). E2F6 encodes a transcriptional repressor that inhibits 
apoptosis and plays a key role in resistance to cisplatin (30, 31). 
Elevated expression of several members of the E2F family, includ-
ing E2F6, has been demonstrated in gastric cancer samples using 
transcriptome and proteome analysis. (19). Furthermore, infection 
of normal gastric cells with Helicobacter pylori cause production 
of infl ammation and subsequently ROS induces DNA damage, 
which leads to the activation of different DNA repair pathways, 
such as: base excision repair (BER) (28, 41, 42). SMUG1 is , a key 
enzyme of BER pathway that encodes a single-stranded selective 
monofunctional uracil DNA glycosylase in the G1-S transition 
of the cell cycle (22). SMUG1 molecule can detach the 5-FU (a 
main component of many chemotherapeutic regimens in gastric 
adenocarcinoma patients) from DNA and confer drug resistance to 
gastric cancer cells (43). Immunohistochemical analysis of a panel 
of BER pathway molecules in gastric cancer patients showed high 
SMUG1 expression in specimens from patients with advanced-
stage tumors and poor survival (41). 

In a prior study, we examined the expression levels of E2F6, 
RhoA, and SMUG1 molecules and their correlations in gastric ad-
enocarcinoma patients using tissue microarray-based immunohis-
tochemistry (16). We showed E2F6Low/SMUG1High and RhoAHigh/
SMUG1High indicative of aggressive tumor phenotype in gastric 
adenocarcinoma (16). In the current study, we examined the bio-
logical role of miR-31 in regulating E2F6 and SMUG1 molecules 
as well as cell proliferation, drug resistance, and invasion in gas-
tric cancer cells. In a pioneer study, down-regulation of miR-31 

was found in gastric cancer compared with adjacent normal tis-
sues (12). In another study, Ruoming and co-workers showed low 
expression of miR-31 in gastric cancer specimens from patients 
with stages III/IV tumors and distant metastasis (15). In addition, 
the same authors showed that miR-31, by targeting Smad4 and 
SGPP2, diminished gastric cancer cell invasion and progression 
(15). A recent report indicated that down-regulation of miR-31 
in gastric cancer tissues correlated with advanced tumor stage, 
lymph node metastasis and poor survival (13). The same group 
also showed induction of miR-31 expression in gastric cancer cells 
by inhibiting E2F2 (13). In yet another study, Zhang et al have 
demonstrated that miR-31 can suppress cell invasion and tumor 
progression through an integrin α5 mediated mechanism (14). 

Conclusions

In summary, induction of miR-31 expression can result in 
increased drug sensitivity, decreased cell migration, and also in 
invasion of gastric cancer cells. Therefore, miR-31 may be consid-
ered as a potential target for the targeted therapy of gastric cancer.
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