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Effect of temperature on plant elongation and cell wall extensibility
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Abstract. Lockhart equation was derived for explaining plant cell expansion where both cell wall 
extension and water uptake must occur concomitantly. Its fundamental contribution was to express 
turgor pressure explicitly in terms of osmosis and wall mechanics. Here we present a new equa-
tion in which pressure is determined by temperature. It also accounts for the role of osmosis and 
consequently the role of water uptake in growing cell. By adopting literature data, we also attempt 
to report theoretically the close relation between plant elongation and cell wall extensibility. This 
is accomplished by the modified equation of growth solved for various temperatures in case of two 
different species. The results enable to interpret empirical data in terms of our model and fully 
confirm its applicability to the investigation of the problem of plant cell extensibility in function of 
environmental temperature. Moreover, by separating elastic effects from growth process we speci-
fied the characteristic temperature common for both processes which corresponds to the resonance 
energy of biochemical reactions as well as to the rapid softening of the elastic modes toward the 
high temperature end where we encountered viscoelastic and/or plastic behavior as dominating. By 
introducing analytical formulae connected with growth and elastic properties of the cell wall, we 
conclude with the statement how these both processes contribute quantitatively to the resonance-
like shape of the elongation curve. In addition, the tension versus temperature “phase diagram” for 
a living plant cell is presented.
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Introduction

Growth of plants belongs to the one of the most complex 
physiological processes in plants (Fogg 1975; Kutschera 2000 
and papers cited therein, see for a review), and is based on 
irreversible extension of the whole organism due to the in-
crease in the quantity and size of cells, the mass of protoplast 
and the cell walls (Cosgrove 1986, 1987, 1993). The plant 
growth is influenced by physical (abiotic) and biotic factors 
of environment (Wright 1966; Trewavas 1991; Edelmann 
1995). The external factors which fundamentally influence  
plant growth are temperature, light, water and soil factors 
(e.g. pH), and atmosphere composition.

The development of plant cells is comprised of two inter-
related processes, growth and differentiation. The growth can 

be described in three steps: a) cell cycle – when new cells are 
formed, b) cell elongation, and c) cell maturation – cessa-
tion of cell enlargement. In b), the juvenile cells vacuolate, 
take up water and expand by irreversible yielding of the 
growth-limiting primary walls. Two independent physical 
processes, e.g. water absorption and cell wall yielding result 
in time-irreversible cell enlargement at a given temperature. 
A qualitative description of plant cell elongation was elabo-
rated firstly in the mid-60’s in the form of a simple (first 
order in time) ordinary differential equation by Lockhart 
(1965a). However, its main disadvantage was the absent 
environmental temperature at which growth takes place, 
as well as the lack of possible influence of above mentioned 
environmental factors like growth stimulators/inhibitors, 
constant pressure or light. In the present paper, we attempt to 
fulfil this absence and focus on the deficient theoretical abi-
otic aspects of growth (we consider only temperature here). 
Introducing temperature by thermodynamical reasoning and 
putting forward a fairly simple but very efficient and fruitful 
model ascribing possible influence of environmental tem-
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perature, noticeable progress toward theoretical derivation 
of a temperature-modified growth equation was made. We 
utilize the new idea that the often-described dependence of 
elongation rate on temperature displays clear “shape analogy” 
with the dependence of the output amplification factor of 
a harmonic oscillator submitted a range of forcing pulsation, 
also called the resonance curve for a damped driven linear 
oscillator. Indeed, the experimental data on maize seedlings 
elongation (coleoptile segments) could be fitted convincingly 
by such equation if the forcing ω is replaced by temperature 
τ and the amplification factor by total elongation (Pietruszka 
et al. 2006, 2007).

The results presented in this article partly stay in agree-
ment with the conclusion obtained by Nakamura et al. (2002) 
who suggest that the environmental temperature modulates 
the growth rate by affecting mainly the mechanical properties 
of the cell wall. According to the scenario presented in this 
paper, based on our theoretical calculations strictly bound 
with experiments performed by the group of Nakamura 
et al. (2002), we agree with the point of view presented by 
Proseus et al. (1999) that the growth is not controlled only 
by inert polymer extension but rather by the variety of 
biochemical processes with the pronounced sensitivity of 
growth to temperature. Since these authors involve relatively 
high temperatures (exceeding 40°C) in their experiments, it 
should have also been taken into account in the developed 
theory. Indeed, the proper term responsible for the mem-
brane leakage and loss of turgor at high temperature end 
appears in our equations.

In the present paper we concentrated on derivation of 
temperature-modified equation of growth and on finding its 
specific solutions by linearization procedure. We combined 
experimental and theoretical results based on the separation 
of elastic effects from growth and summarized our results in 
the “phase diagram”. The high temperature limitation and the 
validity of our model is also discussed: when temperature is 
high, cell membrane tends to be leaky and turgor tends to be 
lost; then it is impossible for cells to expand without turgor 
at high temperature.

Temperature-modified equation of growth

General discussion

Most of plant growth results from cell enlargement in lo-
calized growing regions. Due to the complexities of these 
systems, Lockhart (1965a,b) modeled the growth of single 
cells surrounded by water. He also assumed that the cell walls 
behaved as inert polymers stretched by pressure P exceeding 
turgor Y, and that the wall biosynthesis is independent of 
growth. Ortega (1985, 1990) extended the Lockhart treat-
ment to account explicitly for the elastic properties of the 
wall. However, both time-dependent equations describing 

the elongation of a plant cell resulting from a dynamic bal-
ance between the water uptake and the cell wall yielding 
should in principle include another external factors like 
growth stimulators/inhibitors, the influence of light and, 
especially, temperature. Hence, as a differential equation 
taking growth temperature dependence into account, we 
propose the following model as an extension of the Lock-
hart one

                 
 (1)

where Pint – Y stands for hydrostatic pressure in excess of 
turgor threshold and V denotes the cell volume. Pint, Pext 
denote internal and external pressure, respectively. The 
right-hand side of Eq. (1) is linked to the growth rate by the 
extensibility coefficient Φ = Φ(T) (we stress that the original 
form of the Lockhart equation does not contain the tem-
perature dependence altogether). The latter term in Eq. (1) 
ascribes the presence of Pext = Fext/S where Fext is the applied 
force and S denotes a surface cross-section perpendicular to 
the force direction. So, in the framework of our theoretical 
model, we are also able to provide a concise description of 
the action of the external force (pressure) onto the elonga-
tion and, consequently, to examine the cell wall mechanical 
properties (see also Fig. 1).

To solve Eq. (1), we should first know the Pint depend-
ence on temperature (Y = const.). Solution for this problem 
is given in thermodynamics by a state equation which pro-
vides a mathematical relationship between two or more state 
functions associated with matter, such as its temperature, 
pressure, volume, or internal energy. Here we apply the state 

P  V T

Environment

Plant cell

T

F=P   Sext

water uptake

int

Figure 1. Scheme of the “gedanken experiment” set-up: movement 
of a piston in a cylinder reflects the extensibility properties of a cell 
wall. Both the water uptake and temperature influence constitutes 
the internal turgor pressure Pint. The external pressure acting on 
plant cell is represented by the applied force F. The whole system 
(the living cell) is immersed into a thermostat (environment) at 
a temperature T.
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equation in the following form1: Pint = Y + γT/V and γ is 
a constant dependent on density of water solution filling up 
the cell interior (it also includes the universal gas constant 
R). Considering Eq. (1) as only consisted of the Lockhart 
term, we obtain the linear solution V = V0 + ΦγTt where 
V0 = V(t0 = 0) for its unperturbed form2. (Indeed, also the 
actual experiments indicate linear growth). By inserting the 

state equation into Eq. (1) we receive (the detailed derivation 
of Eq. (2) can be found in the Appendix)

 
  
    

 (2)

where V0 stands as usual for the initial cell volume. Since ex-
perimental data suggest linear time dependence of V (in the 
ascending range in the well known sigmoid growth curve in the 
case of four days coleoptiles or epicotyles) we may approximate 
the exponent in Eq. (2) eΦPext t~–       1 + ΦPext t (for full justifica-
tion, see the last paragraph in the Appendix) to obtain

                  (3)

Therefore, the elongation function reads

       (4)

To conclude, such obtained elongation function is param-
eterized not only by temperature (in continuous manner) 
but also by the applied external pressure3 Pext.

Separating elastic effects from growth

This part of our study is undertaken to determine whether 
growth can be distinguished from elastic deformation when 
plants enlarge. Both processes are always present but they 
occur together and are superimposed on each other when 
plant becomes larger. Nevertheless, they are fundamen-
tally different because growth results from irreversible 
enlargement whereas elastic extension is not permanent 
and reverses when the deforming force is removed. The 
literature data (Proseus et al. 1999) stress that the elastic 
deformation is independent of growth as it also occurs in 
mature cells. Even though growth at low temperature is 
eliminated, however, it does not alter elastic effects. The 
authors emphasize that they have performed such experi-
ments that allowed subtracting elastic deformation from 
elongation that resulted in the fact that growth could be 
distinguished. Following this idea, we undertake in our 
study a problem how to establish a physical model, which 
can report on above-mentioned features. In our opinion, 
it can be accomplished by the assumption that the exten-
sibility coefficient Φ responsible for growth and the elastic 
properties of the cell wall consists of two terms

                        (5)

1  It is evident that in more precise calculations one should solve 
Eq. (1) for subsequent reciprocal powers of the volume V by the 
iteration method. Such extension would be even more adequate 
nonetheless also more complicated. However, high accuracy in 
case of biological experiments, where we deal with relatively high 
statistical error, is superfluous. The method based on making rea-
sonable simplifying assumptions that allows for analytical solutions 
which yield clear interpretations is always the best to start with. Such 
methodology (here utilized) is commonly accepted in science. In 
this paper, we follow the reasoning concerning the introduction of 
temperature via the equation of state as in Stanley (1971).

2  The integration of Eq. (1) can be accomplished since, similar 
to the original Lockhart approach, the parameters appearing 
in this equation are time-independent. We also follow this line 
considering Φ(T) as also constant in time which is commonly 
accepted typical treatment, see also Cosgrove (1985).

3  It is worth stressing that based on experimental data for the elonga-
tion at low temperature range we observe vanishing of this mag-
nitude while approaching 0°C. In accordance with Eq. (5) also the 
cell wall extensibility coefficient Φ should reach zero since we have 
Φ(T) = Elong/(γT + V0 Pext )t. Let us notice that the denominator 
is always positive even for Pext = 0 (no added pressure).

Figure 2. Plot of the cell wall extensibility coefficient Φ(τ) (solid 
line), “growth component” Φ0(τ) (dashed line) and “tensile com-
ponent” Φ1(τ) (dotted line) as functions of temperature. Plots of 
Φ0(τ) and Φ1(τ) are obtained through Eqs. (9) and (10), respectively. 
Both constituents, Φ0(τ) and Φ1(τ), superimposed result in Φ(τ) 
curve. The characteristic temperature τ* common for Φ0(τ) and 
Φ1(τ) functions indicates the critical point of reversible/irrevers-
ible “phase transition”.
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where Φ0 stands for the irreversible (“growth”) coefficient as 
in the original Lockhart equation 1/V dV/dt = Φ0 (Pint – Y) 
while the second (“tensile”) coefficient Φ1 = Φ1(E/E0) reflects 
the cell wall mechanical properties itself and depends on the 
fraction E/E0. The inertial factor E/E0 in Eq. (5) is bound with 
the rheology of cell wall (tensile modulus) and is defined as 
the slope of the stress-strain curve normalized to its value 
at zero temperature. The proposed approach in graphical 
form is presented in Fig. 2. The first term, Φ0, we associate 
with biochemical reactions (with the energy absorption peak 
at the optimum temperature) while the second one, Φ1, is 

attributed successively (with increasing temperature) to the 
elastic/viscoelastic/nonelastic mechanical properties of the 
cell wall. This representation, Eq. (5), is due to the fact that 
according to Proseus et al. (1999) growth is not controlled 
only by inert polymer extension (Φ1) but rather by bio-
chemical reactions with the marked sensitivity of growth to 
temperature (the resonance-like asymmetric Φ0 term). On 
the other side, Φ1 is strictly dependent on E/E0. It is worth 
stressing that the tensile modulus depends on temperature 
because the cell wall does not satisfy the Hook’s law in the 
whole temperature range but obviously only at low tem-

Figure 3. Elongation (A) and extensibility (B) versus temperature 
for rice coleoptiles. Bars denote experimental results obtained by 
Nakamura et al. (2002) (Exp.) while the solid curves result from 
our model (Theory); τm is the measured temperature. The dotted 
line corresponds to the case when the membrane leakage and loss 
of turgor are not considered.

Figure 4. Elongation (A) and extensibility (B) versus tempera-
ture for Azuki bean epicotyles. Bars denote experimental results 
obtained by Nakamura et al. (2002) (Exp.) while the solid curves 
result from our model (Theory); τm is the measured temperature. 
The dotted line corresponds to the case when the membrane leakage 
and loss of turgor are not considered.
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perature end (E0 = E(τ = 0°C)), like the typical amorphous 
materials. Thus E/E0 at low temperatures is almost constant 
(like in the solid state materials) and strongly decreases 
with temperature at a specific transition range (see Fig. 5). 
By inserting Eq. (5) into the Lockhart equation and taking 
into account the relevant considerations from the previous 
section, we receive

 
(6)

Hence, after inserting Pint – Y = γT/V= γ(τ + 273.15)/V 
and integrating Eq. (6), we get the following expression for 
the elongation function

 

                      (7)

The above solution takes into account the existing par-
tition of Φ onto two components: the “growth” and the 
“tensile” one.

Results

Fitting procedure

To make our paper complete, we add some comments 
about the way how we have fitted the adopted empirical 

data (Nakamura et al. 2002) in order to bind them with Eq. 
(7) (see also Figs. 3A, 4A). The model equation4 used for 
the fitting procedure for the elongation function is (for full 
justification, see also Pietruszka et al. 2006, 2007)

 
 (8)

where the function ϑ is defined as follows

  
    
 

and the parameter τML is the temperature at which the loss 
of turgor and membrane leakage processes become domi-
nating. The first term in Eq. (8) is associated with non-dis-
sipative term where the Lockhart equation holds, while the 
second term is bound with dissipative processes occurring 
at high temperatures, e.g. loss of turgor due to leaky mem-
brane and denaturation of its protein components. Even 
though the intuitive explanation for the first term in Eq. 
(8) can be found in the footnote 4, nevertheless it should be 
derived from the first principles. A tempting way to obtain 
such dependence, the authors bind with the application of 
stochastic resonance in biological systems in which random 
perturbations (temperature fluctuations) play a useful role 
in enhancing energy absorption in non-linear systems (the 
whole complexity of basic processes stimulating plant to 
grow). This mathematically very difficult task is presently 

4  By introducing our physical model (see Fig. 1), we are far beyond 
the oversimplified picture where we interpret the movement 
of a piston as only reflecting the compressibility/extensibility 
properties of water solution inside the plant cell. In contrary, 
in such a way we incorporate rather a number of basic chemi-
cal and biochemical processes which accelerate or deceler-
ate growth in function of temperature (kinetics of chemical 
reactions, metabolism, photosynthesis (biomass production), 
protein denaturing, etc.). Because both type of processes act 
simultaneously, however, with different intensity at distinct 
temperature ranges, one should expect a crossover from one 
type of behavior to the other. Thus, there should exist a delicate 
balance among all those factors and consequently a specific, well 
defined critical temperature for which the growth rate is optimal. 
We may justify the choice of such a function in a following way. 
The outlined system (a plant cell) behaves similarly to the most 
systems described by a differential equation where both dis-
sipative and extortive forces are present. In such systems, there 
always exists a variable which is optimal at certain conditions. 
In the case of plants, the factor enforcing the crossover from 
accelerating to decelerating the growth is temperature τ – there 
must exist a critical (“resonance”) temperature τ = τ* of such

 a crossover. Consequently, the plant elongation (in function 
of temperature) may be described by a resonance curve – the 
Lorentz distribution function, however, modified by a factor τ. 
The latter correction is due to the fact that at τ = 0°C, the growth 
must cease altogether. This is also in accordance with the fact that 
the Celsius scale is a natural temperature scale for higher plants. 
Also due to high intensity and steep “onset” of the underlying 
biochemical processes responsible for membrane leakage and 
loss of turgor, the real curve of the temperature dependence 
of plant elongation is not symmetric like the Lorentz distribu-
tion but asymmetric, and this is our case. In the work of Boyer 
(1993), temperature and growth associated with water uptake 
were studied. He found that water permeability in membranes 
and water viscosity were limiting factors for cell elongation at 
relatively lower temperature. Also, considering the “resonance 
temperature” we are very well aware that such magnitude is 
meaningless unless we treat it in the energetic context: multi-
plying temperature by the Boltzmann constant T → kBT. This 
is in accordance with the fact that the optimum temperature 
of growth (“resonance temperature” τ*) corresponds to the 
maximum energy absorption kBT* due to activation of internal 
biochemical processes.
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under study. The parameters α, φ0 and τ* denote the half-
width, height and resonance (optimum) temperature (en-
ergy) of the Lorentz-like distribution, respectively. (Note 
that φ0 should not be confused with Φ0). By comparing 
the first term5 of Eq. (8) with Eq. (7) we receive the cell 
wall extensibility coefficient Φ(τ) which is parameterized 
by external pressure Pext as follows

            
 (9)

where the absolute temperature (in Kelvin scale) T = τ + 273.15. 
The symbol t in this equation should not be confused with 
continuous time but it serves only as a parameter which takes 
on the values from paper of Nakamura et al. (2002): 8 and 6 h, 
respectively for rice and azuki bean. For both cases of rice and 
azuki bean considered in the paper by Nakamura et al. (2002) we 
have obtained two distinct sets of coefficients φ0, α, τ*, λ and τML 
for the elongation function (Eq. (8), see the legends in Figs. 3A, 
4A and compare to Figs. 1A and 2A in Nakamura et al. (2002)). 
All parameters were estimated by the method of non-linear least 
square fitting. The non-linear regression method was based on 
the Levenberg–Marquardt algorithm.

Despite the loss of turgor, caused by the increasing mem-
brane leakage at higher temperatures, we have not omitted 
the high temperature end point at 50°C in this procedure. 
The reason was the authors’ conviction that nonelastic 
properties of the cell wall still remained even though in 
this temperature most of biological processes in plant cease 
altogether (see Figs. 3A, 4A and compare to Figs. 3B, 4B). 
The validity of the asymmetric Lorentz-like fit (Figs. 3A, 
4A) is in fact limited to the temperature region where the 
Lockhart equation holds and this is surely well below the 
high-temperature edge. Nonetheless, the fitting curve would 
be more adequate providing that the data points were more 
dense at least in the supraoptimal region. Our observations 
are also in accordance with other literature data: Ikeda et 
al. (1999) measured growth rates of kidney beans at various 
temperatures together with water potential, osmotic poten-
tial and turgor, and they found that at 40°C turgor was lost 
due to leaky membrane. Additionally, water uptake related 
to cell expansion, was inhibited at the same temperature. 
In the work of Nakamura et al. (2002), the similar behavior 
seemed to be happening at 50°C. If turgor is lost completely 

at high temperature, Lockhart equation will not be valid at 
such temperature any longer. This is the limitation (high-
temperature edge limit) of our Lorentz-like model and the 
reason for the discrepancy as seen in both figures (Figs. 3A, 
4A) at the high temperature end (the solid versus dotted 
plots in Figs. 3A, 4A). Therefore, from the biophysical point 
of view, it is more adequate to choose such a type of fitting 
function which is able to account for the steep decrease in 
plant elongation at high temperature regime. This, however, 
demands some modification of the Lorentz-like non-dis-
sipative term in Eq. (8) by multiplying it by the dissipative 
term which takes into account the loss of turgor due to 
increasing membrane leakage at higher temperatures. The 
appearance of the dissipative term introduces two additional 
parameters, namely λ (which denotes how steep the slope 
is) and τML (the threshold temperature at which the loss 
of turgor is a dominating process affecting the growth, 
mathematically expressed as a value for which the elonga-
tion decreases e ≈ 2.78 times. The values of V0 and t are given 
as input while γ and Pext can be easily calculated. One may 
have doubts as to whether our treatment is adequate and the 
close fits to experimental data notwithstanding. It is worth 
stressing that authors’ performed experiments for Zea mays 
L. (Lewicka and Pietruszka 2006) for more numerous (eight 
temperatures) elongation data also confirmed this analysis. 
An additional remark needs to be made here: the calculated 
maximum is slightly shifted with respect to the experimental 
value, however, it looks as though this is the actual optimum 
temperature at least within the estimated accuracy range 
±1°C. Accordingly, such a fit which delivers the continuous 
Lorentz-like curve is always more exact in estimating the 
optimum temperature than the discrete set of experimental 
values (here measured at every ten degrees).

Figure 5. Phase diagram for plant cell wall and the plot of tensile 
modulus E/E0 versus temperature τ. The characteristic temperature 
τ* is also pointed out. The inset shows the negative temperature 
derivative of tensile modulus.

5  The second term can be omitted here since even though its 
influence onto plant elongation is decisive at high temperatures, 
nonetheless its impact on extensibility features within the same 
temperature regime can be neglected.
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The following step of our considerations focus on me-
chanical properties of the cell wall which are also included in 
Eq. (9). Taking into account the rheological properties of the 
cell wall, we may treat it as a kind of elastic material at low 
temperatures and viscoelastic (amorphous) material above. 
Accordingly, the tensile modulus E/E0 part of Eq. (9) can be 
represented (here as Ansatz, based on the experimental data 
for amorphous materials in Angell and Boehmer (1998), 
Fig. 3; also Sperling (2006), Fig. 1.6) by

 
(10)

where the φ1 = Φ1(E/E0(τ = 0)) parameter stands for the 
height of the curve, α1 decides how steep the slope is, and 
τ* (Tg in Fig. 3, Angell and Böhmer (1998) and in Fig. 1.6, 
Sperling (2006)) specifies the position of the inflection 
point which we assume as exactly the same as the optimum 
temperature in the Lorentz-like distribution (see also Fig. 2). 
The 1/3 factor is due to normalization. These last mentioned 
parameters and φ1 have been fitted to the adopted experi-
mental data (Nakamura et al. 2002) for the extensibility (see 
the legends in Figs. 3B, 4B and compare to Figs. 1B and 2B 
in Nakamura et al. (2002)).

We focus the readers’ attention on the important issue that 
in our description temperature enters the modified Lockhart 
equation in three ways: by a state equation (which causes modi-
fication of the Lockhart term), by the temperature dependence 
of elongation (model Ansatz, Eq. (8)) and by definition of 
a “tensile” component of cell wall extensibility, Eq. (10).

Discussion

In experiments performed by Proseus et al. (1999), the cell 
walls of Chara corallina internodes displayed elastic deforma-
tion which was inevitable consequence of the attached external 
force. This kind of change was observed as parallel to the 
growth to create a complex response of early rapid elongation, 
viscoelastic deformation and steady elongation. The authors 
claimed that because elastic and viscoelastic deformation oc-
curred when the cells were not growing, both could be easily 
separated from the process of growth. As inert polymers dis-
play stable elastic behavior over a considerable temperature 
range, the thermal stability suggests that elastic behavior of 
cell walls is of purely physical nature and can consequently be 
treated by these methods. Such behavior can be expected to 
manifest in all plant cells. According to Proseus et al. (1999), 
the viscoelastic behavior was present in mature cells and was 
independent of growth. They claimed that in contrast to the 
reversible elastic responses, it was largely irreversible and can 
be attributed to a displacement of wall polymers, which was 
not reversed whenever applied force returned to its original 

level. Indeed, the same situation as described in the previous 
paragraph we encounter in our theoretical model, Eq. (9), 
where the first term Φ0 was associated mostly with biochemi-
cal reactions (with the energy absorption peak at τ = τ*) while 
the second one Φ1 was assigned to the elastic/viscoelastic/
nonelastic mechanical properties which reflect the rheology 
of the cell wall. The Lorentz-like shape of the Φ0 from Eq. (9) 
is plotted in Fig. 2 and the short outline about it can be found 
in the footnote 4 or elsewhere (Lewicka and Pietruszka 2006; 
Pietruszka et al. 2006). However, Φ1 in Eq. (9), as presented in 
Fig. 2, is related to the mechanical properties of the cell wall. 
By assuming Eq. (10) we are able to divide the area of Fig. 5 
into three main stripes: a) elastic (reversible), b) viscoelastic 
(largely irreversible) and c) nonelastic (irreversible) in func-
tion of temperature. The reversible elastic component lies 
at low temperatures range where the Hook’s law is merely 
satisfied. Mostly irreversible viscoelastic component spreads 
about the characteristic resonance temperature τ* (absorption 
energy kBT*). The irreversible nonelastic part occupies the 
high-temperature end of our diagram. (Careful reader can 
notice, that we propose a “phase diagram” usually created 
for condensed matter systems for a (living) plant cell). We 
put the temperature τ* as common both for the maximum 
energy exchange (absorption) with environment (Lorentz-
like distribution) and for the maximum rate of change (1/E0 
dE(τ)/dτ reaches its extremal value, see the inset in Fig. 5) 
of the character of the cell wall mechanical properties where 
(exactly at the critical point τ*) the reversible – irreversible 
(temperature driven) continuous phase transition takes place. 
Accordingly, the kink-like shape of the tensile modulus curve 
(Φ1) with the important character change at τ* (reversible/ir-
reversible behavior – the inflection point where the curvature 
changes its sign) and the resonance-like shape of Φ0 with the 
maximum at τ* entitles to think about the growth process in 
the vicinity of “resonance” (optimum) energy kBT* as of about 
a special kind of qualitative “phase transition” taking place in 
a growing plant cell.

Appendix

Notice that for the choice of state equation Pint – Y = γT/V, Y = 
const. the Lockhart equation gives the solution linear in time

 
 (11)

  
 

 
(12)

which satisfies the initial condition V0 = V(t0 = 0). Next, as 
we will see later, the additional constant pressure Pext disturbs 
this linear behavior
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   (13)

We solve Eq. (13) by a standard method. Firstly, we find 
solution for homogeneous equation

                                
  (14)

 (15)

(here we notice that the applied constant pressure implies ex-
ponential growth). Secondly, we perform the constant variation 
(we differentiate Eq. (15) and compare to Eq. (13)) to obtain

 (16)
       

 (17)

The integration constant C has been chosen to satisfy the 
initial condition V0 = V0(t0 ) for t = t0 = 0. Now, by substitut-
ing the “constant” V0 into Eq. (15) we finally get the particular 
solution for the inhomogeneous Eq. (13)

      (18)

Now, if we have good reasons (see the comment beneath) 
to expand the exponent into the linear term exp(Φ Pext t) ≈ 
1 + Φ Pext t, we may eventually receive the solution which 
is linear in time

           (19)

Aiming to justify such approximation, let us calculate the 
order of magnitude for ΦPext: Φ ~ 4 × 10–8 µm s g–1 and 
Pext = mg/S, where m ≈ 10 g, g ≈10 ms–2 = 107 µm s–2, S ≈ 
4 mm2 = 4 × 106 µm2. Thus ΦPext ~ 10–3 h–1. Accordingly, 
the experiment would need to take at least 300 h (≈13 days) 
to cause visible time-exponential behavior of plant growth.
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