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ABSTRACT
OBJECTIVE: Methamphetamine in low doses can increase vigilance and power and at high doses has destruc-
tive effects that cause toxicity and death of various cell lines and affect the central nervous system. Morphine 
has also protective properties, which were observed in low concentrations, for nerve cells and also seem to 
have the ability to reduce cell death in neural cell lines.
MATERIALS AND METHODS: In this study, we used PC12 and U87 cell lines, which grew in DMEM culture 
media. Assays used in this study are listed below: MTT test for cell viability detection, LDH test for cytotoxicity 
measurement, caspase activity colorimetric assay kit (Bio-techne) for caspase 3 activity diagnosis, Rhodamine 
123 for Detection of mitochondrial membrane potential. TUNNEL test for DNA fragmentation, fura-2 for Mea-
surement of (Ca2+) ic and (Ca2+) m. fl uorescence microscope for measurement of antioxidant enzyme activities.
RESULTS: morphine increased cell viability and the rhodamine-123 absorbance. It reduced cell cytotoxicity, 
caspase 3 activity, ic & m Ca2+ concentration, (.OH) generation, and DNA fragmentation in all concentrations of 
1 pM t0 100 nM (p < 0.05) by optimal concentration of 1 pM.
CONCLUSION: morphine as a pain mediator can reduce the methamphetamine-induced cell death, may be 
due to its anti-infl ammatory properties (Fig. 7, Ref. 52). Text in PDF www.elis.sk.
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Introduction

Over the past decades, methamphetamine use has grown as an 
opiate in the world, slowly becoming a major global concern and 
involving 15 to 16 million people since 2007 (1, 2). Methamphet-
amine is known by the names of glass, crystal, ice, speed, and meth 
and it can be smoked, snorted, injected, swallowed, or inserted 
rectally (3, 4). Methamphetamine is inexpensive and easy to use, 
which is why it is rapidly expanding in the world. Methamphet-
amine secretes nerve mediators such as: dopamine, serotonin and 
norepinephrine, which leads to a sense of satisfaction, increased 
consciousness and increased energy in the users. Because of the 
half-life of 12 hours, these effects remain for many hours, more 
than cocaine, but long-term use leads to destructive effects on the 
central nervous system. Respiratory failure, myocardial problems, 

cardiomyopathy and increased risk of hepatitis and HIV viruses 
were observed in long-term amphetamine users (5–10).

Apoptotic genes expression analysis showed that metham-
phetamine can alter these gene expressions in the way of apop-
tosis. Furthermore, studies revealed that this drug by networking 
between mitochondrial, endoplasmic reticulum, and receptor-
mediated apoptosis, can disrupt the striatal enkephalinergic neu-
rons (11, 12). Methamphetamine involves in the JNK/SAPK-c-
Jun Pathway, Mitochondrial Cell Death Pathway, Endoplasmic 
Reticulum (ER)-dependent Death Pathway and FasL/Fas Death 
Pathway (13–18).

Morphine as a member of the narcotic analgesics family af-
fects the central nervous system and is used to treat pain. Mor-
phine half-life is 1.5–7 hours and its products are available in 
oral form (tablets and capsules), injectable (intravenous, sub-
cutaneous and muscular) and of course, it can also be inhaled 
(19–21). There is evidence that morphine in low dose can protect 
Oxidant-Induced Injuries and cell death in neuronal cell lines 
of human models by inhibition of glycogen synthase kinase-3β 
(GSK-3β). In this regard, many pathways are involved such as: 
phosphatidylinositol 3-kinase (PI3K), the target of rapamycin 
(TOR), JAK/STAT and the NO/cGMP/PKG pathway (19, 22–24). 
On the other hand, morphine was introduced as an antioxidant 
due to the reduction of the ROS production (25). The inhibitory 
effects of morphine, in low dosages, at the disruptive effects of 
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methamphetamine on nerve cell lines have not yet been tested. 
Therefore, in this study, we intended to calculate the protective 
power of morphine on the U87, a human primary glioblastoma 
cell line (26) and also in the PC12 cell line, derived from a pheo-
chromocytoma in adrenal medulla of the rat treated (27) with 
methamphetamine simultaneously. U87 is a common cell line 
that is used in many central nervous system studies. Therefore, we 
continued our studies on this cell line. On the other hand, meth-
amphetamine causes cell death (28). Due to the opposite effects of 
methamphetamine and morphine on signaling pathways leading 
to apoptosis and ROS production, we suggested that by exposing 
different concentrations of morphine to a constant concentration 
of methamphetamine in the U87 and PC12 cell lines, we can see 
the protective effect of morphine on methamphetamine-induced 
cell death. By measurement of the cell cytotoxicity, cell viabil-
ity, and apoptotic sings such as: intracellular and extracellular 
Ca2+ concentrations, we aimed to investigate the  correctness of 
this issue.

Materials and methods

Cell culture 
DMEM culture media (Gibco) was used for PC12 and U87 cell 

growth. 10 % fetal bovine serum (FBS, Gibco), 1 % non-essential 
amino acid (NEAA, Sigma), 2 mM L-glutamine (Sigma), 100 IU/
ml penicillin (Sigma), and 100 μg/ml streptomycin (Sigma) were 
used as supplement in T-25 cm2 tissue culture fl asks. The cultures 
were incubated at 37 ºC in 5 % CO2 medium and it was repeated 
once in two days. In the time of 70 to 80 % confl uency, the cell 
cultures were trypsinated using trypsin-EDTA 0.25 % (Sigma) 
and were subcultured at a density of 1×104 cells/well in 24-well 
culture plates.

Cell treatment 
The PC12 and U87 cells were washed with PBS in pH 7.4, the 

day after plating the cells. There were seven treatments for PC12 
cells and seven treatments for U87 cells by the same concentra-
tion of methamphetamine and morphine, including; control: cul-
ture medium, Treatment 1: 1mM methamphetamine, Treatment 
2: 1 mM methamphetamine/1 pM morphine, Treatment 3: 1 mM 
methamphetamine/10 pM morphine, Treatment 4: 1 mM metham-
phetamine/100 pM morphine, Treatment 5: 1 mM methamphet-
amine/1 nM morphine, Treatment 6: 1 mM methamphetamine/10 
nM morphine, and Treatment 7: 1 mM methamphetamine/100 nM 
morphine. Then, the cells were placed in the incubator at 37 °C 
with 5 % CO2. The cells were cultured in DMEM culture medium 
containing 0.2 % BSA.

Cell viability (%) measurement (MTT assay) 
In this study, the cell viability was quantifi ed by MTT assay. 

In this regard, 15×103 cells were loaded into a 96-well plate and 
200 μL of DMEM media, which contains 0.2 % BSA was added. 
After 24h incubation, 200 μL of each treatment media was added 
to the wells. The cells were separately incubated with different 
treatment media for 24 hours. 

Cell cytotoxicity measurement
Cell cytotoxicity was quantifi ed in this study by LDH Cytox-

icity Detection Kit (Roche, Germany).

Caspase-3 assay
PC12 and U87 cells were cultured in the different treatment 

media condition. The caspase activity colorimetric assay kit (Bio-
techne) was used for the measurement of treated cells lysates 
caspase-3 activity according to the manufacturer’s protocol and 
using a plate reader.

Detection of mitochondrial membrane potential (MMP)
MMP was measured using the cell permeable cationic fl uores-

cence probe rhodamine 123, for quantitative analysis. In summary; 
PC12 and U87 cells 3×10 4 cells/well were cultured and treated in 
different treatment media. Next, the cells were washed with PBS 
and incubated by 1 μM rhodamine 123 for 30 min at 37 °C in the 
dark. Then, an ELISA Reader was used for measurement of cells 
absorbance at 488 excitation and 525 nm emission. The reference 
wavelength was more than 630nm. All the experiments were repli-
cated independently at least three times. Within each experiment, 
we replicated each condition four times. 

Fig. 1. The effects of different treatments on the cell viability of the 
U87 and PC12 cells. A: For U87. B: for PC12 cell cultures. All data 
represented by the mean ± S.E.M (p < 0.05).

A

B
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Quantifi cation of apoptosis incidence
Fixation for all cells in this study was performed by 4 % 

w/v paraformaldehyde in PBS with pH = 7.4 for 10 min at room 
temperature. For identifi cation of the apoptotic cells by TUNEL 
(Terminal Uridine deoxynucleotidyl transferase dUTP Nick End 
Labeling) staining, we used an in situ cell death detection kit 
(Roche), based on manufacturers protocol.

Measurement of (Ca2+) ic and (Ca2+) m
Measurement of intracellular (Ca2+) ic and mitochondrial (Ca2+) 

m calcium concentration was carried out on the base of previous 
studies (29). 

(Ca2+) ic values were calculated using the equation described 
by Grynkiewicz (30). Relative (Ca2+) m was measured with the 
fl uorescent probe Rhod 2-AM following methods described pre-
viously (31).

Measurement of antioxidant enzyme activities
Antioxidant enzyme activities and protein damage assay were 

carried out on the base of previous studies (32). Briefl y, in order to 
visualize intracellular ROS, cells were incubated with treatment 
media for 24 h, and then washed three times with Krebs–Ringer–

Hepes (KRH) buffer, and cells were incubated for 1 h at 37 °C. 
Fluorescence (Ex. 490 nm and Em. 525 nm) was visualized using 
a fl uorescence microscope.

Results

Cell culture
Cell Viability (%)

Different concentrations of morphine and constant metham-
phetamine concentration was added to the PC12 and U87 cell 
cultures, so, after 24h, MTT assay was used for the cell viability 
measurement. Control treatments showed 99 % of cell viability 
as the result in both cell lines. In treatment 1, 1 mM of metham-
phetamine caused all the cells to die, so 0 % of cell viability was 
clear in both treatments. Results showed that exposure of the cells 
to the 2–7 treatment media decreased the cell viability of these 
treatments compared to the control cells (p < 0.05). The percent-
age of cell viability were increased in 2–7 treatments compared 
to the treatment 1, respectively (p < 0.05). The lowest and high-
est cell viability was for treatment 1 (0 % for both cell lines) and 
treatment 2, respectively (Fig. 1) (p < 0.05).  

Fig. 2. The effects of different treatments on the cell cytotoxicity on 
U87 and PC12 cells. A: For U87. B: for PC12 cell cultures. All data 
represented by the mean ± S.E.M (p < 0.05).

A

B

Fig. 3. The effects of different treatments on the cell death on U87 and 
PC12 cells. A: For U87. B: for PC12 cell cultures. All data represented 
by the mean ± S.E.M (p < 0.05).

A

B
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Cell cytotoxicity (%)
PC12 and U87 cells were exposed to different concentrations 

of morphine and constant concentration of methamphetamine (1 
Mm), so, after 24 h, the cell cytotoxicity was measured by LDH 
assay. Control treatments, showed us 2 % of cell cytotoxicity as 
the result in both cell lines. In treatment 1, 1 mM of methamphet-
amine caused all the cells to die, so the cytotoxicity 100 % was 
clear in both treatments. The results showed that exposure of the 
cells to the 2–7 treatment media increased the cell cytotoxicity 
of these treatments compared to the control cells (p < 0.05). The 
percentage of cell cytotoxicity was decreased in 2–7 treatments 
compared to treatments-1 in both cell lines (p < 0.05). In both 
cell lines, the lowest cell cytotoxicity was in treatment 2 and the 
highest cell cytotoxicity was in treatment 1, respectively (Fig. 2) 
(p < 0.05).

Cell death index
The cells were exposed to different concentrations of mor-

phine and constant concentration of methamphetamine, so after 24 
h, cell death was measured by TUNEL assay. Control treatments 
showed us 1 % of cell death as the result for PC12 and U87 cells. 

In treatment 1, all of the cells died because of methamphetamine 
and the percentage of cell death was 100 %. The results showed 
that exposure of the cells to 2–7 treatment media caused cell death 
increases compared to the control cells, respectively (p < 0.05). 
The percentage of cell death decreased in 2–7 treatments compared 
with treatments 1, but as concentration increased the protective 
potential of morphine decreased (p < 0.05). The results confi rmed 
similarity in both cell lines (Fig. 3).

Caspase-3 assay
In most cases, apoptosis eventually mediates a common path-

way through the result obtained in case of caspase-3 activation. 
Furthermore, results showed that Caspase3 activation after 24h 
in treatments 2–7 was increased compared to the control treat-
ments (p < 0.05). The caspase3 activation in control treatments 
of PC12 and U87 cells was lower than in other treatments (treat-
ments 1–7) (p < 0.05). Caspase-3 activation in treatments 2–7 
were lower compared to the treatment 1, as morphine concentra-
tion increased its protective potential decreased in both cell lines 
(Fig.  4) (p< 0.05).

Fig. 4. The effects of different treatments on the caspase-3 activity on 
U87 and PC12 cells. A: For U87. B: for PC12 cell cultures. All data 
represented by the mean ± S.E.M (p < 0.05).

A

B

Fig. 5. The effects of different treatments on the Mitochondrial mem-
brane potential (Rhodamine-123 absorbance) on U87 and PC12 cells. 
A: For U87. B: for PC12 cell cultures. All data represented by the 
mean ± S.E.M (p < 0.05).

A

B
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Mitochondrial membrane potential (Rhodamine-123 absorbance)
Through the apoptosis processes, in most cases caspase-3 acti-

vation leads to mitochondrial membrane potential (Δφm) change, 
that eventually mediate a common pathway of cell death, which 
is named apoptosis.

To checking this Δφm change in the treated cells, both cell 
lines were exposed to different treatment media, after 24 h, Δφm 
was measured by Rhodamine-123 staining and colorimetry assay.

Furthermore, RH-123 absorption in all treatments after 24 h 
was decreased compared to the control treatment in PC12 and U87 
cells (p < 0.05). The RH-123 absorption in control cells was higher 
than other treatments (treatments 1-7) (p<0.05). RH-123 absorp-
tion in treatments 2-7 were higher compared to treatment 1, as 
morphine concentration increased its protective potential decreases 
(p < 0.05). The results were similar for both cell types (Fig. 5).

(Ca2+) ic and (Ca2+) m
Exposure of PC12 and U87 cells to different media had specifi c 

and obvious effect on (Ca2+) ic and (Ca2+) m. In 2–7 treatments, 
the (Ca2+) ic were increased in comparison with the control groups 
in both cell lines (p < 0.05) (Fig. 6). It seems that Ca2+ might have 
accumulated in mitochondria, because morphine decreased con-

centration of (Ca2+) ic in 2–7 treatments. So, we evaluated changes 
in (Ca2+) m in cells loaded with the mitochondrial Ca2+ indicator 
by microscope. After comparison of the treatment inhibitors with 
treatment 1, a signifi cant decrease in (Ca2+) m was observed both 
in the PC12 and the U87 cells (Fig. 6).

Measurement of antioxidant enzyme activities
Results revealed that the exposure of PC12 and U87 cells to 

different treatment media had a clear effect on ROS (.OH) gen-
eration. The (.OH) generation in treatments 2–7 was increased 
compared to the control cells (p < 0.05) and it was decreased in 
treatments 2–7 compared to the treatment 1 (p < 0.05). It was clear 
that overload of intracellular and mitochondrial Ca2+ caused en-
hanced accumulation and cytochrome c release in ROS pathway 
in treatment 1 cells, and this event was reverse in 2–7 treatments 
in compared to the treatment 1. These observations occurred in 
both cell types (Fig. 7).

Discussion

The abuse of methamphetamine over the last few decades has 
become a major and growing global dilemma, like cocaine abuse 

Fig. 6. Determination of (Ca2+) m and (Ca2+) ic in different treated cells of U87 and PC12. A: (Ca2+) m of U87 cells. B: (Ca2+) ic of U87 cells. C: 
(Ca2+) m of PC12 cells. D: (Ca2+) ic of PC12 cells. All data represented by the mean ± S.E.M (p < 0.05).

A

C

B

D
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(33, 34). This inexpensive drug is easily available and highly ad-
dictive, most commonly used in smoking form, but it can also 
be snorted, injected, swallowed, or inserted rectally (8, 35–38). 
Methamphetamine is often used by white men between 18–25 
years old, native Hawaiians, hybrids, native Americans and ho-
mosexual men. In a 2002 survey, the addictive percentage between 
methamphetamine users was 10.6 up from approximately 22.3 in 
2004 (8, 39–41). Methamphetamine use in low doses made extra 
satisfaction, attention, and strength in users but it has many side 
effects such as: myocardial infarction, concussion, annexation, 
rhabdomyolysis, and psychosis that may also lead to death (42–44).

Chronic methamphetamine use increases the risk of some high-
risk viruses such as: hepatitis C and HIV and is associated with 
neurologic and psychiatric symptoms. Most of the deaths due to 
methamphetamine abuse are associated with high-risk emotional 
behaviors such as: suicide and accidents caused by dangerous 
driving (45–47).

Necrosis, apoptosis, and autophagy are morphological types 
of cell death (27, 28).  Apoptosis is known as processes that lead 
to condensation of chromatin, fragmentation of cell nucleus and 
cell shrinkage, while cell death due to cellular swelling and mem-

brane fracture is called necrosis. Methamphetamine induces apop-
tosis in dopaminergic and serotonergic neurons of mesencephalic 
and cortex cell culture. Also, in the PC12 cell line, derived from 
a pheochromocytoma in adrenal medulla of the rat, methamphet-
amine causes non-apoptotic cell death (48, 49). 

Extra experiments showed that morphine can reduce tert-butyl 
hydroperoxide destructive effects on H9c2 cells (rat cardiomyo-
blast) and have positive effects on cell viability. Morphine can in-
crease total antioxidant capacity of H9c2 cells, can reduce the ROS 
production, protein carbonylation, and lipid peroxidation (19).

In this study, we tried to investigate the protective effects of 
morphine on cell cytotoxicity, low viability and apoptotic behaviors 
of PC12 and U87 cell lines culture treated by methamphetamine. 
It has been shown previously that methamphetamine increases the 
cell cytotoxicity and apoptosis and reduces cell viability of neu-
ronal cell culture (50). The PC12 as a rat model and U87 as a hu-
man nerve cell line have been widely used to study the molecular 
mechanisms of neuronal cell death (51, 52). In this way, we have 
affected the different concentrations of morphine from 1 pM to 
100 μm at a constant concentration of methamphetamine in pc12 
cells to the achievement of best methamphetamine/morphine ratio 
to reduce the harmful effects of methamphetamine by concomi-
tant use of methamphetamine and morphine. In both cell lines, 
morphine reduced cell cytotoxicity and increased cell viability in 
a dose-dependent manner, so that its optimum concentration was 
1 pM. This indicates that morphine has the ability to reduce in-
fl ammation and apoptosis, especially at low concentrations. On the 
other hand, our results showed that morphine could reduce (.OH) 
production. In this experiment, the optimum concentration was 
also 1 pM. In low concentrations, morphine can reduce (.OH) pro-
duction, which reduces the production of infl ammatory cytokines 
such as: IL-1, IL-6, IL-10 and TNFα, thus reducing infl ammation, 
and therefore reducing apoptosis. Morphine at low concentrations 
increases the cAPM’s concentration. This increase in concentration 
leads to the activation of the Erk 1 & 4 and the Erk 2 & 3 paths. 
These pathways are associated with the reduction of apoptosis. 
As the result, morphine reduces infl ammation and increased dif-
ferentiation, leading to a reduction in methamphetamine-induced 
cell death in PC12 and U87 cell lines in a dose-dependent man-
ner. Our study showed that morphine can reduce intracellular and 
mitochondrial Ca2+. It prevents mitochondrial membrane destruc-
tion as the result, so the cytochrome c will not enter the cytosol as 
an apoptotic signal and will not activate the mitochondrial apop-
totic pathway. Further, we used rhodamine 123 for monitoring of 
mitochondrial inner membrane electron potential as a marker of 
mitochondrial function. Afterwards, TUNNEL test was performed 
for DNA fragmentation detection. Our results, like previous re-
sults, showed that morphine in a dose-dependent manner, by 1 pM 
optimal concentration, prevents disruption of the mitochondrial 
inner membrane and DNA fragmentation. The study of caspase 3 
activity was consistent with previous information and argued that 
caspase 3 activity as an effector caspase in the pathway of apop-
tosis decreases in lower concentrations of morphine. As the result 
of this study, we can say that morphine has a maximum effect on 
the reduction of methamphetamine-induced cell death in the opti-

Fig. 7. The antioxidants and reduce agents of endogenous reactive 
oxygen species (ROS) production in treated cells of U87 and PC12. 
A: .OH generation in U87 cells. B: .OH Generation in PC12 cells. All 
data represented by the mean ± S.E.M (p < 0.05).

A

B
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mal concentration of 1 pM, which indicates the anti-infl ammatory 
properties of morphine in the neural cells and the differentiation 
role of this substance in very low doses. On the other hand, as 
morphine concentration increases, its anti-infl ammatory and anti-
apoptotic effects decrease, so that in higher concentrations it can 
reduce cAMP and increase infl ammation and apoptosis.

Conclusion

Finally, we can say that low levels of morphine have anti-in-
fl ammatory, anti-apoptotic and neuroprotective properties. It can 
be therefore used to treat infl ammatory and neurogenic diseases. 
It also reduces the effects of methamphetamine abuse. However, 
at high concentrations, the opposite and destructive effects of 
morphine are apparent.
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