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Modulation of inhibitory and excitatory neurotransmissions by Zn2+ 
on the substantia gelatinosa neurons of the trigeminal subnucleus 
caudalis in mice
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Abstract. The substantia gelatinosa of the trigeminal subnucleus caudalis has been considered to be an 
essential location for the transference of orofacial sensory signals. The co-localization of inhibitory and 
excitatory neurotransmitters in the same substantia gelatinosa (SG) neurons has demonstrated their 
essential part in the modification of nociceptive transmission. Zn2+ is particularly numerous in the 
mammalian central nervous system. There are proofs demonstrating the role of Zn2+ in the modulation 
of voltage- and ligand-gated ion channels. However, little is known about what roles Zn2+ may play in 
the modulation of signal transmission in the SG neurons of the trigeminal subnucleus caudalis (Vc). 
Therefore, in this study, we used the whole-cell patch clamp technique to find out the effect of Zn2+ 
on the responses of three main neurotransmitters (glycine, GABA, and glutamate) on SG neurons 
of the Vc in mice. We have proved that Zn2+ induces a big potentiation of glycine receptor-mediated 
response but attenuates GABA- and glutamate-induced responses at micromolar concentrations, 
however, enhances glutamate-induced response at nanomolar concentration. Taken together, these 
data demonstrated that Zn2+ can modulate glycine, GABA and glutamate-mediated actions on the 
SG neurons of the Vc and support an important mechanism in spinal sensory information signaling.
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Introduction

The substantia gelatinosa (SG, lamina II) of the trigeminal 
subnucleus caudalis (Vc, also called the medullary dorsal 
horn) has been considered to be essential location for 

the transference of orofacial sensory signals, because it 
receives the nociceptive events from primary afferents, 
including thin myelinated Aδ- and unmyelinated C- fib-
ers (Light and Perl 1979; Todd 2002; Santos et al. 2007). 
Glycine and γ-aminobutyric acid (GABA) are major in-
hibitory neurotransmitters, whereas glutamate is mainly 
an excitatory neurotransmitter. The co-localization of 
inhibitory and excitatory neurotransmitters in the same 
SG neurons has demonstrated their essential part in 
the modification of nociceptive transmission (Todd et 
al. 1996; Kohno et al. 1999; Price et al. 2005). For this 
reason, if any compound alters the functional properties 
of neurotransmitters in the SG neurons, it may modify 
significantly the pain-signaling messages proceeding from 
orofacial region to the brain. 
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Zn2+, known to be a necessary nutrient, is the second 
most plentiful trace element in the human body and has 
a fundamental effect on cellular growth, division, and differ-
entiation (Vallee and Falchuk 1981; Coleman 1992). Among 
all transition metals, Zn2+ is also particularly numerous in 
the mammalian central nervous system (CNS) and is local-
ized with a high concentration in the neuronal parenchyma 
(Frederickson et al. 1987; Frederickson 1989). This divalent 
element is also a required factor necessary for the normal 
operation of the nervous system (Hurley and Shrader 1972). 
However, paradoxically, at higher concentrations, it may 
serve as a neurotoxin that leads to some pathological brain 
diseases (Choi et al. 1988; Duncan et al. 1992; Gower-Winter 
and Levenson 2012). 

There is much evidence demonstrating the role of Zn2+ 
in the modulation of voltage- and ligand-gated ion channels. 
For example, in the third-order neurons isolated from the 
crucian carp retina, Zn2+ was detected to modulate both 
glycine receptors and GABA receptors (Li and Yang 1999). 
In addition, Zn2+ also acts an inhibitory neuromodulator for 
the release of glutamate receptors in the rat hippocampus 
(Takeda et al. 2003). However, little is known about the roles 
that Zn2+ may play in the modulation of signal transmission 
in the SG neurons of the Vc. Therefore, in this study, we used 
the whole-cell patch clamp technique to find out the effect 
of Zn2+ on the responses of three main neurotransmitters 
(glycine, GABA, and glutamate) on SG neurons.

Materials and Methods

Animal and brain slice preparation

All experiments on living animals were ratified by the Ex-
perimental Animal Care and Ethics Committee of Chonbuk 
National University. Immature male and female Institude of 
Cancer Research (ICR) mice (7–20 postnatal days) (Damul 
Science, Suwon, Korea) tested in this study were housed 
under a  stable environment including the 12-hour light/
dark cycles (lights on at 06:00) with access to water and 
food ad libitum.

We used the same method to prepare brain slices as in 
our previous study (Nguyen et al. 2015). Firstly, ICR mice 
were beheaded; the brains were removed quickly and placed 
in ice-cold bicarbonate-buffered artificial cerebrospinal fluid 
(ACSF) containing (in mM): 126 NaCl, 2.5 KCl, 2.4 CaCl2, 
1.2 MgCl2, 11 D-glucose, 1.4 NaH2PO4, 25 NaHCO3 and 0.5 
sodium ascorbate (pH 7.3~7.4, bubbled with 95% O2 and 5% 
CO2). The brains were cut into coronal slices (180–200 µm 
in thickness) containing the Vc by a vibratome (VT1200S, 
Leica Biosystem, Nussluch, Eisfeld, Germany) in ice-cold 
ACSF and kept in oxygenated ACSF at room temperature 
for at least one hour before electrophysiological recording. 

Electrophysiology and data analysis

Each individual brain slice was moved into the recording 
chamber. There, it was continuously submerged and perfused 
with oxygenated ACSF at a flow speed of 4–5 ml/min. To 
observe the slices, we used an upright microscope (BX51WI, 
Olympus, Tokyo, Japan) consisting of some Nomarski dif-
ferential interference contrast optics. The SG (lamina II) of 
the medullary dorsal horn was identified as a  translucent 
band that was medial to the spinal trigeminal tract and went 
along the lateral sides of the slice.

The patch pipettes were pulled in a thin-wall borosili-
cate glass-capillary tubing (PG52151-4, WPI, Sarasota, FL, 
USA) of the Flaming/Brown puller (P-97, Sutter Instru-
ments Co., Novato, CA, USA). The pipette solution was 
passed through a disposable 0.22 µm filter and contained 
the following (in  mM): 140 KCl, 1  CaCl2, 1  MgCl2, 10 
HEPES, 4 MgATP, 10 EGTA (pH 7.3 with KOH). After the 
glass-capillary electrode was loaded with the pipette solu-
tion, the resistance of the recording pipettes was measured 
at around 4–6 MΩ. To patch the cell, firstly, a gigaohm seal 
was formed with SG neuron, then the cell membrane patch 
was ruptured by negative pressure, and electrical measure-
ment was done using a whole-cell patch-clamp recording 
mode with an Axopatch 200B (Molecular Devices, CA, 
USA). The currents of the cell membranes were sampled 
online using a Digidata 1322A (Molecular Devices, CA, 
USA) interface linked to a desktop computer. The electro-
physiological signals were filtered (2 kHz, Bessel filter of 
Axopatch 200B) before being digitized at a rate of 1 kHz. 
The cell holding potential was maintained at –60  mV 
throughout the recordings. The acquisition and analysis 
of the data were done by using Clampex 10.6 software 
(Molecular Devices, CA, USA). All our recordings were 
done at room temperature.

Chemicals

Zinc sulfate heptahydrate, glycine, GABA, glutamate, and 
the chemicals to make ACSF were purchased from Sigma 
(USA). Stocks of all drugs were prepared according to their 
solubility in distilled water. We diluted the stock solutions to 
the desired final concentrations in ACSF just before use and 
were applied to the neurons via bath application.

Statistics

Software named Origin 7 (OriginLab Corp., Northampton, 
MA, USA) was used to plot the traces. All values were 
described in the form of the mean ± SEM. To compare the 
average amplitudes of inward currents between two groups, 
we used a paired t-test. A p-value < 0.05 was recognized as 
the statistically significant standard.
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Results

To investigate whether there were any changes in the re-
sponse induced by inhibitory or excitatory neurotransmitters 
in SG neurons, we compared the responses elicited by glycine 
(30 µM), GABA (30 µM), and glutamate (30 µM) alone and 
in the presence of Zn2+. The cell-voltage clamp recordings 
were obtained from 43 SG neurons that belonged to 28 ICR 
mice of 7–20 postnatal days.

Zn2+ and glycine

First, we checked the effect of Zn2+ on glycine, an inhibitory 
neurotransmitter. When glycine was successively applied, 
the inward currents were induced. After that, Zn2+ at a low 
concentration (3 µM) was pretreated alone around five 
minutes; the Zn2+ did not elicit any detectable membrane 
currents. However, a glycine-induced inward current (IGly) 
was strongly potentiated when applied simultaneously with 
Zn2+ (Fig. 1A). As we observed in the bar graph, the mean 
amplitudes of IGly  alone and in the presence of Zn2+ were 
59.6 ± 13.5 pA and 149 ± 35.6 pA, respectively (n = 8, p < 
0.01, Fig. 1B). Zn2+ potentiated these glycine currents when 
co-applied extracellularly at a concentration of 3 µM. 

Besides, it is reported that the physiological extracel-
lular Zn2+

 concentration is rather in the nanomolar range 
(Thompson et al. 2000; Kay 2003; Frederickson et al. 2006). 
Therefore, the effect between Zn2+ and glycine was checked 

in a dose-response manner at different concentration of Zn2+ 

ranging from 10–3,000 nM (Fig. 1C). There was an increase 
of the IGly flowing, the rise of Zn2+

 concentration with an 
EC50 of 4,093 nM.

Zn2+ and GABA

We continued to analyze the effect of Zn2+ on another inhibi-
tory neurotransmitter, GABA. As shown in Fig. 2, successive 
application of GABA 30 µM created a detectable change in 
membrane current. When Zn2+ (3 µM) was treated together 
with GABA, the GABA-induced inward current (IGABA) was 
decreased partially (Fig. 2A). The bar graph shows that the 
mean inward current induced by GABA (85.1 ± 15.7 pA) 
was reduced to 59.6 ± 19.7 pA in the presence of Zn2+ (n = 
6, p < 0.01, Fig. 2B). These results indicate that Zn2+ at 3 µM 
concentration inhibits IGABA on SG neurons. Besides, we 
also evaluated the effect Zn2+ in nanomolar concentrations 

to GABA 30 µM. However, 300 nM Zn2+ did not change 
GABA-mediated responses. There is no significant effect be-
tween the mean inward currents induced by GABA alone and 
in the presence of Zn2+ (87.3 ± 15.9 pA and 90.1 ± 14.7 pA, 
respectively) (n = 9, p > 0.05, Fig. 2C).

Zn2+ and glutamate

In the next stage of the experiment, we examined how Zn2+ 
affected the excitatory neurotransmitter of SG neurons, the 

Figure 1. Effect of Zn2+
 on glycine-induced inward current (IGly). 

A. Representative trace shows the current evoked by glycine 30 µM 
was potentiated by Zn2+ (3 µM). B. The bar graph indicates that the 
mean inward current effected by the co-application of Zn2+ and 
glycine is bigger than the one evoked by glycine alone. C. Curve 
figure shows the mean inward currents induced by glycine (30 µM) 
increased which correspond with the concentration changes of 
Zn2+ (* p < 0.05, ** p < 0.01 between glycine alone and glycine in 
the presence of Zn2+).
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glutamate receptors. First, Zn2+ was also applied at 3 µM, 
as in previous experiments. However, in this level of Zn2+ 
concentration, Zn2+ did not show any change on glutamate 
(30 µM)-induced inward current (IGlu) (data not shown). 
As the Zn2+ concentration was increased to 10 µM, the 
glutamate-activated current was strongly decreased by the 
simultaneous application with Zn2+ (Fig. 3A). The mean 
amplitude of IGlu alone (41.8 ± 8.5 pA) was decreased in the 
presence of Zn2+ 10 µM (20.7 ± 4.5 pA) (n = 7, p < 0.01, Fig. 
3B). Again, these results provide evidence that Zn2+ inhibits 
the glutamate-mediated response.

Interestingly, at nanomolar concentration of Zn2+, we 
found that Zn2+ (300 nM) increased the IGlu (Fig. 3C). The 
mean inward current evoked by glutamate 30 µM in the 
absence and presence of Zn2+ 300 nM were –41.1 ± 10.9 pA 
and –53.8 ± 14.1 pA, respectively (n = 6, p < 0.05, Fig. 3D). 
To summarize all the data between Zn2+

 and glutamate, these 
results provide evidence that Zn2+ has biphasic effects to 
glutamate: at the nanomolar concentration (300 nM), Zn2+ 

increases IGlu but at the micromolar concentration (10 µM), 
Zn2+

 inhibits IGlu.

Discussion

Zn2+ has been known to play many physiological roles in the 
CNS, including synaptic messenger transmission (Christine 
and Choi 1990; Xie and Smart 1993), intracellular second 
messenger pathways (Forbes et al. 1991; Weinberger and 
Rostas 1991), and functional modulation of ion channels 
(Winegar and Lansman 1990; Li and Yang 1999). In this 

study, we used an exogenous Zn2+ application in order to 
examine the physiological role of synaptic Zn2+ on amino-
acid neurotransmissions. By the electrophysiological ap-
proach, we have demonstrated that Zn2+ has different effects 
on different inhibitory and excitatory neurotransmitters in 
SG neurons of Vc. At a micromolar concentration (3 µM), 
Zn2+ induces a big potentiation of glycine receptor-mediated 
response but attenuates GABAergic inputs. With glutamate, 
Zn2+ has opposite effects depending on the concentration, 
Zn2+ with micromolar concentration (10 µM), decreases 
glutamate-induced inward currents but increases them with 
nanomolar concentration (300 nM)

Growing evidence suggests that released Zn2+ can per-
form as an extracellular modulator of inhibitory and/or 
excitatory synaptic events (Choi and Koh 1998). Besides, 
Zn2+ can enter postsynaptic neurons through the Ca2+-
permeable channels and thus exert intracellular effects on 
physiological signaling functions of ion channels (Weiss 
et al. 1993; Freund and Reddig 1994; Yin and Weiss 1995). 
As a signaling substance, an alteration in extracellular Zn2+ 
may change the operation of several membrane channels 
and neurotransmitters by modifying the transmitter releaser 
and/or the sensitivity of the postsynaptic cells to transmitter 
molecules (Harrison and Gibbons 1994; Smart et al. 1994).

Glycine is major fast inhibitory neurotransmitters in the 
spinal cord that is accumulated in small synaptic vesicles 
(Burger et al. 1991; Christensen and Fonnum 1991). Glycine 
receptors are composed of a  combination of five distinct 
transmembrane protein subunits (Pfeiffer et al. 1982). Each 
receptor subunit includes a  large extracellular N-terminal 
domain and four transmembrane spanning domains (term 

Figure 2. Effect of Zn2+ on GABA-induced inward current (IGABA). 
A. Representative trace showing inward current mediated by 
GABA (30 µM) was inhibited by Zn2+ (3 µM). B. The bar graph 
illustrates that the mean inward current induced by GABA (30 µM) 
was reduced by the simultaneous application of Zn2+ (3  µM; 
* p < 0.05). C. Comparison of mean inward currents changed by 
GABA (30 µM) alone with GABA in the presence of Zn2+ (300 nM; 
* p < 0.05). NS, no significant.
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M1-M4), in which the second segment (M2) composes 
the channel pore-lining α-helix (Karlin and Akabas 1995). 
Glycine-induced currents have been demonstrated to be 
potentiated by Zn2+ at a  concentration between 0.1 and 
10 µM in third-order neurons isolated from the crucian 
carp retina, in Xenopus oocytes and human embryonic 
kidney cells (Laube et al. 1995; Li and Yang 1999; Miller 
et al. 2005). At low concentrations, this ion metal modu-
lates glycine-mediated currents by increasing the apparent 
agonist affinity without altering the maximal inducible cur-
rent (Bloomenthal et al. 1994; Laube et al. 1995). With the 
results from molecular experiments, it has been concluded 
that this Zn2+ potentiation of glycine-gated currents was 
specifically mediated by the allosteric signal-transduction 
processing between ligand binding and channel activation, 
which involved the key control elements, the residues in the 
M1-M2 loop and the M2-M3 loop (Lynch et al. 1997, 1998; 
Miller et al. 2005). Conversely, a higher concentration level 
of Zn2+ (50 µM) significantly inhibited the glycine responses 
in the cultured rat spinal-cord neurons (Bloomenthal et al. 
1994; Laube 2002). Zn2+ is a powerful modulator that can 

increase or decrease the open probability of a glycine channel 
in a way consistent with a strengthened or impaired affinity 
of the glycine receptor (Laube et al. 2000).

Another major inhibitory neurotransmitter in the CNS 
is GABA. These receptors contain some allosteric binding 
locations for several classes of chemicals that can modulate 
receptor function (Sivilotti and Nistri 1991; Bowery and 
Smart 2006). Many studies have demonstrated that Zn2+ 
inhibits GABAA responses on hippocampal neurons of rats, 
such as kindled adult hippocampal granule cells (Buhl et 
al. 1996) and cultured hippocampal neurons (Barberis et 
al. 2000), as well as on guinea-pig hippocampal neurons 
(Ruiz et al. 2004). The reduction of GABAA response by 
Zn2+ mainly appears to result from decreasing the open-
ing frequency of GABAA single channels (Legendre and 
Westbrook 1991; Smart 1992). Each GABAA receptor has 
been shown to be formed by many different protein subunits 
(α, β, γ, and δ) and abundant subtypes by using the cDNA 
cloning techniques (Verdoorn et al. 1990). The inhibition of 
GABAA responses by Zn2+ obviously depends on the subu-
nit components. GABAA receptor possessing αβ subunits 

Figure 3. Effect of Zn2 on glutamate-induced inward current (IGlu). A. The representative trace showing current evoked by glutamate 
30 µM was reduced by Zn2+ 10 µM. B. The bar graph compares the mean inward current changed by glutamate alone with glutamate 
in the presence of Zn2+ (10 µM). C. Glutamate (30 µM)-induced inward current was increased by the simultaneous application of Zn2+ 
(300 nM). D. There is a significant difference between the means values created by glutamate alone and glutamate in the presence of 
Zn2+ (300 nM) (* p < 0.05, ** p < 0.01).
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is more sensitive to Zn2+ inhibition than are the receptors 
consisted of γ subunits (Draguhn et al. 1990; Smart et al. 
1991). In contrast, Zn2+ was reported to potentiate GABAA 
receptor activity in the retinal Müller glial cells in some 
receptor subunits (Qian et al. 1996). In addition, in the rat 
hippocampus, the extracellular Zn2+ also affected GABAB 
receptors in a biphasic manner by modulating GABAB bind-
ing biphasically (Xie and Smart 1991). As can be seen from 
those studies, Zn2+ has many effects on GABA.

Beyond effects on inhibitory neurotransmitters, glycine 
receptors, and GABAA receptors, Zn2+ also has a powerful 
modulation effect on glutamate-mediated responses. Gluta-
mate or excitatory amino-acid receptors are considered to be 
the main neurotransmitter receptors that modulate the fast 
synaptic excitation in the CNS of the mammal (Gasic and 
Hollmann 1992). It has long been known that a large amount 
of Zn2+ is concentrated inside vesicles of the glutamatergic 
terminals in the CNS (Frederickson 1989; Choi and Koh 
1998). This relation points toward the logical role of Zn2+ 
in the modulation of glutamate response. Depending on the 
pharmacological functions and the interaction of character-
istic agonists, the glutamate receptors are classified into many 
subtypes (Gasic and Hollmann 1992). Many different effects 
of Zn2+ on different glutamate subtypes have been demon-
strated. The presynaptic glutamate concentration released in 
the rat hippocampal CA1 and CA3, as well as the entorhinal 
cortex region, were attenuated by the perfusion with Zn2+ 
(Takeda et al. 2003, 2004). At the single-channel level, Zn2+ 
was proved to powerfully inhibit N-methyl-D-aspartate 
(NMDA) channel currents in murine neocortical neurons. 
Some main mechanisms explained for Zn2+ inhibition of 
NMDA receptors includes the decrease in channel open 
frequency and the voltage-dependent amplitude reduction, 
which suggested a fast channel block (Christine and Choi 
1990). Besides, some lines also show that Zn2+ increased 
the excitation mediated by α-amino-3-hydroxy-5-methyl-
4-isoxazoleproprionoc acid (AMPA) receptors and NMDA 
receptors in mouse cultured cortical and rat cultured hip-
pocampal CA1 neurons, respectively (Peters et al. 1987; 
Kim et al. 2002). To supplement the above abundant effects 
of Zn2+, our study has proved that Zn2+ also has biphasic 
effects on the glutamate-induced inward current in the SG 
neurons of Vc. The hypothesis for the opposite modulations 
of glutamatergic transmission by Zn2+

 is the different actions 
on different types of glutamate receptors which co-localized 
at the glutamatergic postsynapses (Rassendren et al. 1990). 
These mechanisms happen in a concentration dependence 
of Zn2+ which corresponds with the difference in the appar-
ent affinity values (300 nM for the potentiation and 10 µM 
for the inhibition). This specific characterization of Zn2+ on 
glutamate receptors was also reported in the Xenopus oocytes 
that at a low concentration, Zn2+ inhibited NMDA responses 
and increased non-NMDA response, but at higher concen-

tration, Zn2+ inhibited non-NMDA currents (Rassendren et 
al. 1990). Further investigation needs to be done to find out 
which types of glutamate receptor involving in the potentia-
tion and inhibition phenomena between Zn2+ and glutamate.

In conclusion, the above clear evidence reveals to some 
extent the diverse effects of Zn2+ on different neurotransmit-
ters in the SG neurons. The opposite influences of this metal 
ion may originate from its different processes that interact 
with various binding sites on different receptors and with 
distinct affinities. Some growing studies have elucidated 
that Zn2+ also plays an important role in the modulation 
of pain transmission (Larson and Kitto 1997; Velazquez et 
al. 1999). Taken together, the regulatory action of Zn2+ to 
the neurotransmitters in the SG neurons implies an im-
portant mechanism in pain information processing in the 
CNS which has a part in the plasticity of neuronal circuits. 
Further research needs to be done to discover the concrete 
mechanism by which Zn2+ not only excites neurotransmit-
ters but also inhibits receptors in the SG neurons of the Vc.
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