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ABSTRACT
AIM: The aim of this review article is to summarize current knowledge about the role of cannabinoids and 
cannabinoid receptors in tumor disease modulation and to evaluate comprehensively the use of cannabinoids 
in cancer patients.
METHOD: According to the PRISMA protocol, we have included data from a total of 105 articles. 
RESULTS: Cannabinoids affect cancer progression by three mechanisms. The most important mechanism is 
the stimulation of autophagy and affecting the signaling pathways leading to apoptosis. The most important 
mechanism of this process is the accumulation of ceramide. Cannabinoids also stimulate apoptosis by 
mechanisms independent of autophagy. Other mechanisms by which cannabinoids affect tumor growth are 
inhibition of tumor angiogenesis, invasiveness, metastasis, and the modulation of the anti-tumor immune 
response.
CONCLUSION: In addition to the symptomatic therapy of cancer patients, the antitumor effects of 
cannabinoids (whether in monotherapy or in combination with other cancer therapies) have promising 
potential in the treatment of cancer patients. More clinical trials are needed to demonstrate the antitumor 
effect of cannabinoids (Tab. 1, Fig. 1, Ref. 167). Text in PDF www.elis.sk.
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Abbreviations: ∆9-THC (∆9-Tetrahydrocannabinol), 2-AG 
(2-arachidonoylglycerol), ACPA (Arachidonoyl cyclopropamide), 
AEA (Anandamide), AKT (Protein kinase B), ALK (Anaplastic 
lymphoma kinase), AMPK (Adenosine monophosphate-activated 
protein kinase), Ang-2 (Angiopoetin 2), ATF-4 (Activating tran-
scription factor 4), BAK (Bcl-2 homologous antagonist/killer), 
BAX (Bcl-2-like protein 4), Bcl-2 (B-cell lymphoma 2), BID 
(BH3 interacting-domain death agonist), CaCMKKβ (Calcium/
calmodulin-dependent protein kinase 2β), cAMP (Cyclic adenosine 
monophosphate), CB1 and CB2 (Cannabinoid receptor 1 and 2), 
CBD (Cannabidiol), cdc42 (Cell division control protein 42 ho-
molog), Cdk (Cyclin-dependent kinase), CHOP (CAAT/enhance-
binding protein-homologous protein), JNK/c-jun (c-jun N-terminal 
kinase), COX-2 (Cyclooxygenase 2), CXCL12, 16 (Chemokine 
ligand 12, 16), CXCR4 (Chemokine receptor 4), DR (Death recep-

tors), EGF (Epidermal growth factor), EGFR (Epidermal growth 
factor receptor), eIF2α (Eukaryotic translation initiation factor 2α), 
EMT (Epithelial-mesenchymal transition), ER stress (Endoplasmic 
reticulum stress responses), ERK (Extracellular signal-regulated 
kinases), ET-1 (Endothelin 1), FAAH (Fatty acid amide hydro-
lase), FADD (Fas-associated protein with death domain), FAK 
(Focal adhesion kinase), FOXO (Forkhead box O), GEFs (Gua-
nine nucleotide exchange factors), Gi protein (Adenylate cyclase 
inhibitor), GPR55 (G protein-coupled receptor 55), HMG-CoA 
(3-hydroxy-3-methylglutaryl-coenzyme A), ICAM-1 (Intercellular 
adhesion molecule 1), ID1(DNA-binding protein inhibitor), IFN-γ 
(Interferon gamma), IL-2, 4, 6, 8, 10 (Interleukin 2, 4, 6, 8, 10), 
IP3 (Inositol 1,4,5-trisphosphate), LAK (Lymphokine-activated 
killer), LOX (Lipooxygenase), MAGL (Monoacylglycerol lipase), 
MAP kinase (Mitogen-activated protein kinase), MDK (Midkine), 
MDSC (Myeloid-derived suppressor cells), MEK (Mitogen-acti-
vated protein kinase), MMP 2 a 9 (Matrix-metalloproteinase 2 a 9), 
mTOR (Mechanistic/mammalian target of rapamycin), mTORC1 
a 2 (mTOR complex 1 a 2), NAGly (N-arachidonoyl glycine), 
NFκB (Nuclear factor κB), OEA (Oleoylethanolamide), p8 (or 
NUPR1 (Nuclear protein-1), or Com1 (Candidate of metastasis-1), 
p21 (Cyclin-dependent kinase inhibitor 1), p27 (Cyclin-dependent 
kinase inhibitor 1B), p38 (p38 mitogen-activated protein kinase), 
PCNA (Proliferating cell nuclear antigen), PDGF-AA (Platelet-
derived grow factor), PI3K (Phosphatidylinositol 3-kinase), PlGF 
(Placental growth factor), PKA (Protein kinase A), PKB/AKT 
(Protein kinase B), PKC (Protein kinase C), PLC (Phospholipase 
C), PPARs (Peroxisome proliferator-activated receptors), rac1 
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(Ras-related botulinum toxin substrate 1), Raf-1 (Proto-oncogene 
serine/threonine-protein kinase), Ras (Rat Sarcoma), ROS (Reac-
tive oxygen species), rhoA (Ras homolog gene family, member A), 
SerpinE1/PAI1 (Serin protease inhibitor E1/Plasminogen activator 
inhibitor 1), Src (Proto-oncogene tyrosine-protein kinase), STAT3 
(Signal transducer and activator of transcription 3), TCS2 (Tuber-
ous sclerosis complex), TGF-β (Transforming growth factor β), 
TIMP1 (Tissue inhibitor of metalloproteinase 1), TNFR (Tumor 
necrosis factor receptor), TRADD (Tumor necrosis factor receptor 
type 1-associated death domain protein), TRB3 (Tribbles homolog 
3), TRP (Transient receptor potential), TRPV1 (Transient recep-
tor potential vanilloid type 1), uPA (Urokinase-type plasminogen 
activator), VEGF (Vascular endothelial growth factor), VEGFR-2 
(VEGF receptor 2)

Introduction

The term cannabinoids includes three groups of substances. 
Natural phytocannabinoids, cannabis-derived substances (espe-
cially ∆9-THC a CBD), synthetically prepared analogs and endo-
cannabinoids anandamide (AEA) (1) and 2arachidonoylglycerol 
(2-AG) (2, 3) which are naturally found in the human body. Can-
nabinoids bind to two specifi c receptors – CB1 and CB2 (4, 5) and 
further to potential cannabinoid receptors (6). Each cannabinoid 
has a different affi nity and intrinsic activity for cannabinoid and 
potential cannabinoid receptors. Therefore different cannabinoids 
may have another clinical effect. In the treatment of an oncologi-
cally ill patient, cannabinoids are used primarily for symptomatic 
treatment (pain, nausea, vomiting, and anorexia) (7). In the pain 
management, cannabinoids are effective for chronic neuropathic 
pain (7), their synergistic effect with opioids is assumed (8), al-
though they do not appear to have any effect on the treatment of 
acute pain (9). Recently, we have seen publications that consider 
the direct antitumor effect of cannabinoids and the involvement 
of cannabinoid receptors in curative therapy of an oncologically 
ill patient. Anti-proliferative, antimetastatic, antiangiogenic, and 
proapoptotic effects of cannabinoids are considered (7). In this 
review article, we will focus on the role of cannabinoids as anti-
tumor agents. Symptomatic treatment and pain management will 
be mentioned too. In our article, we evaluate in detail the effect 
of cannabinoids on all the receptors they can infl uence. Table 1 
provides a complete list of studies published so far on this topic.

Materials and methods

The search algorithm proceeded according to the PRISMA 
protocol. In the Pubmed.org database, 980 citations were initially 
identifi ed. The search terms strings was “Cannabinoid AND can-
cer” and “Cannabinoid AND tumor.” We found 177 citations re-
lated to the topic. After excluding duplicates (n = 32), articles that 
were not in English (n = 6), and articles without full text (n = 34), 
a total of 105 full-text articles were included. Of these, nineteen 
articles were systematic reviews, eighty-fi ve articles were animal 
or cell culture studies, and only one article was a clinical trial. The 
search diagram is shown in Figure 1.

Results

Cannabinoid receptors 
Since the 1990s, two types of cannabinoid receptors, CB1 and 

CB2 (4, 5), have been known, and other receptors (TRPV1, PPARs, 
GPR55, GPR119, and GPR18) have been identifi ed as potential 
cannabinoid receptors (6, 10, 11). Both cannabinoid receptors are 
associated with G proteins. The CB1 receptor is mainly found in the 
nerve tissue, while the CB2 receptor is mainly found on immune 
cells (12). The endocannabinoid system plays an important regula-
tory role in the secretion of hormones, reproductive functions, and 
stress reactions (13). The metabolism of endocannabinoids, ligands 
of cannabinoid receptor, is mainly mediated by lipase hydrolysis. 
AEA hydrolyzes FAAH (14) primarily, 2-AG hydrolyzes MAGL 
(15). CB1 receptors are mainly found on central and peripheral 
nervous system cells, and their function is primarily in inhibiting 
the release of neurotransmitters. It can also be found on pituitary 
cells, reproductive organs, and immune cells. This receptor is a 
heterodimer linked to Gi protein. Upon activation of the CB1 re-
ceptor, inhibition of adenylate cyclase and decrease of intracellu-
lar concentration of cAMP results in an increase in the activity of 
the regulatory mechanisms that belong to the MAP kinase cascade 
(16). Rarely, the CB1 receptor may be associated with a Gs protein, 
which in turn increases the activity of adenylate cyclase (12). Re-
duction of cAMP directly works by reducing the potassium infl ux 
via K+

ir channel and increased calcium effl ux through the N and P/Q 
Ca2+ channel. Further reactions occur by activating PKA and PKC. 
Activated PKA affects the decrease in potassium effl ux in the K+

A 
channel. PKC directly phosphorylates the CB1 receptor causing 
dissociation of the receptor from the ion channels (K+

ir and N and 
P/Q type Ca2+), which leads to the reduction in the direct effect of 
CB1 on these channels (negative feedback). Another mechanism 
is the activation of intracellular signal kinases belonging to a large 
family of MAP kinase cascades (Ras/Raf-1/MEK/ERK, FAK, p38, 
c-jun) (13). These intracellular signal kinases play an important 
role in cell differentiation, proliferation, and cell death (16). The 
last mechanism is the inhibition of the PI3K/AKT/mTOR pathway 
– a very important pathway that promotes cell growth and inhibits 
apoptosis (17) by stimulating growth factors. 

Unlike the CB1 receptor, CB2 receptors are found primarily 
on cells of the immune system. CB2 receptors have been found 
on all cells of the immune system. Only in neutrophils, there is an 
unclear consensus on whether they express CB2 receptors (18). 
Furthermore, CB2 receptors are expressed on tonsils, spleen, and 
thymus. Further, CB2 receptors have been found on pancreatic, 
renal, uterine, and genital cells (18). CB2 receptors are primar-
ily involved in the modulation of the infl ammatory response and 
cytokine release (12, 18). Although CB2 receptors are function-
ally similar to CB1 receptors, there are some differences between 
the two. The activation of CB2 receptors leads to four basic cel-
lular processes. The basal pathway, as with the CB1 receptors, is 
associated with the Gi protein and the adenylate cyclase activity 
is reduced. It is followed by ERK activation of the MAP kinase, 
which is probably mediated by PKC (19). CB2 receptor agonists 
increase the release of Ca2+ from the endoplasmic reticulum and 
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increase the mitochondrial Ca2+ via the PLC-IP3 signaling path-
way. This leads to an increase in intracellular Ca2+ concentration 
(20). Unlike CB1 receptors, it appears that CB2 receptors are not 
associated with potassium channels, which is probably the most 
important difference between the two receptors causing them to 
be functionally different (18). It is very interesting that the two 
main endocannabinoids, i.e. 2-AG and AEA, evoke distinct func-
tions after binding to the CB2 receptor. After the 2-AG binding, 
a pro-infl ammatory response (increased recruitment, migration, 
adhesion of leukocytes, the release of chemokines) occurs. On 
the other hand, binding of AEA to CB2 receptor results in an anti-
infl ammatory response (reduced release of proinfl ammatory cyto-
kines, increased production of anti-infl ammatory IL-10, reduced 
nitric oxide production) (18).

Another potential cannabinoid receptor is GPR55 (10, 11). 
GPR55 is associated with the G13 protein (guanine nucleotide-bind-
ing protein alpha 13). It is considered that GPR55 will be included 
in the cannabinoid receptor family and will be named CB3 (21). 
This G-protein regulates cellular processes via GEFs, a protein 
that activates GTPases. The activation occurs by GEFs changing 
GTPs to GDPs on the GTPase. Activated GTPase coupled GTP is 
prepared to phosphorylate various cellular signaling pathways (22). 

The G13 subtype is essential for inducing the migration of fi -
broblasts and endothelial cells (23). Activation of GPR55 leads to 
stimulation of rhoA, cdc42, and rac1 (24). It is important that all 
three of the aforementioned proteins (rhoA, cdc42, and rac1) are 
included in signal cascades regulating cell division, cell growth 

and migration, and thus all three may play a role in the progres-
sion of an oncological disease (25, 26, 27). In addition to GPR55, 
there is a large number of G-protein coupled receptors that poten-
tially can be activated by cannabinoids (6). The most important 
of these receptors are GPR119 and GPR18. GPR119 is a receptor 
that occurs primarily in cells of the gastrointestinal tract and pan-
creas. GPR119 is an important receptor in the regulation of insu-
lin secretion and energy balance (6, 10). Its association with the 
endocannabinoid system is considered because OEA, a potential 
endocannabinoid, has an affi nity for GPR119 (28). However, its 
involvement in the endocannabinoid system is highly questioned 
(6). GPR18 is considered to be an abnormal cannabinoid receptor 
regulating the migration and proliferation of microglia. This effect 
is mediated through NAGly (11).

An interesting group of receptors potentially belonging to the 
family of endocannabinoid receptors is a large superfamily TRP 
(6). These are non-selective cation channels including the six sub-
groups: “canonical,” “vanilloid (TRPV),” “melastatin (TRPM),” 
“polycystin,” “mucolipin”, and “ankyrin (TRPA).” These receptors 
are involved in the transmission of a number of stimuli – tempera-
ture, light, taste and olfactory stimuli, mechanical stimuli, osmotic 
stimuli (29). Currently, several receptors from this so-called su-
perfamily are considered, which could be part of the endocan-
nabinoid system – TRPV1, TRPV2, TRPV4, TRPM8, and TRPA1 
(6). The most important of these groups is TRPV1, a capsaicin 
receptor. This non-selective cation channel, which (for example) 
regulates the intracellular Ca2+ movement and its release from the 

Fig. 1. Data search diagram.
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endoplasmic reticulum (30), can activate, in addition to cannabi-
noids, a variety of exogenous and endogenic stimuli – capsaicin 
(component of chili pepper), allyl isothiocyanate (constituent of 
mustard and wasabi), temperature above 43 °C, acidic environ-
ment (6, 31). TRPV1 are found primarily on non-myelinated and 
weakly myelinated type C and Aδ neural fi brils of the peripheral 
nervous system and therefore are included in pain modulation. 
Furthermore, TRPV1 is found in CNS cells but also other cells 
(epithelium, endothelium, glia, immune cells, osteoclasts, hepato-
cytes, fi broblasts, etc.) (32). Activation of TRPV1 receptors leads 
to a number of functions – increased intracellular Ca2+ concentra-
tion, increased cation fl ow in neurons, increased release of vasoac-
tive peptides in nerve fi bers. It is also very important that several 
stimuli can increase or decrease the sensitivity of TRVP1 receptors. 
Modulations of receptor function by infl ammation, protein kinase 
phosphorylation, temperature, pH, membrane potential, etc. are 
also important (6). Interestingly, anandamide binds to the same 
binding site as capsaicin, but the activation of the TRVP1 recep-
tor by temperature or pH is at another site of the receptor (33). 

Another potential part of the endocannabinoid system is the 
group of ligand-activated transcription factors and nuclear re-
ceptors collectively called PPARs. These are three isoforms of 
PPARα, PPARβ, and PPARγ. They are activated by fatty acid de-
rivatives (prostaglandins, leukotrienes), but PPARs function more 
like general lipid sensors that monitor local changes in metabolism. 
PPARα is clinically affected by the action of fi brates (gemfi brozil 
and fenofi brate), PPARγ is the target of thiazolidinediones (pio-
glitazone, rosiglitazone, and troglitazone). These receptors are 
expressed primarily in the liver, PPARα in skeletal muscles and 
PPARγ in adipose tissue. A number of cannabinoid agonists are 
also PPARs agonists. However, the potential of cannabinoids to 
activate PPARs is relatively small compared to their potential to 
activate CB1 and CB2 receptors (6).

In addition to the aforementioned receptors, cannabinoids 
can be used to modulate the functions of many important recep-
tors such as opioid, acetylcholine, serotonin, glycine receptors, 
and others (6).

Cannabinoids in the treatment of pain and as a symptomatic 
treatment of cancer patients 

The cannabinoid receptor system, their ligands and metaboliz-
ing enzymes regulate pain at all levels – supraspinal, spinal, and pe-
ripheral. The analgesic effect is mediated not only by binding to CB1 
and CB2 receptors, but also to the reduction of endocannabinoid ca-
tabolism and uptake, and affecting other receptor systems (TRPV1, 
GPR55, PPARs, and opioid receptors). Cannabinoid-mediated pain 
modulation involves a number of mechanisms – inhibiting the re-
lease of presynaptic neurotransmitters and neuropeptides, modulat-
ing the postsynaptic excitability of neurons, activating the descen-
dant inhibitory system, and infl uencing the infl ammatory response 
in the nervous system (34). For this reason, we fi nd some potential 
in the use of cannabinoids in the treatment of pain. Cannabinoids 
have the greatest effect on the treatment of allodynia, neuropathic 
pain, medication-rebound headache, and chronic oncological pain. 
The treatment of acute pain with cannabinoids is not superior to A
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non-opioid analgesia, and the treatment of cancer-related pain by 
cannabinoids provides only a mild analgesic effect (35). However, 
the data on the effi cacy of cannabinoids in neuropathic pain are 
inconsistent, as well as the data on safety and good tolerability 
of these drugs in the treatment of any chronic pain (36). The Ca-
nadian Pain Society has recently recommended cannabinoids as 
third-line drugs for the treatment of chronic neuropathic pain (37). 
Additionally, the German and Israeli Pain Society recommends 
the use of cannabinoids as third-line drugs in the treatment of 
chronic pain (38). At the supraspinal level, stimulation of the CB1 
receptor has a signifi cant analgesic effect. In the murine model, 
supraspinal administration of selective CB1 receptor agonist VD-
hemopressin (α) has a signifi cant dose-dependent effect. This effect 
is signifi cantly reduced by the administration of the CB1 receptor 
antagonist. Furthermore, it appears that stimulation of the TRVP1 
receptor can play a role in this analgesic effect (39). Cannabinoid 
receptor agonists increase the analgesic effect of opioid receptor 
agonists (e.g. morphine). The addition of cannabinoid receptor 
agonists signifi cantly and dose-dependently increases the analgesic 
effect of the μ-opioid agonists. However, this analgesic effect is 
different for various cannabinoid receptor agonists. The addition 
of CP55.94 to morphine has a greater effect than adding Δ9 -THC. 
This fi nding is important for designing mixtures combining can-
nabinoids and opiates (40). 

The effect of cannabinoids in the treatment of anorexia in pa-
tients with advanced tumors is controversial. It is unclear whether 
cannabinoids have a positive effect on weight gain or appetite. The 
level of evidence on this issue is very low (41). 

At present, it is not conclusively proven that cannabinoids 
have an effect on the reduction of chemotherapy-induced nausea 
and vomiting (42). However, they appear to have a greater effect 
on the suppression of nausea and vomiting compared to placebo 
and they have the same effect compared to prochlorperazine. The 
combination of cannabinoids and other antiemetic drugs does 
not add additive effects and is associated with a greater number 
of undesirable effects (cognitive impairment, drowsiness) (43). 
Based on these data, the use of cannabinoids in the treatment of 
chemotherapy-induced nausea and vomiting cannot be unambigu-
ously encouraged or rejected. 

In conclusion, cannabinoids are effective in the treatment of 
pain in adults and may have an effect on the treatment of chemo-
therapy-induced nausea and vomiting (44). 

Cannabinoids as antitumor therapies
Cannabinoids as antitumor treatment can work by three types 

of mechanisms. The fi rst is the stimulation of cell death by the 
mechanism of autophagy, apoptosis mediated by autophagy, and 
infl uencing signaling pathway leading to apoptosis. The second 
group is the inhibition of tumor angiogenesis, invasiveness, and 
metastasis. The third mechanism is the modulation of the anti-
tumor immune response (45, 46, 47, 48, 49, 50, 51, 52).

Stimulation of cell death
Basic signaling pathways of cannabinoid receptors infl uencing 

differentiation, proliferation, and cell death have been outlined in 

the section on cannabinoid receptors. At this point, we will focus 
on two main mechanisms by which cannabinoids lead to the stimu-
lation of cell death, namely autophagy and apoptosis.

Autophagy
This is an old evolutionary process that involves the pack-

aging of cellular organelles by a two-membrane bag called au-
tophagosome. In the second step, the autophagosome merges with 
lysosomes, leading to the degradation of cellular organelles (53). 
Although autophagy is primarily cytoprotective, it can also trig-
ger apoptosis (54). Interestingly, autophagy may be a protection 
from apoptosis on the one hand, but on the other hand, it acts as 
an alternative pathway inducing apoptosis (55). A Beclin-1 pro-
tein plays a key role in the process of autophagy and apoptosis. 
This protein blocks autophagy when bound to the Bcl-2 protein 
complex, Bcl-2 proteins are key proteins in the regulation of apop-
tosis. If the Beclin-1/Bcl-2 complex is cleaved (e.g. caspases), 
autophagy is induced. In addition, fi ssion products of this com-
plex enter mitochondria and stimulate cytochrome c and induce 
apoptosis (56). Cannabinoids induce autophagy by two mecha-
nisms, both of which lead to the inhibition of the autophagy key 
axis (PI3K/AKT/mTOR signaling pathway (see CB1 receptor)). 
Autophagy appears to be a key mechanism of antitumor action 
of cannabinoids. It is also important that apoptosis is blocked by 
blocking autophagy, but blocking apoptosis itself does not block 
cannabinoid-induced autophagy. It is clear from this observation 
that autophagy not only precedes and stimulates apoptosis, but 
is essential for cannabinoid-induced apoptosis (57, 58, 59). The 
most important mechanism by which cannabinoids induce au-
tophagy is the accumulation of ceramide in tumor cells. Ceramide 
is a sphingolipid composed of sphingosine and fatty acids, and it 
is a major component of cell membranes. Cannabinoids increase 
ceramide concentration in the cell by two mechanisms. The fi rst 
is the hydrolysis of sphingomyelin by the sphingomyelinase en-
zyme, thus creating ceramide only when activating the CB1 recep-
tor. The second is de novo synthesis of ceramide with the enzyme 
serine-palmitoyl transferase (SPT) which generates ceramide by 
activating both CB1 and CB2 receptors (60). The accumulation 
of ceramide in the cell stimulates the stress response of the en-
doplasmic reticulum (ER stress). ER stress results in increased 
phosphorylation of eIF2α, resulting in up-regulation of p8 protein, 
followed by the activation of transcription factors (ATF-4, CHOP) 
leading to the activation of TRB3. Between these proteins and 
transcription factors, there is a series of feedback circuits. TRB3 
subsequently inhibits the PI3K/AKT/mTOR signal pathway at a 
level between mTORC2 and ACT (57, 58, 60, 61, 62, 63, 64, 65, 
66, 67). The signaling pathway p8/ATF4/CHOP/TRB3, followed 
by the inhibition of the PI3K/AKT/mTOR cascade, is probably 
the most important antitumoral mechanism of cannabinoids (45, 
57, 58). The second signaling pathway by that cannabinoids ac-
tivate autophagy by inhibiting the PI3K/AKT/mTOR pathway is 
the activation of CaCMKKβ. This protein kinase, like the previ-
ous signaling pathway, is activated by ER stress. The next stage is 
the activation of AMPK, which directly phosphorylates and acti-
vates TCS2, the major direct inhibitor of mTORC1. The mTORC1 
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has a large anti-autophagic effect. Therefore, the inactivation of 
mTORC1 (ceramide, ER stress) leads to increased autophagy 
(68). This mechanism was observed in hepatocellular carcinoma 
cells and was activated only by CB2. The induction of autophagy 
by AMPK was also observed in pancreatic carcinoma cells (69). 
Both signaling pathways that inactivate PI3K/AKT/mTOR run 
independently of each other and regulate autophagy at differ-
ent stages (58). It seems that cannabidiol can activate autophagy 
and apoptosis by mechanisms independent of CB receptors. This 
mechanism is partly explained by increased formation of reactive 
oxygen species, the reduction of LOX activity, and subsequent 
stimulation of autophagy and apoptosis (56, 70). A key protein in 
the activation of cannabidiol-induced autophagy and apoptosis is 
the aforementioned Beclin-1 protein (56).

Apoptosis
In addition to activating apoptosis via autophagy, cannabinoids 

stimulate apoptosis with several mechanisms independent of au-
tophagy. Apoptosis can be induced in two ways. The fi rst is an 
external pathway that begins with the activation of death receptors 
(TNFR, FAS). The ligands of these receptors via the TRADD/FASS 
pathway initiate the caspase pathway (caspase 8 and 3) leading to 
apoptosis (71). The second is an internal pathway that starts with 
the activation of the Bcl-2 receptors mitochondrial family (BID, 
BAK, BAX). An important part is the cytoplasmic protein BID, 
which contains the BH3 domain and cleaves it to produce truncated 
BID (tBID), resulting in the activation of BAX and BAD mito-
chondrial proteins and, subsequently, the activation of cytochrome 
c and caspase 9, which stimulates apoptosis. The outer and inner 
paths are interconnected by caspase 8 (72).

The signal pathway PI3K/AKT/mTOR activates apoptosis 
by several mechanisms. The fi rst mechanism is to modulate the 
inhibition of two important Cdk inhibitors, namely p21 and p27, 
modulation of which is mediated by AKT and FOXO (73, 74, 75). 
If AKT phosphorylates FOXO, the transition of FOXO to the cell 
nucleus is prevented. However, if FOXO is dephosphorylated, 
it passes into the cell nucleus and acts as a transcription factor 
stimulating the expression of p21 and p27 (76). The Cdk-cyclin 
complex is a very important cell cycle stimulator, inactivating it 
by stopping the cell cycle in phase G, which subsequently stimu-
lates apoptosis. The second mechanism by which the PI3K/AKT/
mTOR pathway initiates apoptosis is the modulation of the already 
mentioned inner pathway of apoptosis activation. AKT directly 
inhibits the pro-apoptotic proteins of the Bcl-2 family (BAD) by 
enhancing the phosphorylation of these proteins, i.e. AKT inhibi-
tion induced by cannabinoids leads to BAD activation and sub-
sequent apoptosis (77).

Very important pathways that regulate apoptosis are signaling 
pathways involved in a large family of MAP kinases (Ras/Raf-1/
MEK/ERK, c-jun (JNK), p38). Cannabinoids regulate apoptosis 
and stimulate these signaling pathways. The already mentioned 
increased production of ceramide results in the activation of the 
Ras/Raf-1/MEK/ERK signaling pathway. This pathway is associ-
ated primarily with EGFR and other growth factor receptors (51, 
60). The binding of the ligand to the growth factor receptor leads 

primarily to the activation of the RAS family, which are small GT-
Pases that exchange GDP for GTP, leading to the phosphorylation 
of RAF-1, MEK, and ERK. This signaling pathway increases the 
production of various transcription factors (c-fos…) and modu-
lates the processes of apoptosis and cell cycle (78, 79). Also, the 
potential cannabinoid receptor GPR55 acts by Ras/Raf-1/MEK/
ERK and JNK modulation (30, 80, 81). However, it appears that 
the EGFR/ERK signaling pathway leads to the inhibition of the 
p8/ATF4/CHOP/TRB3 signaling pathway and, consequently, to 
increased activities of the PI3K/AKT/mTOR signaling pathway 
and the inhibition of apoptosis and tumor cell resistance to can-
nabinoids (82). However, there is a work that shows that canna-
binoids can also lead to the downregulation of the EGF/EGFR 
signaling pathway and subsequently stimulate tumor cell apoptosis 
(83, 84). This effect is further stimulated by the action of FAAH 
inhibitors (83). EGF/EGFR pathway downregulation also leads 
to the inhibition of macrophage recruitment and EMT inhibition, 
further reducing the progression of tumor growth (84).

Another proapoptotic signaling pathway that cannabinoids 
can modulate is the induction of cell death by interacting with 
receptors belonging to the TNFR family. These receptors belong 
to the group of the so-called death receptors (DR) which seek the 
outer pathway of activating apoptosis. It has been shown that the 
use of cannabinoids increases the sensitivity of tumor cells to DR 
ligands. This synergistic effect may be the basis for the joint use 
of cannabinoids and DR ligands for the treatment of oncological 
patients (60, 85). Cannabinoids modulate both (external and in-
ternal) pathways of apoptosis activation.

Cannabinoids activate apoptosis by mechanisms independent 
of CB1 and CB2 receptors. Activation of the GPR55 receptor re-
sults in the recruitment of FAS, DR, and activation of the JNK 
signaling pathway (30, 86, 87). Also, through the activation of 
PPARs and TRPV, cannabinoids modulate apoptosis (30). Another 
mechanism by which cannabinoids can induce apoptosis is the ac-
tivation of the COX-2 signaling pathway (88, 89).

Inhibition of angiogenesis, invasiveness, and metastasis
The major proangiogenic factors that are inhibited by can-

nabinoids are VEGF, PLGF, Ang-2 (90, 91). The process of an-
giogenesis is extremely complex and involves the chemotaxis of 
endothelial cells, their migration, invasion, and proliferation into 
the target tissue, differentiation into tubular capillaries and basal 
membrane production. CBD modulates the process of angiogen-
esis without affecting endothelial cell apoptosis or necrosis (90). 
A key signaling cascade of angiogenesis that is affected by CB1 
and CB2 receptor agonists is the rhoA/FAK/Src signaling pathway. 
This signaling pathway plays a key role not only in angiogenesis, 
but also in cell adhesion and cell migration (51). A key factor in 
this pathway is rhoA, which exists in two states – inactive, in 
which GDP is bound to rhoA and active, in which GTP is bound 
to rhoA. When rhoA is in the active state, it phosphorylates FAK 
thereby progressively reducing the formation of VEGF, PGF and 
Ang-2 (51, 92), which results in decreased activation of VEGFR-2.

Cannabinoids inhibit the expression of two important proteas-
es, namely MMP2 and MMP9. These proteases play an important 
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role in the extracellular matrix and basal membrane remodeling 
process. Furthermore, cannabinoids also affect TIMP1 expres-
sion. TIMP1 has a dual function in the body. First, it is a metal-
loproteinase inhibitor, but it also affects tumor proliferation and 
angiogenesis by mechanisms independent of MMP (91, 93, 94). 
In addition to these mechanisms, cannabinoids also interfere with 
a number of other signaling pathways (CXCL16, CXCR4, IL-8, 
ET-1, SerpinE1/PAI1, uPA, PDGF-AA). These factors play an im-
portant role in the process of angiogenesis, invasiveness, adhesion, 
and extracellular matrix degradation (87, 95, 96). 

Very important is the fi nding that infl uencing angiogenesis by 
decreasing VEGF production and decreasing activation of VEG-
FR-2 occurs via the ceramide/p8 pathway (97). Also, inhibition of 
MMP2 and MMP9 is likely to occur via the ceramide/p8 pathway 
(93). As mentioned above, this fi nding also supports the theory 
that the infl uence of de novo ceramide synthesis is probably a key 
mechanism in the antitumor effect of cannabinoids.

Modulation of the antitumor immune response of cannabinoids
The antitumor effect of cannabinoids can also be caused by 

an antitumor immune response. However, current data show that 
cannabinoids rather reduce the effectiveness of the antitumor im-
mune response and thus lead to the progression of tumor growth 
and metastasis. It is believed that the anticancer immune response 
is primarily mediated by Th1 lymphocytes. On the other hand, the 
increase in Th2 lymphocytes leads to the stimulation of tumor 
growth. Cannabinoids can lead to increased production of IL-4, 
IL-6, IL-10, and TGF-β, which are interleukins increasing Th2 
lymphocyte production and, on the other hand, cannabinoids re-
duce IL-2 and IFN-γ production. This effect is due to the activation 
of CB2 receptors (98, 99, 100). Little is known about the effect of 
cannabinoids on NK cells. However, it is believed that cannabi-
noids reduce the antitumoral effect of NK cells (98). Furthermore, 
cannabinoids lead to increased production of MDSC, cells which 
suppress the cytotoxic activity of NK cells and T lymphocytes. 
This effect of cannabinoids is mediated by the transcription factor 
of PPARγ (101, 102). On the other hand, some data show that this 
immunosuppressive effect of cannabinoids can prevent some types 
of cancer from occurring by suppressing chronic infl ammation 
(103). However, this effect will only manifest with the long-term 
use of cannabinoids. MAGL defi ciency supports CB2-dependent 
and TLR4 receptor-dependent macrophage activity that suppresses 
CD8+ T cell function. Treatment of CB2 antagonist slows the pro-
gression of tumor growth (104).

It must be said that this pronounced immunosuppressive effect 
of cannabinoids, which reduces antitumor immune surveillance, 
seems to be the biggest problem in the clinical use of cannabinoids 
as antitumor drugs. The solution would be to use selective CB1 
receptor agonists and CB2 receptor antagonists in the treatment 
of cancer patients.

For completeness, it is to be noted that cannabinoids lead to 
increased ICAM-1 expression, thereby increasing the susceptibil-
ity of tumor cells to LAK, leading to the cytolysis of tumor cells 
(105). By way of activation of ICAM-1, cannabinoids also reduce 
tumor cell invasiveness and metastasis (106).

Combination of cannabinoids with other anticancer treatments
Cannabinoids have a certain effect on tumor cells that are 

highly resistant to routine chemotherapy. This mechanism may be 
due to the fact that the administration of cannabinoids with other 
chemotherapy or radiotherapy increases the sensitivity of tumor 
cells to antitumor therapy (45, 46, 47, 48, 49, 50, 51, 52). Canna-
binoids are believed to have a synergistic effect with antitumoral 
chemotherapy and radiotherapy (45). The most studied and cited is 
a combination of cannabinoids with temozolomide, a chemothera-
peutic agent used to treat brain tumors, especially glioblastoma 
multiforme. It has been shown that the therapy of glioblastoma 
multiforme with small doses of cannabinoids and temozolomide 
has a much greater antitumor effect than the use of both substances 
alone (107). In addition to temozolomide, it has been shown that 
cannabinoids have a synergistic effect with gemcitabine (108), 
paclitaxel (109), docetaxel (110), and 5-fl uorouracil (111).

The combination of cannabinoids with other chemotherapeu-
tics is advantageous in glioblastomas that are primarily resistant 
to the antitumor effect of cannabinoids. The antitumor effect of 
cannabinoids against glioblastoma cells is primarily mediated by 
autophagy (see above).

Some types of glioblastomas show resistance to cannabinoids, 
which is likely to be due to increased expression of the MDK 
gene. The product of this gene is MDK protein activating ALK. 
Activation of ALK dramatically reduces cannabinoid-mediated 
autophagy. Therefore, a combination of cannabinoids with MDK/
ALK-inhibiting substances could have a major effect on enhancing 
autophagy and thus the antitumoral effect of cannabinoids (112).

However, the MDK/ALK signaling pathway is not the only 
one that inhibits cannabinoid-mediated autophagy in glioblasto-
ma. Increased expression of amphiregulin, a protein belonging to 
a large EGF family, results in increased activation of the EGFR/
ERK signaling pathway. As mentioned, this signaling pathway 
inhibits the p8/ATF4/CHOP/TRB3 signaling pathway and subse-
quently increases PI3K/AKT/mTOR signaling pathway to inhibit 
autophagy and apoptosis (82).

The use of MDK/ALK and EGFR/ERK signaling pathway 
inhibitors in combination with cannabinoids could have a great 
effect in the treatment of glioblastoma (46).

Discussion

Cannabinoids (phytocannabinoids and synthetic cannabinoids) 
have a promising potential in the treatment of cancer patients. Apart 
from symptomatic treatment (nausea, pain, anorexia), where can-
nabinoids mainly affect chronic pain, their antitumor effect may 
also be applied. The main mechanism of action is the activation 
of autophagy and subsequent stimulation of tumor cell apoptosis. 
Autophagy is primarily activated by the accumulation of ceramide 
in the tumor cell. If we consider cannabinoids as an antitumor 
treatment, we need to consider several factors. Cannabinoids affect 
not only CB1 and CB2 receptors, but can also affect many other 
receptors (GPR55, TRP, PPARs). Therefore, it is very important 
to know what the expression of all cannabinoid receptors is – not 
only on tumor cells but also on cells of the immune system. It is 
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also necessary to take into account the effect of epigenetics, which 
means which signaling pathways (p8-TRB3, AKT, AMPK, CKD, 
MDK/ALK, etc.) are active in the tumor. There is a great deal of 
infl uence on the choice of cannabinoid where the different affi n-
ity and intrinsic activity of cannabinoids on cannabinoid recep-
tors can lead to different effects in a particular tumor. Therefore, 
the question is whether to focus on the Cannabis sativa extract, 
which contains the combination of ∆9-THC, CBD, and other can-
nabinoids, or to use synthetic cannabinoids in which we know 
exactly their affi nity and intrinsic activity to different receptors. It 
appears that a combination of a CB1 agonist and a CB2 antagonist 
is likely to have the greatest antitumor effect. In addition, a dose 
of cannabinoid should be considered, since too low (inhibition of 
apoptosis) or too high (immunosuppression) cannabinoid doses, 
on the contrary, can lead to the progression of tumor growth and 
metastasis. The use of cannabinoids in combination with other 
chemotherapies has not only a synergistic effect, but also allows 
the dose of chemotherapeutics to be reduced and, therefore, to re-
duce the undesirable effects of anticancer therapies. In particular, 
the combination of cannabinoids with inhibitors of MDK/ALK 
and EGFR/ERK signaling pathways can have a great therapeu-
tic effect. Unfortunately, most of the current data on antitumoral 
effects of cannabinoids come from in vitro studies or studies in 
animal models. Therefore, it is essential that the antitumor effect 
of cannabinoids (alone or in combination with another chemo/
radiotherapy) is identifi ed in clinical trials.
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