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Abstract. Lung cancer (LC) is the prominent cause of cancer-related death worldwide, and non-small 
cell lung cancer (NSCLC) represents approximately 85% of all diagnosed LC cases. It is stated that LC 
and chronic obstructive pulmonary disease (COPD) are directly linked at a molecular genetics level. 
Early diagnosis of LC is important for individuals affected by COPD. This study aims to construct 
a molecular network to discover molecules in NSCLC development from COPD. We downloaded 
the expression profiles of COPD patients from Gene Expression Omnibus database. The Database 
Annotation for Visualization and Integrated Discovery tool was utilized for enrichment analysis; 
STRING and Cytoscape were used for network construction. 15 hub genes were detected among 
1517 differentially expressed genes (DEGs). Additionally, 20 differentially expressed miRNAswere 
identified from five datasets. We constructed miRNA-mRNA regulatory network between the groups 
of overlapping predicted target genes/DEGs and miRNAs that contained miRNA-mRNA pairs. UAL-
CAN and OncomiR web-portals were used to validate hub genes and miRNAs in NSCLC. JUN, IL6, 
CD4 and hsa-miR-497-5p, hsa-miR-130b-5p were verified in both lung adenocarcinomas and lung 
squamous cell carcinomas. This study presents potential biomarkers and mechanisms underlying 
NSCLC development from COPD that would be targeted for early intervention.

Key words: COPD — NSCLC — Functional enrichment analysis — Protein-protein interaction — 
miRNA-mRNA regulatory network

Abbreviations: BP, biological processes; COPD, chronic obstructive pulmonary disease; DAVID, 
Database annotation for visualization and integrated discovery; DEGs, differentially expressed genes; 
DEMs, differentially expressed miRNAs; GEO, Gene Expression Omnibus; GO, gene ontology; 
IRGs, immune-response related genes; KEGG, Kyoto encyclopedia of genes and genomes; LC, lung 
cancer; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinomas; MCODE, molecular 
complex detection; NCBI, National center for biotechnology information; NSCLC, non-small cell 
lung cancer; PPI, protein-protein interaction; TCGA, The cancer genome atlas.

Gen. Physiol. Biophys. (2020), 39, 69–77

doi: 10.4149/gpb_2019042

Correspondence to: Tuba Denkçeken, SANKO University, Faculty 
of Medicine, Department of Biophysics, 27090 Gaziantep, Turkey
E-mail: tdenkceken@sanko.edu.tr

Introduction

Lung cancer (LC) is one of the leading causes of cancer-
related deaths worldwide. Non-small cell lung cancer 
(NSCLC) accounts for approximately 85% of all diagnosed 
LCs and there are two main histological subtypes: lung ad-
enocarcinoma (LUAD) and lung squamous cell carcinomas 

(LUSC) (Team NLSTR 2011). It is provided that LC and 
chronic obstructive pulmonary disease (COPD) are directly 
associated with molecular genetics level (Young and Hopkins 
2011) and it was shown that 40–70% of patients with LC have 
COPD (Anthonisen et al. 2005). Therefore, early diagnosis 
of LC is important for COPD patients and there is a need for 
clinical biomarkers that reveal the risk of increased cancer 
development.

MicroRNAs (miRNAs) are small non-coding oligonu-
cleotides capable of negatively regulating expression of 
mRNAs by inhibiting protein translation (Ma and Weinberg 
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2008). miRNAs participate in various biological processes 
and depending on their miRNA profiles; tumor cells can be 
distinguished from normal cells (Calin and Croce 2006). 
In addition, tumor cells can release the miRNAs in circula-
tion in such a way that they can be detected in body fluids 
(Mitchell et al. 2008). Increased studies confirm the potential 
role of miRNAs as disease-specific biomarkers, which is 
promising for diagnostic, preventive, or therapeutic targets 
(Arroyo et al. 2011; Chan et al. 2013). Due to miRNAs high 
stability, strong specificity, high sensitivity, and detection 
easily in blood, they have been implicated in a variety of 
lung diseases (Tzortzaki et al. 2013).

Numerous public resources have been installed such as 
Gene Expression Omnibus (GEO) of National Center for 
Biotechnology Information (NCBI) with the improvement 
of high-throughput microarray and sequencing technol-
ogy. Bioinformatics analyses based on the GEO present 
valuable data for searching biomarkers in several diseases 
(Wang et al. 2016; Manchia et al. 2017). However, to the 
best of our knowledge, there is no study available, that have 
been reported on the bioinformatics-based identification 
of potential biomarkers concerning NSCLC development 
from COPD. 

In our study, we aimed to find key genes and miRNAs 
from GEO datasets that could play an important role 
in the development of NSCLC from COPD patients by 
establishing gene ontology (GO), pathway enrichment, 
protein-protein interaction (PPI) network and miRNA-
gene network. UALCAN and OncomiR web-portals were 
utilized to validate the determined hub genes and miRNAs 
in NSCLC. 

Materials and Methods

Selection and inclusion criteria of studies

We examined the GEO database (https://www.ncbi.nlm.nih.
gov/geo/) by using the following keywords: “chronic obstruc-
tive pulmonary disease OR COPD” (study keyword), “Homo 
sapiens” (organism), “Expression profiling by array” (study 
type). Besides, available datasets for related miRNAs were 
searched using the following keywords; “chronic obstructive 
pulmonary disease OR COPD”, “miRNA”, “Homo sapiens”. 
The inclusion criteria were peripheral blood samples of 
COPD patients compared with control, and sufficient in-
formation to perform the analysis. Then, six datasets were 
collected for analysis. The bioinformatics workflow with the 
followed steps is depicted in Fig. 1.

Microarray data and data processing

One mRNA and five miRNA expression profiles were 
downloaded from the GEO database. The included miRNA 
expression profiles were GSE31568, GSE61741, GSE70080, 
GSE24709 and GSE102915, which consist of 24 COPD/70 
control, 47 COPD/94 control, 16 COPD/16 control, 24 
COPD/19 control, and 6 COPD/6 control samples respec-
tively and one included mRNA expression profile GSE94916 
dataset consists of six COPD and six control samples. We 
compared two groups of samples in every dataset to deter-
mine differentially expressed genes (DEGs) and differentially 
expressed miRNAs (DEMs). The comparison was performed 
by limma Rpackage based online program, GEO2R (http://

Figure 1. Flow chart of the data processing and analysis.
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www.ncbi.nlm.nih.gov/geo/geo2r/) according to the cut-off 
criteria p < 0.05 and fold change > 2. According to these 
criteria, DEMs detected in two or more of the five datasets 
were considered as significant.

Functional enrichment analysis

The Database Annotation for Visualization and Integrated 
Discovery (DAVID) is a program that exhibits functional an-
notation of the huge amount of genes obtained from several 
genomic resources (Huang et al. 2008). We used the DAVID 
database to implement GO and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis on significant DEGs. 
The species was limited to “Homo sapiens” and the p < 0.05 
cut-off was considered as significant.

PPI network construction and analysis of modules 

The STRING database (http://string-db.org/) is online 
software that aims to present a  crucial estimation and 
combination of protein-protein interactions, including 
physical and functional relationships (Szklarczyk et al. 
2019). Cytoscape is open-source software, used for the 
visual investigation of biomedical networks comprised 
of protein, gene, and other types of interactions (Shan-
non et al. 2003). The DEGs were plotted to STRING with 
a confidence score > 0.7 as a cut-off criterion to estimate 
the PPI information, and then interactions were visualized 
with Cytoscape. The genes with a node degree ≥ 25 were 
considered as hub genes. Next, the Molecular Complex 
Detection (MCODE) plug-in was used to screen modules 
of hub genes (Bader and Hogue 2003). Modules with 
MCODE scores > 5 and number of nodes > 10 were se-
lected as significant. Moreover, the functional and pathway 
enrichment analyses of DEGs in mostly significant module 
were conducted by DAVID. 

miRNA-gene network construction

All miRNA names were standardized according to miRBase 
v22 by using miRNAme Converter available in Bioconduc-
tor R package (Haunsberger et al. 2016). Then, MultiMiR 
package (http://multimir.ucdenver.edu/) includes 14 data-
bases which were used to predict targets of miRNAs with the 
criterion of primary score listed in top 35 (Ru et al. 2014). 
Genes obtained by minimum three predicted algorithms 
were chosen for the following analysis. We subsequently 
selected the overlapping genes of significant DEMs-mRNA 
and the DEGs data. The miRNA-mRNA networks were 
visualized by Cytoscape. The combination of miRNAs 
and genes with degree ≥ 3 in miRNA-gene network and 
hub genes detected by PPI&Cytoscape were considered as 
potential key genes. 

Validation analysis

The identified potential key genes from GEO datasets were 
searched and verified in LUSC and LUAD based on The Can-
cer Genome Atlas (TCGA) datasets. UALCAN is an interac-
tive web resource used for analyzing cancer transcriptome 
data which allows users to define biomarkers and provides 
publication-quality graphs and plots illustrating gene ex-
pression (Chandrashekar et al. 2017). p < 0.05 cut-off was 
considered as significance criterion. Also, OncomiR WashU 
Pan-Cancer miRNome Atlas was used for miRNA validation 
which is freely available to all users in which aligned and 
normalized miRNA-seq and RNA-seq data were obtained 
from TCGA. It enables the statistical analysis of DEMs for 
each cancer type (Wong et al. 2018).

Results

Identification of DEGs and DEMs

Gene and miRNA expression data were obtained from the 
GEO database. Following the GEO2R analysis, 1517 DEGs 
were extracted from the expression profile dataset GSE94916 
of which were 31 upregulated and 1486 downregulated 
(p < 0.05 and |logFC| > 2.0). Besides, the miRNA profile 
datasets were analyzed to screen DEMs in COPD using the 
GEO2R tool. Totally 20 DEMs (seven upregulated and 13 
downregulated) were identified which appeared in at least 
two datasets and matched the cut-off criteria (p < 0.05 and 
|logFC| > 2.0). They all showed consistent expression patterns 
in different datasets.

Functional enrichment analysis

For the DEGs, we listed top five statistically significant en-
riched GO terms on biological processes (BP), and KEGG 
pathways (p < 0.05) (Fig. 2). 

PPI network and identification of hub genes

The DEGs were used to set the PPI network by STRING, 
which composed of 1158 nodes and 1789 edges. Subse-
quently, we analyzed the STRING results using Cytoscape 
and 15 genes in the PPI network were identified as hub 
genes (degree ≥ 25). These hub genes included TP53, JUN, 
IL6, LCK, PLCG1, CD3G, CD3D, IL4, CD4, CCR7, CD3E, 
ZAP70, CTLA4, GNB5, and CD28. To further understand 
the interaction of 15 hub genes, the PPI network of them 
was constructed by STRING, which composed of 15 nodes 
and 48 edges (Fig. 3). We identified four clusters from the 
PPI network using MCODE. According to their degree of 
importance, the most important cluster that consists of 
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41 nodes and 269 edges was selected for further analysis. 
KEGG pathway enrichment analysis of the genes involved 
in this cluster was performed by DAVID (Fig.4). The 
pathway enrichment analysis showed that the genes were 
mostly enriched in T  cell receptor signaling pathway, 
primary immunodeficiency, intestinal immune network 
for IgA production, Staphylococcus aureus infection and 
HTLV-I infection. 

Construction of the miRNA-gene regulatory network

The overlapping mRNAs of the miRNA-target gene pre-
dictions and DEGs in GSE94916 were determined and 
these overlapped 255 DEGs were used to construct the 
regulatory network. The miRNAs with no targets were 
excluded and inversely correlated miRNA-target gene 
regulatory network was constructed. The remaining nine 

Figure 2. Enriched gene ontology terms of top five differentially expressed genes obtained from the DAVID of biological processes (A) 
and KEGG pathway (B).

Figure 3. Protein-protein interaction network of 15 hub genes.

A

B
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miRNA and 82 mRNA made 93 miRNA-mRNA pairs. 
The relationship between miRNAs and mRNAs is shown 
in Fig. 5. miRNAs; hsa-miR-1299, hsa-miR-556-3p, hsa-
miR-1246, hsa-miR-1258, hsa-miR-130b-5p, hsa-miR-
497-5p, and FLT3 showed degree ≥ 3 in the miRNA-gene 
network. These results were combined with the hub genes 
and considered to be potential key genes in developing 
NSCLC from COPD.

TCGA verification of potential key genes

TCGA data of LUAD and LUSC patients were used via the 
UALCAN data portal and OncomiRWashU Pan-Cancer 
miRNome Atlas to demonstrate the aberrant expression 
of potential key genes. Considering the cut-off criterion of 
p < 0.05 and the fact that our genes and miRNAs show the 
same expression pattern in all GEO, UALCAN and OncomiR 
WashU Pan-Cancer miRNome Atlas datasets; JUN, IL6, 
CD4 genes (Fig. 6) and hsa-miR-497-5p, hsa-miR-130b-5p 
(Table 1) miRNAs were found to be significant in LUAD 
and LUSC. 

Discussion

The morbidity and mortality of LC are both relatively 
high among the cancers (Shen et al. 2016) and various 
epidemiological studies, including LC screening trials, have 
determined 2–4 fold increase in LC risk in COPD patients 
when compared to control (Gonzalez et al. 2016). With 
well-developed microarray technology, it is easier to identify 
the genetic changes underlying the development of NSCLC 
from COPD patients. Also, by using bioinformatics tools, it 
is possible to identify new biomarkers and establish networks 

Table 1. The p-values of the detected miRNAs in both cancer type 
LUAD and LUSC obtained from OncomiR web-portal

  Cancer type p-value

hsa-miR-497-5p
LUAD 1.33 × 10–2

LUSC 8.79 × 10–10

hsa-miR-130b-5p
LUAD 8.71 × 10–10

LUSC 2.54 × 10–17

Figure 4. A. The most important module generated by MCODE. B. KEGG pathway in the module of A.

A

B
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that could be helpful to determine the relationship between 
these two diseases. 

In our study, pathway enrichment analysis revealed that 
the hematopoietic cell lineage pathway was mostly enriched. 
It was demonstrated that this pathway is one of the key path-
ways in occurrence and migration in NSCLC (Li et al. 2016) 
also in COPD (Bi et al. 2015). Additionally, four clusters 
were acquired from the PPI network using MCODE. T cell 
receptor signaling pathway is the most enriched pathway 
in the highest significant cluster. It was also associated with 
COPD (Cruickshank-Quinn et al. 2018) and NSCLC (Chen 
et al. 2017) in some other studies. By constructing PPI, 
among 1517 of DEGs, 15 genes were identified as hub genes 
in COPD according to their high degrees in the network. 
JUN (degree = 41), IL-6 (degree = 41) and CD4 (degree = 
29) were validated in LUAD and LUSC by using UALCAN. 
Jun proto-oncogene, activator protein-1 transcription factor 
subunit (JUN), is important for cell proliferation, survival, 
and apoptosis, and was reported to be a crucial contribut-
ing factor for tumorigenesis due to its downregulation in 
numerous types of human cancer (Fan and Ye 2018). IL-6 
is one of the most important regulators of the cytokine-
related tumor biology (Łukaszewicz et al. 2007). CD4 is 
a  membrane glycoprotein and associated with the T-cell 
receptor signaling pathway (Kohm et al. 2002). CD4 T cells 
and macrophages are the crucial immune cells that mediate 

senescence surveillance of pre-malignant cells. Cells become 
malignant when they escape from senescence surveillance 
and progress further during tumor development, and then 
go through cancer surveillance.CD4 and CD8 T  cell re-
sponses play a pivotal role in mediating the elimination of 
malignant cells (Ostroumov et al. 2018). Chen et al. (2017) 
searched the roles of immune-response related genes (IRGs) 
in lung cancer progression and found different expression 
profiles of IRGs in LUAD and LUSC but it is still unclear the 
precision mechanism of development of cancer in COPD. 
Evolving evidence has shown that the dysregulation of 
miRNAs is an important component of the pathogenesis of 
different cancers, including NSCLC. miRNAs regulate the 
expression of most genes and create a complex expression 
regulation network that interacts tightly with known gene 
regulatory networks. In this study, 20 DEMs were identified 
from five microarray datasets due to our cut-off criterion, of 
which seven were upregulated and 13 were downregulated. 
miRNA-gene regulatory network was constructed between 
targets of these miRNAs that overlap to DEGs which made 
93 miRNA-mRNA pairs. hsa-miR-1299, hsa-miR-556-3p, 
hsa-miR-1246, hsa-miR-1258, hsa-miR-130b-5p, hsa-miR-
497-5p and FLT3 were considered to be significant (degree 
≥ 3) and hsa-miR-497-5p (degree = 3) and hsa-miR-130b-
5p (degree = 3) were statistically significant according to 
the OncomiR WashU Pan-Cancer miRNome Atlas in both 

Figure 5. miRNA-mRNA regulatory network of COPD. Rectangle corresponds to the differentially expressed genes and diamond to the 
differentially expressed miRNAs screened.
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LUAD and LUSC. Abnormal expression and function of 
miR-497 have been presented in different types of cancer 
(Hu et al. 2016; Pengcheng et al. 2017). Besides, there are 
some reports concerning NSCLC and miR-497-5p (Huang 
et al. 2019; Li et al. 2019). These two studies concluded that 
miR-497-5p is a tumor suppressor miRNA and exhibit its 
potential use in the treatment of human NSCLC in the fu-
ture. miR-130b was downregulated in cancer tissues, and 
they acted as anti-tumor miRNA in different types of cancer 
(Wang et al. 2014; Ramalho-Carvalho et al. 2017). Further-
more, the importance of miR-130b was also determined in 
NSCLC (Mitra et al. 2014). 

In this study, we applied bioinformatics analysis to iden-
tify key genes and miRNAs that may be used as prognostic 
biomarkers in NSCLC development from COPD patients. In 
conclusion; JUN, IL6, and CD4 hub genes and additionally 
hsa-miR-497-5p and hsa-miR-130b-5p were determined 
in COPD were validated in both LUAD and LUSC. This 
bioinformatics analysis contributed a comprehensive view 
to understand the mechanism underlying NSCLC develop-
ment from COPD patients. 
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