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Introduction

Infl uenza A virus (IAV) belongs to the family Ortho-
myxoviridae. Its genome contains eight segments of 
negative-sense, single-stranded RNA, each embedded into 
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Summary. – Non-structural NS1 protein of infl uenza A virus counters host antiviral defences by an-
tagonizing the interferon response. The C-terminal eff ector domain suppresses the host response and is 
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domain, we used reverse genetics system to generate NS1-truncated virus (NS80) and compared the cy-
tokine profi les in the lungs of mice infected with the NS80 mutant and with the control virus A/WSN/33 
(WSN). The NS80 virus was attenuated and the viral titer in the lungs was about 25 times lower than 
viral titer of control A/WSN/33. Mice infected with NS80 virus exhibited more severe clinical symptoms 
and 2 mice died 6 days post infection. NS80 virus activated retinoic-inducible gene (RIG)-1-like receptor 
signaling pathway more strongly than control WSN virus and mice infected with NS80 virus exhibited a 
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of the following factors: pro-infl ammatory cytokines (IL-1α, IL-1β, TNF-α, IL-16), interferons (IFN-α and 
IFN-ε), chemokines (CCL2, CCL11, CXCL1, CXCL5, CXCL10, CXCL11 and CXCL13), matrix metallopeptidase 
9 (MMP-9), metallopeptidase inhibitor 1 (TIMP-1), macrophage colony-stimulating factor (M-CSF), and 
vascular cell adhesion protein 1 (VCAM-1). All these cytokines are associated with viral pathogenicity. 
Our data show that attenuation of the virus should not be directly linked with pathogenicity. 
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ribonucleoproteins by multiple copies of the viral nucleo-
protein and the viral RNA-dependent RNA polymerase. 
The approximately 13 kb genome encodes up to 18 pro-
teins. The eighth segment encodes the non-proteins struc-
tural NS1 and NEP/NS2. The multifunctional NS1 protein 
antagonizes host antiviral responses and contributes to 
effi  cient viral replication during infection. The NS1 pro-
tein consists of a N-terminal RNA binding domain, a short 
linker, an eff ector domain, and a C-terminal ‘tail’ (Kerry 
et al., 2011; Ayllon et al., 2012). The RNA-binding domain 
binds in particular dsRNAs, allowing the virus to inhibit 
the α/β interferon response (Qian et al., 1995; Donelan et al., 
2003). This domain interacts with the eukaryotic transla-
tion initiation factor 4G1, facilitating preferential transla-
tion of viral mRNA over host mRNAs (Aragón et al., 2000). 
A recent study shows that RNA-binding domain plays an 
essential role in the virus replication cycle, notably in 
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expression and translation of viral mRNAs (Trapp et al., 
2018). The eff ector domain binds the cellular cleavage and 
polyadenylation specifi c factor 30 (CPSF30), which is es-
sential for processing of the 3' end of cellular pre-mRNAs. 
Sequestration of CPSF30 blocks processing of interferon 
(IFN)-β and cytokine-independent antiviral pre-RNAs 
in the nucleus to form mature RNAs in the cytoplasm 
(Nemeroff  et al., 1998). In addition, the sequestration of 
dsRNA and/or interaction with the RNA helicase RIG-1 
prevents activation of the transcription factors IRF3, nu-
clear factor-kappa beta (NF-ĸB) and cJun/ATF2, and hence 
the synthesis of type I IFNs (Talon et al., 2000a; Wang et 
al., 2000; Smith et al., 2001; Ludwig et al., 2002). Shorten-
ing of the linker region of the avian H1N1 infl uenza virus 
NS1 protein increases its replication and pathogenicity 
in chickens (Trapp et al., 2014). The C-terminal region 
is essential for regulation of antiviral responses, may 
interact with PDZ-binding protein(s) and can modulate 
pathogenicity through alternative mechanisms (Jackson 
et al., 2008; Anastasina et al., 2015).  

Previous studies have demonstrated that retinoic 
acid-inducible protein 1 (RIG-1) and toll-like receptors 3 
and 7 (TLR3 and 7) play important role in the recognition 
of infl uenza viruses (Guo et al., 2007; Malathi et al., 2007; 
Mibayashi et al., 2007; Sabbah et al., 2009; Thomas et al., 
2009). Signaling through both RIG-1 and TLR3 is impor-
tant for IFN induction (Wu et al., 2015). Stimulation of 
RIG-1 activates specifi c pathway that leads to activation of 
NF-ĸB, which is crucial for the induction of infl ammatory 
cytokines (Fitzgerald et al., 2003). Excessive infl amma-
tory response together with viral virulence can increase 
disease severity (Kuiken et al., 2012). 

It is still not easy to evaluate all possible functions of 
the NS1 protein since some functions of NS1 that infl uence 
virus pathogenicity and host range are strain- or cell-
type-specifi c (Pu et al., 2010; Yan et al., 2017). In the present 
study, we have investigated the impact of the eff ector 
domain and C-terminus of NS1 protein on cytokine profi le 
induced in infected Balb/c mice. The results provide novel 
insights into the pathology of infl uenza A infection and 
may have applications for the improvement of infl uenza 
vaccine and therapy. 

Materials and Methods

Cells and viruses. MDCK (ATCC CCL34), Vero (ATCC CCL81) 
and A549 (ATCC CCL185) cells were grown in Dulbecco's modi-
fi ed Eagle medium (DMEM) containing 10% calf serum in a 5% 
CO2 atmosphere at 37°C. Viruses prepared by reverse genetics 
system (WSN and NS80) were propagated in Vero cells.

Plasmid construction and generation of viruses. Virus with 
mutated NS1 protein was generated using the plasmid-based 

reverse genetics system, a kind gift  of Dr. Y. Kawaoka (Hoff mann 
et al., 2000). The stop codon was introduced to NS1 sequence 
of pHW 188-NS plasmid at nucleotide position 263 by inverse 
PCR using back-to-back primers: NS80 forward 5'-CGATGAG 
GCACTTAAAATGACCTAAATGGCCTCTGTACCTGCGTCG-3' and 
reverse 5'-GATTCTTCTTTCAGAATCCGCTC-3' and Phusion Site-
Directed Mutagenesis Kit (Molecular Biology). The nucleotide 
sequence of resulting construct was confi rmed by sequencing. 
DNA was purifi ed using Pure Yield™ Plasmid Maxiprep System 
(Promega). The viruses WSN and NS80 were prepared as previ-
ously described (Švančarová and Betáková, 2018). All viruses 
were sequenced to confi rm the presence of wanted mutations. 

Cytokine array . Female BALB/c mice ages 4–5 weeks were 
purchased from Faculty of Medicine, Masaryk University 
(Czech Republic). A total of 32 mice in two groups of 16 mice 
were anesthetized with Zoletil (50  mg/kg) and inoculated 
intranasally with 103 plaque-forming units (PFU) of WSN or 
NS80 virus (40 μl). Mice were monitored daily and humanely 
sacrifi ced at the experimental endpoint, which was defi ned as 
weight loss exceeding 25% of the original body weight. For the 
cytokine assay, 4 mice were sacrifi ced by cervical dislocation 
and the lungs were aseptically collected at 0, 2, 4 and 8 days post-
infection (p.i.). Organ homogenates were pooled together, and 
aliquots were stored at -80°C. Lung tissue homogenates (100 μl) 
were lysed and the protein concentration was determined us-
ing the Pierce BCA Protein assay kit (Thermo Fisher Scientifi c, 
Illinois, USA). Chemokine expression in lung tissue lysates was 
assessed using the Proteome Profi ler Mouse XL Cytokine array 
kit (R&D Systems, Minnesota, USA). Signal intensities on auto-
radiography fi lms were quantifi ed using Gene Tools soft ware 
(Syngene). The expression levels of cytokines were normalized 
to the expression level of the reference spots. The assay was 
performed in duplicate to ensure reproducibility of the results.

Determination of virus titres. Cellular debris was removed 
from lung tissue samples by centrifuging at 160 x g for 10 min 
at 4°C and the supernatants were used for virus quantifi cation. 
The viral titers are expressed as PFU/ml of lung homogenate 
in MDCK cells using a plaque assay as previously described 
(Svetlíkova et al., 2010). The results are expressed as the mean 
of two independent experiments. 

Semi-quantitative RT-PCR. Total RNA from the lungs was 
extracted usin g SV Total RNA Isolation System (Promega, 
Wisconsin, USA). 400  ng/μl of RNA was reverse transcribed 
using random hexa-nucleotide primers and MuLV reverse 
transcriptase (Finnzyme, Thermo Fisher Scientific, Mas-
sachusetts, USA). Viral transcripts were detected by semi-
quantitative PCR. The primers targeting β-actin, IFN-α, IFN-β, 
IFN-γ, IFN-λ, and RIG-1 were previously described (Švančarová 
et al. 2015). The sequences of other primers used in this study 
were as following: MDA5 forward 5'-GAGAGTGATGACGAGG 
CCAG-3' and reverse 5'- ACTGGGAAAGTGCGTAGGTG-3'; NF-κB 
forward 5'-GCA GGGTCACTCGATTTCAT-3' and reverse 5'-TCAA 
GACACTGCACCTGAGC-3'; IRF3 forward 5'-GTCCTCAGATCTG 
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GCTATTG-3' and reverse 5'-GCTTCAGTGGATTTTC TTGG-3'; IRF4 
forward 5'-TCACTTGTTCGTGGAGCATC-3' and reverse 5'- TCTGG 
AGTCAGTGCTGATGG-3'; IRF7 forward 5'- CCACGGAAAATAGG 
GAAGAA-3' and reverse 5'-CATAGGGTTCCTCGTAAACA-3'; and 
IFN-ε forward 5'-CAGCAGCCTG TGAGTCCTCACCAG-3' and 
reverse 5'-GGTTTTCCTCCCAAATGC CCATAGTC-3'.

The intensity of the PCR products was determined using 
Gene Tools image analysis soft ware (Syngene). β-actin was used 
as an internal control to normalize the expression of the target 
mRNA levels between diff erent samples. 

Statistical analyses. Statistical analysis was performed by 
comparing the data obtained from two independent experi-
ments. Signifi cant diff erences of the values between the con-
trols group (WSN) and NS80 were calculated using the unpaired 
Student's t-test. P-values <0.05 were considered to be signifi -
cant. Statistical analysis was performed using Graph-Pad Prism 
soft ware (http://www.graphpad.com/quickcalcs/ttest1.cfm).

Ethics statement. All animal experiments were approved by 
the Institutional Animal Care and Use Committee (IACUC) at 
the Biomedical Research Center SAS, Institute of Virology. The 
animals were treated according to the European Union stand-
ards and the fundamental ethical principles, including animal 
welfare requirements, were respected. All of the animal experi-
ments were evaluated and approved by the State Veterinary and 
Food Administration of the Slovak Republic, Permit Number: 
4370/13-221 and 1204/11-221. 

Results

Attenuation of NS80 virus 

The viruses WSN (control virus) and NS80 (NS1-trun-
cated virus) have been generated by using reverse genetics 
system.  NS80 virus underwent about 20 passages on Vero 
cells and NS gene was sequenced to exclude reversion of 
NS80 to wild type. To prove the attenuation of NS80 virus, 
we examined the multiple-cycle growth kinetics of NS80. 
MDCK and A549 cells were infected at an MOI of 0.01 and 
the virus titer in the supernatants of infected cells was 
measured at diff erent times post infection by the plaque 
assay. The NS80 virus was more attenuated in MDCK cells 
than in A549 cells (Fig. 1). 

Mortality and virus replication

To determine whether the introduction of the deletion 
results in any changes in the mortality and virus replica-
tion in vivo, mice were intranasally inoculated with 103 
PFU of the respective virus. Balb/c mice infected with 
control WSN virus did not show any signs and symp-
toms of illness and exhibited maximum weight loss up 
to 13% (Fig. 2a). The mice infected with NS80 virus were 

Fig. 1

Multi-step growth curves in MDCK and A549 cells
Confl uent monolayers of Vero or A549 cells were infected with 
viruses at an MOI of 0.01 and incubated at 37°C. At diff erent time 
points, virus titer in culture medium was determined by a plaque 
assay on Vero cells as described in Materials and Methods. The data 
shown represent the mean ±SD for three independent experiments. 
Statistically signifi cant diff erences between WSN and NS80 are 
indicated as follows:  **P <0.001 and ***P <0.0001.

Fig. 2

Survival rate aft er infection with NS80 and WSN virus
BALB/c mice were infected with NS80 and control WSN viruses (103 
PFU) as described in Materials and Methods. (a) Percentage body 
weight loss relative to the initial weights were recorded daily until 
8 days p.i. Statistically signifi cant diff erences between WSN and 
NS80 are indicated as follows: *P <0.05, **P <0.001 and ***P <0.0001. 
(b) Survival rates (%) were calculated as the number of surviving ani-
mals / total number of animals x 100. n = 8 mice at each time point. 

(a)

(b)

(a)

(b)



 TURIANOVÁ, L. et al.: THE NS1 PROTEIN OF INFLUENZA A VIRUS AND PATHOGENICITY 81

lethargic and had bristled fur between 4–6 days p.i. They 
exhibited maximum weight loss of 22% and 2 mice even 
died (Fig. 2a,b). On the eighth day, the surviving mice did 
not show any signs and symptoms of illness. 

Macroscopic changes in the lungs correlated with virus 
pathogenicity. Infection with viruses caused visible mac-
roscopic changes in the lungs at 4 and 8 days p.i. (Fig. 3a). 
Other organs (such as heart, spleen, liver etc.) did not 
show visible signs of pathology. Naked-eye observation 
of lungs revealed that the most severe signs of damage 
were recognized in the mouse infected with NS80 virus 
at 8 days p.i. Minimal pathological changes were visible 
in the lungs infected with control WSN virus. 

To ensure that the NS80 virus still remains phenotypi-
cally intact, the homogenates from the lungs were used 
for purifi cation of RNA and NS gene was sequenced to 
confi rm the presence of wanted mutations.  The obtained 
data proved the stability of NS80 virus.

The virus titer was established in the lungs homogen-
ates as described in materials and methods. Both viruses 
reached the maximal viral titer at 4 days p.i. and no virus 
was detected in the lungs at 8 days p.i. (Fig. 3b). In agree-
ment with the results obtained in vitro, the NS80 virus 
was attenuated and the virus titer was about 25 times 
lower than the titer of control WSN virus.

Activation of RIG-1-like receptor signaling path-
way

Since the NS1 protein suppresses the antiviral host 
defence by blocking the activation of IRF3, we investigated 
the induction of some genes important for the regulation 
of IFNs expression in response to viral infection. mRNA 
levels of selected genes in infected lungs were determined 
using semi-quantitative PCR assay at 0, 2, 4, and 8 days p.i. 
(Fig. 4a,b). NS80 virus activated RIG-1-like receptor sign-
aling pathway more effi  ciently than control WSN virus. 
Higher expression of RIG-1 and MDA-5 mRNA resulted 
in higher expression of IRF3 and IRF7 mRNA in the lungs 
infected with NS80 virus at 4 and 8 days p.i. Consequently, 
the level of IFNs, especially IFN-α and IFN-ε, was eff ectively 
activated by NS80 virus. NS80 virus also induced higher 
expression of NF-ĸB and IRF4 mRNA than WSN virus. 

Infection with NS80 virus signifi cantly increased 
the expression of cytokines associated with patho-
genicity

Diff erent cytokine expression profi les were observed 
following infection with control WSN and NS80 viruses. 
The expression of 130 soluble mouse proteins in the 
lungs of mice infected with either virus were compared. 
Infection with WSN virus did not signifi cantly infl uence 
the expression of the tested cytokines compared with 
uninfected mice (Fig. 5). On the other hand, infection with 
NS80 virus induced major changes in the expression of 
some cytokines. A signifi cant decrease in the expression of 
IL-1α, TNF-α, CXCL10, CCL2, macrophage colony stimulat-
ing factor (M-CSF), and T cell immunoglobulin and mucin 
domain (TIM-1) was observed at 2, 4, and 8 days p.i. In 
contrast, an additional group of the cytokines, including 
IL-1β, IL-16, CXCL11, and vascular cell adhesion molecule 
1 (VCAM-1) was highly induced by NS80 virus at 2 and 4 
days p.i. Cytokines, CXCL5, plasminogen activator inhibi-
tor type 1 (PAI-1) and matrix metallopeptidase (MMP)-9 
were more abundant in the lungs of mice infected with 
NS80 virus, particularly at 2 days p.i. The increased level 
of chemokine CXCL13 was observed at 4 days p.i. The 
expression of these cytokines was signifi cantly higher 
when compared to uninfected control at the same time 
points post-infection.

Discussion

It is believed that virus pathogenicity is directly pro-
portional to the replication potential of the virus. It was 
already shown that deletion mutant NS80 was more at-
tenuated on MDCK cells than mutants NS99 and NS124. 

Fig. 3

Macroscopic changes and virus titer in the lungs
Mice were infected with NS80 and control WSN viruses as described 
in Materials and Methods. (a) The lungs were collected on days 2, 4, 
and 8 p.i. 0 day represents uninfected mice. (b) The virus titer was 
determined in the lung tissue homogenates as described in mate-
rials and methods. The values are the means of two independent 
experiments. Statistically signifi cant diff erences between WSN and 
NS80 are indicated as *P <0.05.

(a)

(b)
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These viruses were much less virulent than the wild-type 
virus and replication in mice decreased with increasing 
length of the deletion (Egorov et al., 1998; Talon et al., 
2000b; Ferko et al., 2004). We have shown that NS80 virus 
was attenuated on MDCK cells and only moderately atten-
uated on A549 cells. The viruses were grown and titrated 
in Vero cells. It was shown previously that Vero cells lack 
the capacity to produce their own IFN and are suitable for 
propagation of NS80 virus (Enemy and Morgan, 1979). The 
A549 cells produce a high level of MxA protein in response 

to IFN and that is why the virus titers are lower than in 
Vero cells (Files et al., 1998). The NS80 virus was also at-
tenuated in Balb/c mice. In comparison with the control 
WSN virus, the viral titer was about 25 times lower in the 
lungs of mice infected with NS80 virus. Despite the fact 
that the replication of NS80 virus was much lower, the 
infected animals exhibited disease symptoms as lethargy, 
bristled fur, signifi cant weight lost and 2 mice died at 
6 days p.i. In order to verify our initial observation, we 
have performed several independent experiments and 

Fig. 4

Activation of RIG-1-like receptor signaling pathway
BALB/c mice were infected intranasally with NS80 and control WSN viruses (103 PFU). The lungs were collected at day 2, 4, and 8 p.i. The 
lung homogenates were used for assessment of mRNAs. The representative RT-PCR products (a) and quantitative relative levels of mRNAs 
were obtained (b). The expression values represent the mean of two separate experiments and are expressed as the mean ±SD. Statistically 
signifi cant diff erences between WSN and NS80 are indicated as follows: *P <0.05; **

 P <0.001; ***P <0.0001.
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used diff erent amount of WSN and NS80 viruses. The 
mice infected with NS80 virus repeatedly showed disease 
symptoms and severe macroscopic changes of lungs (data 
not shown), in contrast with the mice infected with the 
same amount of control WSN virus. 

The NS1 protein of infl uenza A virus regulates RIG-
1-like receptor pathway and pathogenicity of the virus. 
It was not surprising that NS80 virus highly stimulated 
RIG-1 and MDA5 signaling cascades that led to higher 
activation of IRF3, IRF7, and NF-ĸB. IRF3 and IRF7 act 
as transcriptional factors for type I and type III IFNs 
(Fitzgerald et al., 2003; Kotenko et al., 2003). The levels 
of IFN-α/β mRNA increased immediately aft er infection 
with NS80 virus and stayed increased up to 8 days p.i. The 
importance of IFN-α/β and IFN-λ in response to infl uenza 
virus has been demonstrated in several contexts (Svet-
likova et al., 2010; Wu et al., 2015). We have tested a newly 

described type I IFN, namely IFN-ε. IFN-ε is constitutively 
expressed in mucosal tissues, reproductive tissue and 
intestine and promotes clearance of viral infection in the 
lungs (Xi et al., 2012). Our results suggest that IFN-ε plays 
an important role in controlling mucosal pathogens such 
as infl uenza virus. 

The expression of IRF4 was also greatly induced by 
NS80 virus at 4 days p.i. IRF4 controls the magnitude 
of the CD8+ T cell response to acute virus infection in a 
dose-dependent manner and even modest diff erences in 
IRF4 expression can dramatically infl uence the intensity 
and quality of the adaptive immune response (Nayar et 
al., 2014). It would be worthwhile to further investigate 
how NS1 protein infl uences adaptive immune response.  

Activation of RIG-1-like receptor pathway and produc-
tion of IFNs infl uence the replication of NS80 virus. It is 
interesting that attenuated NS80 virus was more patho-

Fig. 5

Cytokines exhibiting increased expression in the lungs of the mice infected with NS80 virus
BALB/c mice were infected intranasally with NS80 and control WSN virus (103 PFU). The protein levels of cytokines were determined in 
the lungs harvested at 2, 4, and 8 days post infection. Day 0 represents uninfected mice. The value represents the mean of two separate 
experiments. Statistically signifi cant diff erences between WSN and NS80 are indicated as follows: *P <0.05; **

 P <0.001; ***P <0.0001.
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genic in Balb/c mice than control WSN virus. Comparison 
of cytokine profi les obtained from the lungs infected with 
NS80 and WSN viruses led as to suggestion that excessive 
immune response could be responsible for higher patho-
genicity of NS80 virus. Activation of RIG-1-like receptor 
signaling pathway by NS80 virus resulted in induction 
of infl ammatory cytokines, which are associated with 
higher pathogenicity of some viruses (de Jiong et al., 
2006; Kash et al., 2006; LaGruta et al., 2007). The IFN-α 
and TNF-α can stimulate local infl ammatory response 
and activate the chemokines and monokines that recruit 
monocytes, macrophages and neutrophils. Macrophages 
and monocytes newly recruited to the infl amed lungs can 
be subsequently infected by the virus (Baskin et al., 2009; 
Sanders et al., 2011). Induction of the chemokines CXCL5 
and CXCL11 depended on the virus replication and levels 
of these chemokines went back to normal at 8 days p.i., 
when the viral titer was no more detectable in the lungs.  
On the other hand, the levels of cytokines CCL2, CXCL10, 
and CXCL13 were still very high aft er the virus clearance. 
Cytokine IL-16 and chemokines CCL2, CXCL11, CXCL13 
are associated with disease severity aft er infection with 
avian and highly pathogenic human viruses (Cole et al., 
1998; Qin et al., 1998; Huang et al., 2012; Davey et al., 2013; 
Betakova et al., 2017, Turianova et al., 2019). Overexpression 
of chemokines CCL2 and CXCL10 is linked with mortal-
ity (Lai et al., 2017; Turianova et al., 2019). Chemokine 
CXCL5 regulates neutrophil traffi  cking and activity. As a 
primary target of infl uenza virus, airway epithelial cells 
produce infl ammatory cytokines upon infection (Huang 
et al., 2012). Changes in CXCL5 level have already been 
correlated with severity of infl uenza virus infection in 
mice and humans (Fu et al., 2016; Blackmore et al., 2017). 

Li et al. (2013) have showed that M-CSF promotes the 
development of mature monocytes and tissue resident 
macrophages and M-CSF treated humanized mice exhib-
ited an enhanced protection against infl uenza virus. The 
positive role of M-CSF was associated with increased level 
of pro-infl ammatory cytokines (IL-6, TNF-α, and IL-1β). 
On the other hand, the increased level of TIMP-1, M-CSF, 
PAI-1, and MMP-9 correlated with infl ammatory cytokine 
expression and lungs damage (Khuth et al., 2001; Hoff man 
et al., 2006). The overexpression of MMP-9 is associated 
with the damage of many organs and tissues and plays an 
essential role in the infection and in the host response to 
infection (Luplertlop et al., 2006; Muhammad et al., 2016). 
The MMP-9 a activates cycle that is one of the important 
mechanisms of multiple organ failure in severe infl uenza. 
A/PR/8/34 infection increased the levels of CCL2, MMP-9 
and trypsin in serum and/or the lungs and heart (Taka-
hashi et al., 2018).

Taken together, our results showed that virus NS80 
infl uences NF-ĸB pathway leading to the upregulation 

of cytokines IL-16, CCL2, CCL11, CXCL-1, CXCL5, CXCL10, 
CXCL13, MMP-9, TIMP-1 and PAI-1. Excessively high 
activities of these cytokines are linked with tissue dam-
age, spread of virus into other organs, and viral-induced 
diseases (Herold et al., 2015; Marro et al., 2016). Despite 
the lower viral titer, NS80 virus elicited a robust immune 
response, which worsened the severity of lung injury. Our 
results showed that attenuation of a virus should not be 
directly correlated with its pathogenicity. 
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