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Extranodal NK/T-cell lymphoma nasal type (ENKTL) is a subtype of T cell lymphoma with poor prognosis. In this study, 
we designed a new prognostic model specifically for ENKTL to improve the risk stratification. In 29 ENKTL patients, we 
screened mutations in 9 ENKTL-associated genes using next-generation sequencing (NGS). We have found that mutated 
KMT2D was associated with the inferior overall survival (OS) and progression free survival (PFS) and KMT2D or TP53 
mutations were associated with a higher mortality rate. Moreover, the difference in PFS among different stratifications was 
not significant using the International Prognostic Index (IPI) alone but was significant after the mutation status of KMT2D 
and TP53 were incorporated into the IPI model, forming a harmonious risk stratification reflecting the clinical features and 
genetic information of ENKTL. In summary, we demonstrate that the prognostic value of the IPI system can be enhanced 
by integrating the status of genetic mutations. 
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Extranodal NK/T cell lymphoma (ENKTL) is a subtype 
of non-Hodgkin’s lymphoma (NHL), characterized by a 
cytotoxic phenotype and is associated with Epstein-Barr virus 
(EBV) infection [1]. ENKTL is an aggressive disease with an 
incidence of about 5–18% of NHL [2] and most commonly 
occurs in East Asia and Latin America [3]. Although the 
survival time of patients has been improved by chemoradio-
therapy and autologous stem cell transplantation, the risk 
of relapse and drug resistance is still high [4]. At present, 
optimal treatment strategies and prognosis for patients with 
ENKTL have not been fully defined [5].

The International Non-Hodgkin’s Lymphoma Prognostic 
Factors Project proposed a prognosis model based on 
clinical characteristics, including age, tumor stage, serum 
lactate dehydrogenase (LDH) concentration, performance 
status, and the number of extranodal disease sites for NHL 
[6]. Although the above international prognostic index 
(IPI) has been widely used for both predicting prognosis 
and selecting therapeutic options in patients with aggres-
sive NHL, it has not been widely used in ENKTL because 
of the inhomogeneous distribution found for this disease. 
More than half of ENKTL patients were stratified at low risk 
according to the IPI classification [7], leading to inaccurate 
prognoses. Moreover, clinical features do not fully reflect the 

biological characteristics of ENKTL. Therefore, it is urgent 
to identify new prognostic indicators to further improve the 
IPI classification to better stratify and guide the treatment of 
ENKTL patients.

Recently, many studies have shown that gene mutations 
are associated with the classification and prognostic 
evaluation of lymphoma [8–10]. For example, ARID1A 
and EP300 gene mutations detected by next-generation 
sequencing (NGS) improved IPI score accuracy and 
improved prognosis of follicular lymphoma [11]. NGS can 
simultaneously carry out sequence analysis of hundreds 
of thousands or millions of short DNA molecules, in high 
throughput formats with high sensitivity and relative 
quantification [12]. Moreover, a recent multicenter labora-
tory evaluation showed that NGS was highly consistent 
and repeatable [13]. However, the prognostic value of 
genetic mutations has not been entirely assessed in ENKTL 
populations. We retrospectively investigated a cohort of 
ENKTL patients by NGS and detected mutations in nine 
candidate genes highly associated with ENKTL pathogen-
esis and prognosis. We aimed to improve the risk stratifica-
tion of ENKTL patients by integrating gene mutations into 
IPI classifications, providing more prognostic information 
for personalized therapeutic strategies.
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Patients and methods

Patients. We retrospectively reviewed a total of 29 patients 
with primary ENKTL at 4th Hospital of Hebei Medical 
University from August 2010 to November 2016. Review, 
analysis, and publication of the data from this study were 
approved by the ethics committee of Hebei Medical Univer-
sity. Informed consent for the collection of medical infor-
mation was obtained from all patients. The data collected 
at diagnosis included patient age, gender, Ann Arbor stage 
[14], Eastern Cooperative Oncology Group performance 
status (ECOG PS), regional lymph node quantification, 
extranodal sites, B symptoms, complete blood count, serum 
LDH, biochemical profile, bone marrow examination, and 
computed tomography scanning. The diagnosis and clinical 
stage of all patients were determined according to the 2008 
WHO classification scheme of hematopoietic and lymphoid 
tissue tumors [15]. The 29 patients were all treated by at least 
2 courses of asparaginase based chemotherapy (CT) alone or 
combined with field radiotherapy (RT) after diagnosis with 
ENKTL.

Next generation sequencing. In this study, we designed 
a small panel of ENKTL-related genes including ARID1A, 
KMT2D, TP53, MGA, STAT3, EP300, ASXL3, DDX3X and 
STAT5B for deep sequencing to investigate gene mutation 
status in our ENKTL patient cohort. Genomic DNA from 
paraffin-embedded tissue was isolated with QIAamp DNA 
FFPE kit (Qiagen, CA, USA) according to the manufactur-
er’s instructions. Primers for the nine genes for NGS were 
custom-designed and synthesized by Yuanqi Bio-Pharma-
ceutical Co., Ltd. (Shanghai, China). The main steps of 
NGS were as follows: a genomic DNA (gDNA) library was 
prepared using the TruSeq Nano DNA Library Preparation 
Kit (Illumina, San Diego, CA, USA). The gDNA was sheared 
into fragments by sonication and ligated at both ends with 
indexed paired-end adaptors (Covaris, Woburn, MA, USA). 
Then the adapter-ligated gDNAs were purified and used as 
templates in a ligation-mediated PCR for 8 cycles to enrich 
target genes. Paired-end DNA was sequenced on a HiSeq X 
(Illumina, San Diego, CA, USA). Data analysis was performed 
using Illumina bcl2fastq software, version 2.15.

Risk stratification scoring system for ENKTL. IPI scores 
were calculated based on clinical features including age, 
tumor stage, LDH concentration, performance status, and 
the number of extranodal disease sites. Scores for our new 
classification were calculated by combining the IPI score 
with a factor based on KMT2D and TP53 mutation status. 
Details were as follows: wild-type was assigned ‘0’, mutant 
was assigned ‘1’, and the score = sum (IPI score + KMT2D 
+ TP53). We defined three categories to establish the new 
integrated system: low risk (0–1 point), intermediate risk 
(2–3 points) and high risk (4–6 points).

Statistical analysis. All data were analyzed using IBM 
SPSS statistics software (Version 20.0, SPSS Inc., USA). The 
treatment effect on overall survival (OS) rate and progres-

sion-free survival (PFS) rate was determined by Kaplan 
Meier curves. P<0.05 was considered statistically significant.

Results

Clinical features of ENKTL patients. We recruited a 
total of 29 patients with primary ENKTL for this study at the 
Fourth Hospital of Hebei Medical University from August 
2010 to February 2017. The median age was 46 years (range 
25–73 years), with 24 (82.8%) being male and 5 (17.2%) 
female (Table 1). According to the Ann Arbor standard, 19 
patients were in phases I/II and 10 patients were in phases III/
IV. We recorded abnormal clinical features including lactate 
dehydrogenase (LDH, threshold 250 U/l), Ki67 (threshold 
70%), albumin (ALB, threshold 40 g/l) and absolute lympho-
cyte count (ALC, threshold 1.1×109/l) as follows: increased 
LDH and Ki67 in 44.8% and 24.1% of patients, respectively; 
decreased ALB and ALC in 48.3% and 44.8% of patients, 
respectively. According to the IPI classification, we found 14, 
8, 4 and 3 ENKTL patients with low, low-to-intermediate, 
intermediate-to-high and high risk, respectively. Seven-
teen patients received chemotherapy plus radiotherapy and 
12 patients received chemotherapy alone. After treatment, 
16 patients achieved a complete response (CR) or partial 
response (PR), while 13 patients remained with progressive 
disease (PD). At the end of follow-up, 11 patients died due to 
disease progression or other causes.

Correlation between clinical characteristics and OS. The 
OS of patients in phases I/II (78.9%) was significantly higher 
than for those in phases III/IV (20%, p=0.002, Figure 1A). 
OS rates of patients that received RT plus CT and CT alone 
were 76.5% and 33.3%, respectively (p=0.012. Figure 1B). 
In addition, we found that levels of Ki67 (Figure 1C), LDH 
(Figure 1D), ALB (Figure 1E) and ALC (Figure 1F) correlated 
to OS and the differences of OS were statistically significant 
between patients with normal clinicopathological charac-
teristics and those with abnormal data (Figure 1). Increased 
Ki67and LDH, as well as decreased ALB and ALC resulted in 
lower OS in these ENKTL patients.

Gene mutation rates. Among the 29 ENKTL patients, we 
found mutation rates of 34.48%, 31.03%, 24.13%, 24.13%, 
24.13%, 17.24%, 17.24%, 6.89% and 6.89% for ARID1A, 
KMT2D, TP53, MGA, STAT3, EP300, ASXL3, DDX3X and 
STAT5B genes, respectively (Figure 2). The KMT2D mutation 
rate was significantly lower in low and low-to-interme-
diate risk patients than in intermediate-to-high and high 
risk patients (18.18% vs 71.43%, p<0.05, data not shown) 
according to their IPI score. However, we found no signifi-
cant differences in the mutation rates of the other 8 genes 
between patients with low and high risk.

Associations between KMT2D or TP53 mutation and 
mortality. Mortality was 75% (6/8) for patients with KMT2D 
mutations whereas mortality was 9.5% (2/21) for patients 
with wild-type KMT2D, and the difference was statisti-
cally significant (p<0.01). Similarly, we found significant 
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differences in PFS and OS between patients with KMT2D 
mutations and those with wild-type KMT2D (Figure 3). We 
also found significant differences in mortality (p=0.036) 
between patients with TP53 mutations and wild-type 
(71.43% vs 27.27%, data not shown). In order to avoid an 
imbalanced IPI classification effect, we assessed the differ-
ence of mortality between KMT2D mutation and wild-type 
patients in low and low-to-intermediate risk patients. Statis-
tical results indicated that KMT2D mutations also increased 
mortality in low and low-to-intermediate risk patients (data 
not shown). In 22 low and low-to-intermediate risk patients, 
3 of 4 patients with KMT2D mutations died whereas only 
2 died in 18 patients with wild-type KMT2D (p=0.0058). 
Although mortality was increased in all patients with TP53 
mutations, the difference of mortality was not significant 
between patient cohorts with TP53 mutation and wild-type 
in low and low-to-intermediate risk patients.

Integrated System combines KMT2D and TP53 
mutations with the IPI score. The difference in PFS was not 
significant among 4 risk stratifications (p=0.0824, Figure 4A) 
but OS differed significantly (Figure 4B) according to IPI 
classification. To devise a more accurate system, we incorpo-
rated KMTD2T and TP53 gene mutations into the IPI system 
as risk factors (a gene mutation is defined as a point). This 
modification resulted in a redistribution of patients: 13, 9 and 
7 patients moved to low, intermediate and high risk groups, 
respectively. The difference in PFS was significant (p=0.0094) 
and the new classification showed a homogeneous distri-
bution of patients (Figures 4C and 4D). In order to better 
assess the improvement of risk stratification integrated with 
gene mutations, we compared the proportions and OS rates 
of patients among different risk stratifications between IPI 
scores and our integrated system (Figure 5). According to 
IPI classification, the OS rates of low, low-to-intermediate, 
intermediate-to-high and high risk patients were 78.6%, 
62.5%, 0%, and 33.3%, respectively. For low-to-intermediate 
and intermediate-to-high risk groups in the IPI classifica-
tion, patients with wild-type alleles were reported by our 
integrated classification to the intermediate risk stratification, 
while patients with mutations in both genes were resorted 
to the high risk group. Patients in the intermediate-to-high 
and high risk groups patients with mutations were reclassi-
fied to the high risk group by our integrated system. The OS 
rates of low, intermediate and high risk patients were 84.6%, 
55.6%, and 14.3% respectively in our integrated system, 
which formed a harmonious classification with the precise 
prognosis of ENKTL patients. 

Discussion

ENKTL is also called angiocentric T-cell lymphoma 
because tumor cells in this disease are derived from natural 
killer cells and cytotoxic T cells. At present, ENKTL is the 
most common subtype of T cell lymphoma in China [16]. 
However, the outcome of therapeutic interventions for 

Table 1. Clinical characteristics of 29 ENKTL patients.

Characteristics No. Percentage
Age

≤60 24 82.8
>60 5 17.2

Gender
Male 24 82.8
Female 5 17.2

Ann Arbor stage
I/II 19 65.5
III/IV 10 34.5

B symptom
With 20 69.0
Without 9 31.0

Bone marrow involvement
With 12 41.4
Without 17 58.6

ECOG PS
0–1 26 89.7
≥2 3 10.3

Regional lymph nodes involvement
With 16 55.2
Without 13 44.8

Extranodal sites
<2 22 75.9
≥2 7 24.1

LDH
<250 U/L 22 75.9
≥250 U/L 7 24.1

IPI (score)
Low risk (0–1) 14 48.3
Low-to-intermediate risk (2) 8 27.6
Intermediate-to-high risk (3) 4 13.8
High risk (4–5) 3 10.3

Ki67
<70% 16 55.2
≥70% 13 44.8

ALC
<1.1×109/L 13 44.8
≥1.1×109/L 16 55.2

ALB
<40 g/L 14 48.3
≥40 g/L 15 51.7

Treatment
CT+RT 17 58.6
CT 12 41.4

Treatment effect
CR+PR 16 55.2
PD 13 44.8

ECOG PS, Eastern Cooperative Oncology Group performance status; ALC, 
absolute lymphocyte count; ALB, albumin; LDH, lactate dehydrogenase; 
IPI, International Prognostic Index; CT, chemotherapy; RT, radiotherapy; 
CR, complete response; PR, partial response; PD, progressive disease. Bold 
fonts denote the clinical parameters for IPI risk stratification.
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Figure 1. Kaplan-Meier plots of Overall Survival (OS) in patients: comparisons of various clinical characteristics.

Figure 2. Mutation rates of 9 genes evaluated by NGS in 29 patients with 
ENKTL.

ENKTL is generally poor and prognosis varies among 
patients [17]. Conventional risk stratification for NHL is 
not specific for ENKTL. In this study, we established a new 
prognostic model based on the existing IPI system for NHL 
by incorporating genetic mutation status for a more precise 
stratification in ENKTL patients.

According to the IPI score designed for NHL, only 24.1% 
of 29 ENKTL patients in our cohort were placed in the inter-
mediate-to-high and high risk stratification. This formed an 
imbalanced classification that did not reflect the high degree 
of malignancy in ENKTL, suggesting that the IPI score 
needed improvement to better evaluate ENKTL prognoses. 
In this study, we found that the status of selected genetic 
mutations was a powerful factor when incorporated into IPI 
scores to improve ENKTL patient prognoses.



640 Y. GAO, Y. LI, G. MA, G. ZHAO, H. LIU

A growing number of studies have shown that numerous 
genetic mutations are associated with the occurrence and 
development of ENKTL [18–20]. However, it has been diffi-
cult to investigate gene profiles of ENKTL patients because 
of their low incidence. In recent years, the sensitivity and 
specificity of NGS techniques have been greatly improved 
and many gene mutations can be detected simultaneously 
by a specifically assigned gene panel [21]. In this study, we 
investigated mutations in a small panel of genes frequently 
associated with ENKTL, including ARID1A, KMT2D, TP53, 
MGA, STAT3, EP300, ASXL3, DDX3X, and STAT5B. Our 

NGS results showed that except for DDX3X and STAT5B, 
the mutation rates of the genes were all over 10%, consis-
tent with a report by Choi et al. [22]. The high mutation 
rate for KMT2D in intermediate-to-high and high risk 
patients suggested that mutant KMT2D may more accurately 
be placed in a high risk stratification and predict poor 
prognosis. Ardeshir-Larijani et al. [23] reported that patients 
with mutant KMT2D had a significantly lower median OS 
and PFS compared with patients with wild-type KMT2D 
in NSCLC. Consistent with this report, we also found that 
KMT2D mutant-positive ENKTL patients in our cohort 

Figure 3. Progression-Free Survival (PFS) and Overall Survival (OS) of patients with mutant and wild-type KMT2D.

Figure 4. PFS and OS of ENKTL patients: comparison of risk classification method by stratification category. A) PFS using IPI categories. B) OS using 
IPI categories. C) PFS using our integrated classification categories. D) OS using our integrated classification categories.
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had a lower median OS and PFS. Ortega-Molina et al. [24] 
showed that KMT2D mutations could promote lymphoma 
development due to enhanced proliferation and impaired 
terminal differentiation and KMT2D deficiency was suffi-
cient to trigger B cell malignancy in mice. Our results showed 
that KMT2D may be an independent high risk prognostic 
factor for ENKTL patients. However, the prognostic value 
of KMT2D mutations in ENKTL needs to be further inves-
tigated in a larger cohort of patients. KMT2D (formerly 
known as MLL2) encodes a catalytic lysine methyltransferase 
containing SET domain, which has the activity to methylate 
H3K4 and is an important component of the polyprotein 
complex that plays a role in gene regulation and embryonic 
development [25–28]. Abnormal expression of KMT2D has 
been shown to be associated with multiple tumors, such as 
breast cancer, colon cancer [29], prostate cancer and gastric 
cancer [30, 31]. Several studies reported that KMT2D acted 
as a tumor suppressor gene in non-Hodgkin lymphoma 
[32–34]. It was reported that KMT2D deficiency resulted in 
attenuated cancer cell proliferation and defective cell migra-
tion in medulloblastoma cancer [35]. It was reported that 
KMT2D acted as a tumor suppressor gene, leading to changes 
in the epigenetic landscape of cancer precursor cells, which 
promotes the proliferation of mice B cells. Thus the eradica-
tion of KMT2D-deficient cells may be a rational therapeutic 
strategy for lymphoma [36]. In studies of DLBCL and follic-
ular cell lymphoma, data showed that 89% of FL and 23–32% 
of DLBCL have KMT2D gene mutations, which mostly 
occur in the early stage of tumor formation. Most of the 
mutations are nonsense mutations and code shift mutations, 
which lead to the inactivation of the KMT2D gene [32–34]. 
Korean researchers also found mutations of the KMT2D gene 

in ENKTL through the whole exon sequencing technology, 
counted for about 17.6%, most of which were nonsense 
mutations. They also found that the mutations caused the 
loss of gene function through RNA sequencing, suggesting 
that epigenetic factor mutations may play a role in the patho-
genesis of ENKTL [20].

TP53 is a well-known tumor suppressor gene, which 
encodes a protein P53 to regulate the expression of corre-
sponding target genes in response to various cellular stress, 
thus inducing regulation of DNA repair, apoptosis, senes-
cence, and DNA repair and metabolism [37, 38]. Majority 
of TP53 mutations are missense mutations, and the encoded 
mutant P53 proteins not only exerts a negative effect on wild-
type p53 and inhibits its function as a tumor suppressor [39, 
40], but also exhibits new carcinogenic functions including 
promoting cell proliferation, the evasion of apoptosis, 
metabolic changes, migration, and so on [41–43]. Clinical 
studies have demonstrated that mutations in the tumor 
suppressor gene TP53 predicted poor prognosis in hemato-
poietic tumors and ENKTL [10, 37, 44, 45]. However, in 
our study TP53 mutation status only predicted increased 
mortality but had no significant effect on PFS and OS. 
Additional studies with significantly more patients may be 
required to establish the predictive value of TP53 mutation 
status in ENKTL. Nevertheless, for our cohort of ENKTL 
patients, incorporating the IPI score with KMT2D and TP53 
mutation status, produced a new scoring system that could 
predict a patients’ prognosis more precisely.

In conclusion, we identified a new prognostic stratifica-
tion system by combining the IPI classification for NHL with 
ENKTL-relevant genetic mutations, resulting in a signifi-
cant improvement in risk stratification. Additional studies 

Figure 5. Effect of mutation profiling on conventional IPI risk stratification. Patients with markedly poor prognoses are reassigned into more ap-
propriate risk groups according to their mutation profiles. Red arrows denote patients with either a mutant KMT2D or TP53 gene. Black arrows 
denote patients with both mutant KMT2D and TP53 genes. Blue arrows denote patients with wild-type genes. L-to-I, low-to-intermediate; I-to-H, 
intermediate-to-high.
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with significantly more patients are warranted to validate 
the clinical relevance of this integrated system for ENKTL, 
which should provide great insight into disease management 
of ENKTL and our understanding of ENKTL biology.
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