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The purpose of this study was to identify potential miRNAs and mRNAs involved in chemotherapy insensitivity in 
hypopharyngeal squamous cell carcinoma (HSCC) and to explore the underlying mechanisms involved to provide diagnostic 
markers and therapeutic targets for HSCC. We used microarrays to identify differences in both the mRNA and miRNA 
expression profiles between a group (twelve patients) sensitive to chemotherapy and a resistant group (nine patients). We 
then employed bioinformatics tools to examine the functions and pathways involved. The genes and miRNAs most related 
to chemotherapy sensitivity in HSCC were screened. Finally, a miRNA-mRNA-phenotype network was constructed with an 
integrated analysis based on the identified miRNAs and mRNAs. Nine differentially expressed miRNAs and one hundred 
differentially expressed mRNAs were identified, and the functions of these genes and miRNAs were predicted. Bioinfor-
matics analysis revealed a regulatory network consisting of eight genes and two miRNAs that influenced HSCC chemo-
sensitivity. According to our analysis, CCL4L1 may be a potential molecular marker for HSCC chemotherapy, and excess 
CCL4L1 leads to the upregulation of PRAME and the downregulation of miR-375, thus decreasing HSPB8 expression and 
promoting chemotherapy sensitivity. Our work provides reliable data for further studies investigating the mechanism of 
HSCC chemotherapy sensitivity.
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Hypopharyngeal squamous cell carcinoma (HSCC) is one 
of the most common head and neck squamous cell carci-
nomas, accounting for more than 160,000 new cases and 
83,000 deaths annually [1, 2] and for 2–6% of all head and 
neck cancers [3, 4]. In Europe and the United States, HSCC 
has been ranked as one of the most common human malig-
nant tumors [5]. High risks of metastasis to cervical lymph 
nodes and a lack of evident clinical symptoms make HSCC 
one of the most difficult challenges in human malignancies 
[6–8]. It is urgent to explore novel effective methods for 
diagnosing and treating HSCC.

Despite advances in surgery and novel treatments such as 
chemotherapy and radiation therapy, the survival rate of late-
stage HSCC patients has not significantly improved [9]. The 
5-year survival rate of patients with advanced-stage HSCC is 
approximately 30–40% [10]. One of the important reasons 
for the unsatisfactory outcome is the occurrence of chemo-
therapy resistance. Although chemotherapy is an adjuvant 

regimen in combination with surgery or radiotherapy, it plays 
a crucial role in advanced or metastatic tumors, such as HSCC, 
particularly for the reason of organ preservation [11]. Many 
studies have demonstrated that chemotherapy, including 
docetaxel (T), cisplatin (P), and 5-fluorouracil (F) is the most 
effective therapeutic management in HSCC [12]; nonethe-
less, the efficacy of chemotherapy is sometimes determined 
by the heterogeneity between individuals [13–14]. Moreover, 
the excessive application of chemotherapeutic agents can 
result in a series of adverse effects, including systemic toxici-
ties and chemotherapy resistance. With developments in 
technology, genome-wide analyses based on microarray data 
are being increasingly used for some intractable issues due 
to their efficiency, versatility, and high-throughput nature 
[15]; to some extent, the expression of large gene sets is 
more capable of explaining a patient’s response to a given 
therapeutic regimen [16]. Thus far, studies focusing on gene 
alterations involved in chemotherapy resistance in HSCC 
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are still elusive and inadequate. In addition, previous studies 
have shown that the heterogeneity of HSCC in the intrinsic 
subtypes and epigenetic signatures is nonnegligible, which 
makes developing molecular markers for HSCC patient 
outcomes and the treatment response especially challenging. 
Microarray analysis is able to identify the overall differences 
in expression profiles between patients sensitive and resistant 
to chemotherapy on a large scale. A microarray can be used 
not only to determine the mechanism and key molecules 
of chemotherapy resistance but also to design personalized 
chemotherapy according to the patient.

In this study, we carried out a series of analyses to discover 
clinically relevant gene alterations by performing miRNA 
and mRNA microarrays, explored the miRNA and mRNA 
expression profiles in HSCC sensitive and resistant to chemo-
therapy, and constructed a miRNA-mRNA network by an 
integrated analysis. It is very promising to translate identi-
fied genes into molecular characteristics for targeted therapy 
and response assessment, which will ultimately accelerate 
personalized treatment.

Materials and methods

Patients and specimen selection. We collected HSCC 
tissue specimens from 21 patients (obtained from the Depart-
ment of Head & Neck Surgery, Beijing Tongren Hospital), 
including 9 tissue specimens from patients with resistant 
carcinoma and 12 tissue specimens from patients with sensi-
tive HSCC. Information on the patients is shown in Table 1. 

All patients received two periodic chemotherapies induced 
by TPF (taxane/cisplatin/5-FU). These HSCC pathological 
tissues were collected after resection during surgery. Each 
sample was immediately snap frozen in liquid nitrogen and 
stored at –80 °C.

RNA extraction, cDNA synthesis and in vitro transcrip-
tion. mRNA was extracted from tissue samples using TRIzol 
(Invitrogen), and then RNA quantity was examined by 
denaturing gel electrophoresis, which revealed at least two 
distinct bands representing 28S and 18S ribosomal RNA, 
suggesting no DNA contamination or RNA degradation. 
Total RNA was divided into two parts and used for separate 
miRNA and mRNA microarrays. First, reverse transcription 
was used to synthesize the first-strand cDNA, and second-
strand cDNA synthesis was used to convert single-stranded 
cDNA into double-stranded DNA with a PrimeScript™ 
Double Strand cDNA Synthesis Kit (TAKARA). Second, 
after purification by removing RNA, primers, enzymes, 
etc., the double-stranded DNA was used as a template for 
the transcription of biotinylated cRNA in vitro. Finally, the 
biotinylated cRNA was purified and prepared for hybridiza-
tion with a prepared microarray. For the miRNA microarray, 
miRNAs were labeled using a miRNA Complete Labeling 
and Hyb Kit (Agilent Technologies, Santa Clara, CA, USA), 
and then hybridization was carried out on a human miRNA 
(8*60K) v19.0 array in a hybridization oven (Agilent).

mRNA and miRNA expression profiles of HSCC. For 
the mRNA expression profile of HSCC, the Illumina Human 
HT-12 Bead Chip was applied for hybridization with the 
labeled cRNA. There are six types of internal parameters and 
887 probes in this microarray for the quality control of all 
samples. Briefly, the cRNA samples were hatched with the 
Illumina Human HT-12 Bead Chip at room temperature and 
subjected to high temperature washes, ethanol washes and 
three washes at room temperature. After desiccation, images 
were collected with Illumina Bead Chip Reader software. 
Illumina Genome studio-Gene Expression software was 
employed to filter background noise and the missing value 
effect in the raw data. The quantile method was used for 
normalization. The gene expression profile was obtained 
using Illumina Custom software.

For the miRNA expression profile of HSCC, an Agilent 
miRNA Complete Labeling and Hybridization Kit (Agilent 
Technologies, USA) was used to conduct miRNA labeling 
and hybridization. The chip is able to explore 1205 human 
miRNAs and 144 human virus miRNAs from the Sanger 
database (Version 16.0). An Agilent scanner was used to scan 
the hybridized chip signal, and the raw data were normalized 
with GeneSpring GX software.

The identification of differentially expressed genes. 
The differentially expressed genes (DEGs) and differentially 
expressed miRNAs (DE-miRNAs) between sensitive and 
resistant HSCC specimens were determined by using the 
linear models for microarray data (limma) package in R [18], 
which adopts the empirical Bayesian theory to evaluate a 

Table 1. Patient information used for analyses.

Sample Sex Age TNM Grade Sensitivity
BWS male 69 T4aN2M0 G2 yes
FYY male 62 T4aN2M0 G1 yes
YZL male 69 T4N1M0 G3 yes
XZP male 49 T3N2M0 G2 yes
LJ male 60 T4bN2M0 G2 yes
LPL male 69 T4aN0M0 G2 yes
LXJ male 44 T2N2M0 G3 yes
GBM male 53 T4aN0M0 G1 yes
ZJH male 49 T4aN2M0 G2 yes
SB male 44 T4aN2M0 G3 yes
ZSY male 60 T3N1M0 G2 yes
LFL male 48 T4bN2M0 G1 yes
DXX male 65 T4bN2M0 G1 no
LGZ male 45 T2N3M0 G2 no
YYT male 57 T4bN3M1 G1 no
FKY male 69 T3N2M0 G1 no
WZM male 71 T4aN2M0 G3 no
NSS male 43 T4bN2M1 G3 no
HYW male 69 T2N1M0 G1 no
MH male 71 T4aN0M0 G1 no
FWY male 43 T4aN2M0 G2 no
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standard error and exhibits excellent performance for small 
sample sets. The adjusted p-value was used to ensure statis-
tical accuracy. A cluster analysis was performed to analyze 
the distribution of the DEGs and DE-miRNAs between the 
two groups. The nonparametric multivariate variance test 
was used to distinguish between groups based on distance 
matrices [19]. Nonmetric multidimensional scaling (NMDS) 
is a data analysis method that simplifies the research objects 
(samples or variables) of a multidimensional space to a 
low-dimensional space for positioning, analysis, and classi-
fication while retaining the original relationship between 
objects. According to the species information contained 
in the sample, the relationship is reflected in the multidi-
mensional space in the form of points, while the difference 

degree between different samples is reflected by the distance 
between points, and the spatial locus map of the sample 
is finally obtained. NMDS analysis (vegan package, bray 
distance algorithm) can visually show the degree of differ-
ence between different samples by the distance from a point 
to point; the more similar the expression of the DEG is 
between samples, the closer the sample points are [20].

Core genes and core miRNAs involved in the induction 
of chemosensitivity. The identified DEGs and DE-miRNAs 
were considered candidates for further integrative analysis. 
A Bayesian network was constructed to recognize the core 
genes associated with the induction of chemosensitivity 
among the identified candidate genes. The Bayesian network 
is a probabilistic graphical model (a type of statistical 

Figure 1. Sequencing quality control. The quality analysis of sequencing data of the mRNA microarray (A) and the miRNA microarray (B) showed that 
all samples basically followed the normal distribution, and the mean was equal, suggesting that the samples were comparable. NMDS analysis showed 
a strong correlation between the mRNA (C) and miRNA (D) expression profiles and phenotype.
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model) that represents a set of variables and their condi-
tional dependencies via a directed acyclic graph (DAG). 
Bayesian network analysis performs three main inference 
tasks: inferring unobserved variables, parameter learning, 
and structure learning. The bnlearn R package was used in 
this study. The original data of the core microRNAs, core 
mRNAs, and disease phenotypes were discretized, and then 
Bayesian network structure learning (via constraint-based, 
score-based and hybrid algorithms), parameter learning (via 
maximum likelihood and Bayesian estimators) and approxi-
mate inference were carried out. As the coarse-grained 
reverse engineering of genetic regulatory networks, Bayes 
analysis can obtain ideal results with a global probability 
model [21]. In addition, it exhibits good ability in suggesting 
the causality of the core genes. Moreover, the accuracy of the 
identified core genes was further confirmed with random 
forests (RFs). The random forest package of R3.5.3 software 
was used to generate a random forest. Its data frame consists 
of different mRNAs (microRNAs) and tumor samples. A 
random forest is then adopted to reveal the supervised classi-
fication of samples, and the differentially expressed mRNAs 
(microRNAs) and core genes are sorted according to the 
mean decrease accuracy. This method is capable of classi-
fying discrepant samples and providing variable importance 
scores of each gene for the classification [22].

Results

The identification of differentially expressed genes 
and miRNAs. Microarray technology was used to compare 
the miRNA and mRNA expression profiles between the 
two groups and to screen differentially expressed miRNAs 
as well as mRNAs. A total of 34,593 mRNAs and 6,077 
miRNAs were detected (Table S1 and Table S2). After 
normalizing the gene expression profile data, all samples 
basically followed the normal distribution, and the mean 
was equal between samples, suggesting that the microarray 
data were reliable and could be compared between samples 
to identify the differentially expressed mRNAs and miRNAs 

Table 2. The top 10 up- and downregulated genes between sensitive and 
resistant to chemotherapy HSCC samples.

mRNA Ave. 
Expr. t logFC p-value adj. p-value

GPC3 6.5256002 2.67312842 1.984141 0.0125 0.041948816
HBB 10.309794 2.40585216 1.782542 0.023128 0.045212163
HBA2 10.148057 2.31728252 1.708241 0.028176 0.045212163
FBN2 8.4282851 2.24686483 1.684762 0.032883 0.045212163
HBA1 9.1824605 2.25917593 1.619915 0.032012 0.045212163
CYP4F11 8.8518575 2.2641433 1.522736 0.031666 0.045212163
PVALB 5.0913239 2.37713763 1.465622 0.024666 0.045212163
IL6 6.7520486 2.28776738 1.429614 0.030069 0.045212163
GAGE7 4.4553063 2.18088574 1.321212 0.037926 0.045212163
PRPH 4.9360331 3.71769201 1.314387 0.000911 0.020068001
LOC652694 9.709197 –2.2420905 –1.82363 0.033226 0.045212163
AQP3 7.5347154 –2.814754 –1.85123 0.008924 0.041948816
SFRP1 6.6736545 –4.2041651 –1.97475 0.00025 0.01447302
SBSN 10.203853 –2.5251881 –2.02226 0.017633 0.045212163
LOC652102 6.4669035 –2.5462251 –2.02509 0.0168 0.045212163
KRT78 6.8993388 –2.8923161 –2.11741 0.007399 0.041948816
TCN1 7.2741944 –2.5725616 –2.12886 0.015808 0.045165714
MAL 8.4106509 –2.9359099 –2.80621 0.006654 0.041948816
CRNN 8.4505446 –2.7259839 –2.9542 0.011032 0.041948816
KRT4 8.1869139 –3.3672182 –3.21512 0.002261 0.032590862

Figure 2. Expression levels of genes (A) and miRNAs (B) identified by 
the microarrays.

Table 3. Differentially expressed miRNAs between sensitive and resistant to 
chemotherapy HSCC samples.

miRNA Ave. 
Expr. t logFC p-value adj.  

p-value
hsa-miR-4448 4.22 –3.51 –1.89 0.0021 0.0189 
hsa-miR-3937 5.47 –2.62 –1.22 0.0160 0.0385 
hsa-miR-375 4.37 –2.59 –2.76 0.0170 0.0385 
hsa-miR-617 1.68 –2.53 –1.37 0.0196 0.0385 
hsa-miR-4462 4.34 –2.42 –1.09 0.0247 0.0385 
hsa-miR-650 3.95 –2.40 –1.76 0.0257 0.0385 
hsa-miR-31-5p 11.61 –2.27 –1.67 0.0341 0.0420 
HBII-85-29 3.48 –2.22 –1.21 0.0373 0.0420 
hsa-miR-5580-3p 1.79 –2.10 –1.21 0.0484 0.0484 
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(Figures 1A, 1B). NMDS analysis revealed a strong correla-
tion between the mRNA or miRNA expression profile and 
phenotype, indicating a high success rate of screening genes 
or miRNAs relevant to the sensitivity of chemotherapy in 
HSCC. The incomplete separation of samples such as FYY 
and WZM indicated that other factors affected the expres-
sion profiles (Figures 1C, 1D).

Among these detected genes, thirty-three exhibited 
remarkably high expression, while sixty-seven exhibited 
significantly low expression, with p-values <0.05 (Figure 2A, 
Table 2, and Table S3). The cluster analysis showed that 
patients in the chemoresistant group were clustered into 
a clade, with two exceptions (LJ and LFL); patients in the 
chemosensitive group were clustered into a clade with the 
exception of WZM based on the 100 DEGs (Figure 3A). 
Among these detected miRNAs, eight exhibited differen-
tial expression, with p-values <0.05; all of them exhibited 
remarkably low expression (Figure 2B and Table 3). The 
cluster analysis showed that neither patients in the chemo-
resistant group nor patients in the chemosensitive group 
were commendably clustered into a clade based on the nine 
low expression DE-miRNAs (Figure 3B). This finding may 
be because the total number of DE-miRNAs used for the 
cluster analysis was too small to represent the overall miRNA 
expression profile between the two groups.

To further verify the results of the microarray, qRT-PCR 
experiments were performed to detect the expression of the 
top ten upregulated genes, the top ten downregulated genes, 
and eight DE-miRNAs. The qRT-PCR results were consis-
tent with those from the microarray (Figure 4 and Table S4), 
validating the reliability of the microarray data.

Core genes and miRNAs associated with the induction 
of chemosensitivity. To recognize the core genes associated 

Figure 3. The distribution of differentially expressed genes and miRNAs in the two groups. A) Cluster analysis of the differently expressed genes. B) 
Cluster analysis of the differently expressed miRNAs.

with the induction of chemosensitivity among the identified 
candidate genes and miRNAs, we constructed a Bayesian 
network to analyze the probabilistic relationships between 
the candidate DEGs or DE-miRNAs and symptoms. Bayesian 
network analysis revealed five genes that are directly associ-
ated with chemosensitivity among the candidate DEGs 
(Figure 5A), namely, GAGE7, HOXC8, WARS2, HSPB8, and 
C160RF73. The results showed that the low expression of 
C16ORF73 may cause the chemosensitivity that further leads 
to the low expression of the HSPB8 gene and the high expres-
sion of the GAGE7, HOXC8, and WARS2 genes. It is worth 
noting that among these five genes, GAGE7 was the most 
upregulated, and HSPB8 was the most downregulated, which 
may indicate that GAGE7 and HSPB8 are closely related to 
the chemosensitivity. In addition, Bayesian network analysis 
revealed a tripartite network consisting of 9 DE-miRNAs, 
in which HBII-85-29 and hsa-miR-3937 may be directly 
associated with the chemosensitivity. The low expression of 
HBII-85-29 may cause the chemosensitivity and further lead 
to the low expression of hsa-miR-3937 (Figure 5B). These two 
miRNAs may be the core miRNAs involved in the chemosen-
sitivity in HSCC.

Although the result is not identical, the random forest 
analysis also showed that the HSPB8 and C16ORF73 genes 
had the highest scores among the top 30 genes (Figure 6A), 
which emphasizes the importance of HSPB8 and C16ORF73 
in the induction of chemosensitivity. Similarly, the random 
forest analysis revealed that HBII-85-29 and hsa-miR-3937 
occupy the first and third places, respectively (Figure 6B). 
Bayesian network and random forest analyses suggested 
the significance of HBII-85-29, hsa-miR-3937, HSPB8 and 
C16ORF73 in induced chemosensitivity through different 
algorithms.
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Figure 4. qRT-PCR demonstrated the expression levels of GPC3, HBB, KRT4, CRNN (all normalized to GAPHD), miR-4448 and miR-3937 (both 
normalized to U6) in the samples.

Integrated analysis of the mRNA and miRNA micro-
array profiles. Although a microarray or chip analysis is 
widely used to systematically investigate potentially impor-
tant molecules or regulators in cancer, an integrated analysis 
of the relationship between the genes and miRNAs has not 
been performed. To analyze the roles of these differentially 
expressed genes and miRNAs more comprehensively, we 
used these DEGs and DE-miRNAs to construct a Bayesian 
network. Finally, an integrated regulatory network, including 
8 genes and 2 miRNAs leading to chemotherapy sensitivity 
was constructed, and the network suggested that CCL4L1 

may be a potential molecular marker for HSCC chemo-
therapy induction among these differentially expressed genes 
and miRNAs. Excess of CCL4L1 leads to the upregulation of 
PRAME and the downregulation of miR-375, thus decreasing 
HSPB8 expression and inducing chemosensitivity (Figure 7). 
In addition, the excess of CCL4L1 and upregulated PRAME 
may also result in the low expression of miR-617, leading to 
the aberrant expression of CEACM7, CNFN, and ODC1. 
In this 10-component regulatory network, the CCL4L1/
PRAME/his-miR-375/HSPB8 signaling axis plays a core role 
in chemotherapy sensitivity.
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Discussion

MicroRNAs (miRNAs) comprise small (approximately 
22 nt), endogenous RNA molecules that usually act as gene 
expression regulators at the posttranscriptional level in both 
animals and plants [23], playing an extensive role in many 
cellular processes, such as proliferation, metastasis, and 
apoptosis [24, 25]. A number of studies have shown that 
miRNAs play pivotal roles in tumorigenesis and the progres-
sion of cancer [26]. Abnormal miRNA regulation has been 
reported to affect proliferation, migration or prognosis in 
HSCC by targeting key proteins; for example, miRNA-34a, 
an important antiapoptotic gene, can affect the appearance 
of HSCC by regulating survival [18]; miR-370 can suppress 
HSCC by targeting FoxM1 [27]; and miR-21 [28], miR-155 
[29] and miR-19a [26] can influence migration, invasion, 
and apoptosis in HSCC. These findings enrich the theoretical 
basis of the mechanism for the occurrence and development 
of HSCC. However, reports focusing on the mechanism of 
chemotherapy resistance in HSCC are insufficient. In our 
study, we analyzed the different miRNA profiles between the 

two groups of chemotherapy-sensitive and chemotherapy-
resistant samples with a microarray and then used the 
Bayesian network and random forest analyses to identify the 
two potential miRNAs most related to chemotherapy sensi-
tivity, HBII-85-29, and hsa-miR-3937.

A number of studies have suggested that genes and 
miRNAs play a key role in the processes of tumorigenesis 
and development [27, 30]. With developments in sequencing 
technologies, microarray and chip analyses can be widely 
used to systematically investigate potentially important 
molecules or regulators in cancer. For example, eight genes 
were associated with tumorigenesis, and RPN2 and EIF3A 
were associated with regional lymph node metastasis in 
HSCC based on the mRNA microarray analysis [31]. Sun 
et al. discovered 38 DE-miRNAs in supraglottic HSCC with 
a microRNA microarray analysis [28]. The key molecules 
were not isolated but interacted with each other as a whole to 
influence the response of cells to chemotherapy drugs.

However, an integrated analysis of the relationship 
between genes and miRNAs, particularly those involved in 
chemotherapy sensitivity in HSCC, has not been performed. 

Figure 5. Bayes analysis of the core genes (A) and core miRNAs (B).
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Figure 6. Random forest analysis of the DEGs (A) and DE-miRNAs (B).

In our study, we carried out microarray analysis of genes 
and miRNAs with chemotherapy-sensitive and chemo-
therapy-resistant HSCC samples. In total, 100 DEGs and 
nine DE-miRNAs were identified between the two groups. 
After investigating the expression profiles of the genes and 
miRNAs identified by the microarrays, cluster and random 
forest analyses of the identified DEGs and DE-miRNAs, 
respectively, were carried out. Furthermore, the relationship 
between the DEGs, DE-miRNAs, and chemotherapy sensi-
tivity was fully excavated by the Bayesian network. Finally, 
the Bayesian analysis showed an integrated regulatory 
network including eight genes and two miRNAs, in which 
redundant CCL4L1 leads to the upregulation of PRAME and 
the downregulation of miR-375, thus decreasing the HSPB8 
expression and inducing chemosensitivity. This network 

implies that CCL4L1 may be a pivotal molecule for the induc-
tion of the HSCC chemotherapy sensitivity, and CCL4L1 as 
well as PRAME, miR-375, and HSPB8 are expected to be 
potential therapeutic targets and diagnostic markers after 
further experimental support.

The small heat shock protein B8 (HSPB8) belongs to 
the superfamily of small heat shock proteins that contain 
a conservative alpha-crystallin domain at the C-terminus. 
HSPB8 is believed to be associated with the regulation of cell 
apoptosis, proliferation, and carcinogenesis. For example, 
HSPB8 accelerates cancer cell growth by activating the 
ERK-CREB pathway and is indicative of a poor prognosis 
in gastric cancer patients [32]. HSPB8 reduces the migra-
tion of hepatocellular carcinoma cells by suppressing the 
phosphoinositide 3-kinase (PI3K)/AKT pathway [33]. To 
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date, there is no literature linking HSPB8 to HSCC or sensi-
tivity. Our results showed that the expression of HSPB8 is 
reduced in chemosensitive HSCC samples, and subsequent 
Bayesian network and random forest analyses showed that 
HSPB8 plays an important role in the induction of chemo-
sensitivity. These findings revealed, for the first time, the 
association between HSPB8 and HSCC chemosensitivity and 
enriched the mechanism and therapeutic targets of HSCC 
chemotherapy sensitivity.

CCL4L1 and CCL3L1 are the analogs of chemokines 
CCL4 and CCL3, respectively, which are similar in function, 
and may also play an important role in the acute rejection 
of organ transplantation and the infection of hepatitis B 
virus [34]. Recent studies have found that the CCL4L1 gene 
has copy number polymorphisms, and carriers with high 
copy numbers often exhibit high levels of transcription 
and protein secretion [35–37]. Currently, no data suggest 
that CCL4L1 is related to HSCC. Our analysis, for the first 
time, showed that the expression of CCL4L1 in chemo-
therapy-resistant samples was significantly higher than that 
in chemotherapy-sensitive samples, and subsequent bioin-
formatics analysis showed that CCL4L1 was a key inducing 
factor for chemotherapy sensitivity. It is worth exploring 
whether the high expression of CCL4L1 is related to the high 
copy number and its effect on chemotherapeutic impact in 
HSCC. These findings contribute to a deeper understanding 
of the potential mechanisms of HSCC chemotherapy resis-
tance. In addition, our study provides a theoretical founda-
tion for further experimental studies exploring therapeutic 
targets and diagnostic markers.

Supplementary information is available in the online version 
of the paper.
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Figure 7. Integrated analysis of the DEGs and DE-miRNAs. Integrated analysis of the mRNA and miRNA microarray profiles revealed a PRAME/miR-
375/HSPB8 signal axis that contributes to chemosensitivity.
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