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CXCR4 antagonist alleviates proliferation and collagen synthesis  
of cardiac fibroblasts induced by TGF-β1
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Abstract. We aimed to investigate the effects of CX-C chemokine receptor type 4 (CXCR4) on 
transforming growth factor (TGF)-β1-induced cardiac fibrosis in Human cardiac fibroblasts 
(HCFs). HCFs were stimulated with TGF-β1, and the level of α-smooth muscle actin (α-SMA) 
was assessed by immunofluorescence assay. The expression of CXCR4 was detected by Western 
blotting. Then the cells were incubated with CXCR4 antagonist AMD 3465. Cell viability was 
measured by CCK-8 assay. The expression of α-SMA, proliferating cell nuclear antigen (PCNA) 
and Ki67 were examined. Collagen synthesis was detected by sirius red staining. Moreover, the 
expression of phpspho-Smad2 (p-Smad2) and p-Smad3 were determined. We found that the level 
of α-SMA was increased after induction with TGF-β1. The expression of CXCR4 was upregulated 
in TGF-β1-treated HCFs. Following treatment with AMD 3465, cell proliferation was inhibited 
coupled with a decrease in PCNA and Ki67 expression. Additionally, the expression of α-SMA 
was decreased after being intervened with AMD 3465. Concurrently, the levels of collagen were 
reduced accompanied by downregulation of Collagen I and III. Furthermore, AMD 3465 treat-
ment decreased the expression of p-Smad2 and p-Smad3. Our findings suggested that CXCR4 
antagonist AMD 3465 could alleviate cardiac fibrosis via blocking TGF-β1-induced activation of 
Smad2/3 in HCFs.

Key words: CX-C chemokine receptor type 4 — AMD 3465 — TGF-β1 — Cardiac fibrosis — Collagen

Correspondence to: Zheng Zhang, Cardiovascular Medicine 
Department, Qingpu Branch of Zhongshan Hospital Affiliated to 
Fudan University, 1158 Park East Road, Qingpu District, Shanghai, 
201700, China
E-mail: zhengzhangshine@163.com

Introduction

Characterized by the excessive proliferation of cardiac fibro-
blasts and overproduction of collagen, myocardial fibrosis 
has been identified as a critical event in physiological and 
pathological cardiac remodeling, thus contributing to many 
cardiac dysfunctions, such as cardiac arrhythmia, myocardial 
infarction and heart failure (Kong et al. 2014; Rathod et al. 
2016). To date, however, there is still no effective diagnosis 
and treatment for cardiac fibrosis. Therefore, it is of great 
clinical and scientific significance to explore the molecular 
mechanism and find out potential drug targets of myocardial 
fibrosis.

CX-C chemokine receptor type 4 (CXCR4) is known 
as a typical G-protein coupled seven-fold transmembrane 
receptor and one of a CXCR chemokine receptor. Accu-
mulating evidence suggests that CXCR4 plays a significant 
role in a number of physiological processes (Schneider et 
al. 2015; Luo et al. 2016). Recent researches have confirmed 
that CXCR4 might be implicated in the process of fibro-
sis. For instance, the expression level of CXCR4 is closely 
related to pulmonary fibrosis in Adenosine A2a receptor 
(A2aR) gene-knockout mice (Chen et al. 2017). The activa-
tion of CXCR4 contributed to kidney fibrosis and genetic 
ablation of CXCR4 prevented unilateral ureteral obstruc-
tion induced fibrosis via inhibiting transforming growth 
factor (TGF)-β1 pathways (Yuan et al. 2015). In addition, 
emerging evidence supports the notion that inhibition of 
CXCR4 could treat pulmonary fibrosis (Ding et al. 2018). 
Importantly, a  previous study reported that activation 
of CXCR4 pathway leads to cardiac fibrosis in dilated 
cardiomyopathy (Chu et al. 2019). However, the effect of 
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CXCR4 and the underlying mechanisms in human cardiac 
fibroblasts (HCFs) of myocardial fibrosis remains to be 
further elucidated.

Numerous studies unveiled that TGF-β1 is one of the 
most powerful profibrogenic mediators and a  dominant 
stimulator of collagen production (Chen et al. 2005). 
Therefore, in the current study, we aimed to investigate 
the effects of CXCR4 on TGF-β1-induced cardiac fibrosis. 
As a well-known highly selective CXCR4 antagonist, AMD 
3465 was used to block CXCR4 in HCFs (Hartimath et al. 
2014). And our data demonstrated that CXCR4 inhibition 
alleviates proliferation and collagen secretion of cardiac 
fibroblasts in HCFs through blocking TGF-β1-induced 
activation of Smad2/3.

Materials and Methods

Cell culture and treatment

HCFs were obtained from the American Type Culture Col-
lection (ATCC; Manassas, VA, USA) and grown in DMEM 
(Thermo Fisher Scientific, Inc., Waltham, MA, USA) con-
taining 10% FBS. All cells were incubated in an incubator 
containing 5% CO2. HCFs were stimulated with TGF-β1 
(20  ng/ml) for 24 h, then the cells were incubated with 
various concentrations of age-related macular degeneration 
(AMD) 3465 (2.5, 5 and 10 μM) for 48 h. Cells that cultured 
in normal conditions were used as control.

Immunofluorescence assay

The levels of α-smooth muscle actin (α-SMA) and Ki67 were 
detected by an immunofluorescence assay. Briefly, after be-
ing fixed in 4% formaldehyde for 15 min and permeabilized 
with 0.1% Triton™ X-100 for another 15 min, the cells were 
blocked in 5% goat serum for 1 h. Subsequently, cells were 
probed overnight at 4°C with α-SMA (#19245, cell signal-
ing technology) or Ki67 (#12075, cell signaling technology), 
followed by incubation with secondary antibodies for 1 h. 
Finally, after being stained with DAPI (D9542, Sigma) for 
5 min, the samples were imaged using a fluorescence micro-
scope (IX73-A12FL/PH; Olympus, Japan).

Quantitative real-time polymerase chain reaction (qPCR)

RNA in cells is collected using TRizol reagent (Invitrogen; 
Thermo Fisher Scientific, Inc.) in line with the supplier’s 
instructions. And cDNA was obtained using SuperScript 
II reverse transcriptase (Thermo Fisher Scientific, Inc.). 
Then quantitative PCR reactions were performed using 
PowerUp™ SYBR Green (Thermo Fisher Scientific, Inc.) 
with ABI 7500 thermocycler (Thermo Fisher Scientific, 

Inc. USA). Primers used were as follows: α-SMA, For-
ward 5’-GTGTTGCCCCTGAAGAGCAT-3’ and Reverse 
5’-GCTGGGACATTGAAAGTCTCA-3’; GAPDH, Forward 
5’-CTGGGCTACACTGAGCACC-3’ and Reverse 5’-AA-
GTGGTCGTTGAGGGCAATG-3’. GAPDH was used as 
control for normalization. The expression was calculated 
using the 2–ΔΔCq method.

Cell counting kit-8 (CCK-8) assay

Cell proliferation was measured by a CCK-8 kit. HCFs were 
plated into 96-well plates (3 × 103 cells/well). The cells were 
treated with TGF-β1 for 24 h and then incubated with AMD 
3465 for 48 h. Then, 10 μl CCK-8 (Beyotime, Beijing, China) 
was added into each experimental well for 2 h. Absorbance 
of each well was read at a wavelength of 450 nm using a mi-
croplate reader (Molecular Devices, Sunnyvale, CA), and 
the viability of the control group was assumed to be 100%. 

Western blotting

Total proteins were extracted from HCFs using RIPA lysis 
buffer (Beyotime, Shanghai, China). The concentration 
of protein was detected using a  BCA protein assay kit 
(Beyotime, Shanghai, China). Subsequently, protein (20 ug/
lane) was isolated by SDS-polyacrylamide gels (PAGE), 
and electrophoretically transferred onto polyvinylidene 
fluoride membranes. Then, all membranes were blocked 
by 5% skimmed milk. After being probed with primary 
antibodies, membranes were subsequently incubated with 
secondary antibodies (sc-358914, Santa Cruz). Finally, the 
signals of immunoblots were visualized using an enhanced 
chemiluminescence system (Amersham Bioscience, USA) 
and analyzed with ImageJ software. The protein expression 
was normalized to GAPDH levels.

Sirius red staining

The degree of myocardial fibrosis of HCFs was determined 
using Sirius red staining. Briefly, 4% paraformaldehyde was 
employed to fix with cells for 10 min, followed by incuba-
tion with 0.1% Sirius Red F3B for 30 min. Then the cells 
were stained with hematoxylin and dehydrating thrice in 
100% ethanol.

Statistical analysis

All quantitative data were expressed as the mean ± standard 
error of the mean (mean ± SD). Statistical analyses were 
carried out by using Student’s unpaired t-test and one-way 
ANOVA followed by Dunnett’s post-hoc test. A value of p < 
0.05 was considered statistically significant and each experi-
ment was repeated at least three times.
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Results

AMD 3465 treatment inhibited the expression of CXCR4 
induced by TGF-β1 in HCFs

TGF-β1 was employed to treat HCFs, and the level of 
α-SMA was determined using immunofluorescence assay 
in our study. As presented in Figure 1, there was almost no 
expression of α-SMA in the control group. On the contrary, 
TGF-β1 treatment increased the level of α-SMA, which is 
a marker of myofibroblast. As a novel antagonist of CXCR4, 
AMD 3465 was applied to treat cells with different doses 
(2.5, 5 and 10  μM). Proliferation of cells was measured 
by a  CCK-8 kit. As exhibited in Figure 2A, AMD 3465 
significantly reduced the proliferation of HCFs in a dose-
dependent manner. Moreover, when the concentration of 
AMD 3465 was 5 μM, the cell activity of HCFs was close to 
50% compared with the control group. Take it into account, 
5 μM AMD 3465 treatment was chosen for the following 
experiment. It was found that the expression of CXCR4 
was enhanced in TGF-β1-induced HCFs and AMD 3465 
decreased the expression of CXCR4 induced by TGF-β1 
(Fig. 2B). These results indicated that AMD 3465 treatment 
inhibited the expression of CXCR4 induced by TGF-β1 in 
HCFs.

AMD 3465 treatment relieved cell proliferation of HCFs 
induced by TGF-β1

To explore the effect of AMD 3465 on cell proliferation of 
HCFs induced by TGF-β1. The expression of PCNA and Ki67 
were assessed in the current study. We found that TGF-β1 up-
regulated the level of PCNA, whereas AMD 3465 treatment 
decreased this increase obviously (Fig. 3A). Concurrently, 
the level of Ki67 was detected by immunofluorescence assay. 

Figure 1. The expression of α-SMA in TGF-β1-induced human 
cardiac fibroblasts. Immunofluorescence staining assay was applied 
to measure the level of α-SMA in each group. 200× magnification. 
α-SMA, α-smooth muscle actin; TGF-β1, transforming growth 
factor -β1.

Figure 2. AMD 3465 treatment reduced cell proliferation and 
decreased the level of CXCR4 in TGF-β1-treated human cardiac 
fibroblasts (HCFs). A. Cell proliferation was assessed by CCK-8 
assay after treatment with AMD 3465 in TGF-β1-induced HCFs. 
B. AMD 3465 treatment reduced the level of CXCR4 in TGF-
β1-treated HCFs. ** p < 0.01, *** p < 0.001 vs. Control; # p < 0.05, 
## p < 0.01, ### p < 0.001 vs. TGF-β1. TGF-β1, transforming growth 
factor-β1; CXCR4, CX-C chemokine receptor type 4.
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As presented in Figure 3B, AMD 3465 treatment reversed 
the upregulation of Ki67 induced by TGF-β1 stimulation in 
HCFs. These findings suggested that AMD 3465 treatment 
relieved cell proliferation of HCFs induced by TGF-β1.

AMD 3465 treatment alleviated TGF-β1-induced  
differentiation of HCFs

To explore the effect of AMD 3465 on TGF-β1-induced 
differentiation of HCFs, the level of myofibroblast marker 

α-SMA was assessed using Western blotting and immuno-
fluorescence assay, respectively. As exhibited in Figure 4A, 
the level of α-SMA was increased notably in comparison 
with the control group, whereas AMD 3465 treatment 
markedly reduced TGF-β1-induced α-SMA expression. 
And the results of analysis by immunofluorescence assay 
was in accordance with the western blotting (Fig. 4B). These 
observations revealed that AMD 3465 treatment reversed 
the upregulated expression of α-SMA induced by TGF-β1 
stimulation in HCFs.

Figure 3. AMD 3465 treatment downregulated the expression of PCNA and Ki67 in TGF-β1-induced human cardiac fibroblasts. A. The 
expression of PCNA was assessed by western blotting. B. The level of Ki67 was determined by immunofluorescence assay. ***p < 0.001 vs. 
Control; ## p < 0.01 vs. TGF-β1. 100× magnification. TGF-β1, transforming growth factor-β1; PCNA, proliferating cell nuclear antigen.
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AMD 3465 treatment inhibited TGF-β1-induced collagen 
synthesis in HCFs

Collagen synthesis is crucial in the process of myocardial 
fibrosis, therefore, the expression of Collagen I  and III 
was detected using Western blotting. As expected, the 
expression of Collagen I and Collagen III were increased 
obviously in TGF-β1-induced HCFs. And AMD 3465 
treatment dramatically suppressed both Collagen I and 
III expression induced by TGF-β1 (Fig. 5A). Consistent 

with that, the results of sirius red staining showed that 
AMD 3465 markedly inhibited collagen synthesis of HCFs 
(Fig. 5B and C). 

AMD 3465 treatment blocked TGF-β1-induced activation 
of Smad2/3 in HCFs

To further investigate the potential molecular mechanism 
of AMD 3465 functions in myocardial fibrosis, western 
blotting assay was applied to detect the expression level of 

Figure 4. AMD 3465 treatment decreased the level of α-SMA in TGF-β1 treated human cardiac fibroblasts. The expression of α-SMA was 
detected by (A) Western blotting and (B) immunofluorescence assay. *** p < 0.001 vs. Control; ## p < 0.01 vs. TGF-β1. 200× magnification. 
α-SMA, α-smooth muscle actin; TGF-β1, transforming growth factor-β1.
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the key proteins of TGF-β1/Smad signaling pathway. Our 
results suggested that the expression of both phpspho-Smad2 
(p-Smad2) and p-Smad3 were markedly upregulated in 
TGF-β1-treated HCFs (Fig. 6). And AMD 3465 treatment 

markedly downregulated the levels of p-Smad2 and p-Smad3 
induced by TGF-β1 in HCFs. Overall, above data suggested 
that AMD 3465 treatment could block TGF-β1-induced 
activation of Smad2/3 in HCFs.

Figure 5. AMD 3465 treatment decreased the collagen secretion in TGF-β1-treated human cardiac fibroblasts. A. The expression of Col-
lagen I and Collagen III were evaluated by Western blotting. B. Representative images of Sirius red staining from each experimental group. 
C. Quantification of Sirius red staining. *** p < 0.001 vs. Control; # p < 0.05, ## p < 0.01 vs. TGF-β1. TGF-β1, transforming growth factor-β1.

Figure 6. AMD 3465 treatment inhibited the expression of p-Smad2 and p-Smad3. The levels of p-Smad2 and p-Smad3 were assessed 
by Western blotting. ** p < 0.01, *** p < 0.001 vs. Control; # p < 0.05, ### p < 0.001 vs. TGF-β1. TGF-β1, transforming growth factor-β1; 
p-Smad2, phospho-Smad2.
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Discussion

CXCR4 is involved in many physiological and pathologi-
cal processes including occurrence and development of 
cardiovascular disease (Segret et al. 2007; Chatterjee et 
al. 2017). Cardiac fibrosis is one of the important patho-
physiological mechanisms underlying cardiovascular 
disease. However, little is known about the role of CXCR4 
in the process of myocardial fibrosis. Recently, a study in 
myocardial infarction showed that CXCR4 blockade could 
reduce fibrosis and enhance cardiac function and survival 
after myocardial infarction, suggesting that CXCR4 may 
participate in myocardial fibrosis (Jujo et al. 2010). Herein, 
we aimed to investigate the effects of CXCR4 on cardiac 
fibroblasts. Our results showed that the expression of 
CXCR4 was upregulated notably in TGF-β1-stimulated 
HCFs, which suggested that CXCR4 may be involved in 
the TGF-β1-induced cardiac fibrosis. To further investigate 
the potential role of CXCR4 and reveal the underlying 
molecular mechanisms, the CXCR4 antagonist AMD 3465 
was used to perform. We found that AMD 3465 alleviates 
TGF-β1-induced collagen synthesis and myofibroblasts 
differentiation of HCFs via suppression of TGF-β1/Smad 
pathway. These findings suggested that CXCR4 is crucial 
for cardiac fibrosis and it could be a  potential target in 
cardiac fibrosis treatment.

It has been documented previously that CXCR4 could 
promote the differentiation of fibroblasts to myofibroblasts 
(Abu El-Asrar et al. 2008; Gharaee-Kermani et al. 2012; 
Marts et al. 2019). For example, a study involving idiopathic 
pulmonary fibrosis (IPF) revealed that the expression of 
CXCR4 mRNAs were decreased in IPF patients compared 
with the healthy control (Antoniou et al. 2010). In addition, 
prior report has demonstrated that CXCR4 inhibition could 
treat the activation of HSC-T6 cells induced by TGF-β1 in 
liver fibrosis (Ullah et al. 2019). Moreover, it has been well 
reported that CXCL4 promotes the process of cell fibrosis 
by inducing the α-SMA production (Gillen et al. 2013). In 
our study, it was found that AMD 3465 treatment decreased 
the expression of α-SMA, which was in accordance with the 
previous study (Xu et al. 2016). 

Excessive proliferation of cardiac fibroblasts contributes 
to the pathological changes of fibrotic diseases. It has been 
reported that endogenous SO2 could inhibit myocardial 
fibroblast proliferation via inhibiting ERK signaling pathway 
(Zhang et al. 2018). Relaxin is able to reduce the expression 
of PCNA and reverses cardiac and renal fibrosis in rats 
(Lekgabe et al. 2005). In addition, a previous study reported 
that Dasatinib could inhibit Ki67 level and relieve cardiac 
fibrosis in mice induced by pressure overload (Balasubra-
manian et al. 2015). Consistent with these data, the present 
study revealed that AMD 3465 treatment decreased the 
proliferation of HCFs induced by TGF-β1 accompanied by 

downregulation of PCNA and Ki67 expression, which are 
the proliferation associated genes. Our results suggested that 
AMD 3465 treatment relieved cell proliferation of HCFs 
induced by TGF-β1. Moreover, TGF-β1 is a multifunctional 
cytokine and one of the most powerful stimuli of fibroblast 
activation and fibrosis identified to date (Fix et al. 2019). 
A growing body of evidence confirms that suppression of 
Collagen I and III attenuates cardiac fibroblasts (Wang et 
al. 2018; Song and Ren 2019). We found that AMD 3465 
treatment decreased the level of collagen deposition, coupled 
with downregulation of Collagen I and III expression. These 
observations revealed that AMD 3465 treatment inhibited 
TGF-β1-induced collagen deposition in HCFs.

The activation of CXCR4 can induce a range of physi-
ological responses and gene expression by activating 
downstream pathways (Ding et al. 2019). To investigate the 
precise mechanism of CXCR4 blocking in fibrosis inhibi-
tion, we assessed the level of key proteins in TGF-β1/Smad 
signaling pathway. Our data showed that AMD 3465 mark-
edly downregulated the levels of p-Smad2 and p-Smad3 
induced by TGF-β1 in HCFs. Those results suggested that 
there was a crosstalk between CXCR4 and TGF-β1/Smad 
pathway. Based on the above results, we concluded that 
AMD 3465 treatment could block TGF-β1-induced activa-
tion of Smad2/3 in HCFs.

In conclusion, our data demonstrated that CXCR4 an-
tagonist AMD 3465 alleviates cardiac fibrosis induced by 
TGF-β1 in HCFs via blocking, at least partly, Smad depend-
ent signaling pathway. TGF-β1 obviously increases the level 
of CXCR4, and AMD 3465 blocks TGF-β1-induced activa-
tion of Smad2/3 in HCFs. Interference of CXCR4 may be 
a potential treatment for myocardial fibrosis.
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