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Summary. – The development of CD4+ T helper cells is determined by the set of transcription factors 
and the genes these transcription factors transcribe. In this review, we describe the basic nature of Th1, 
Th2, Th9, Th17, T-follicular helper (Tfh), gamma delta (γδ) T cells, and T-regulatory (Treg) cells subsets, their 
master regulator transcription factors and their corresponding signature cytokine production profiles. 
Cellular immunity plays important role during virus infection. Optimal immune response to viral infec-
tions require a gentle balance of effector responses to clear the infected cells and regulatory mechanism to 
prevent  immunopathology. The behavior of the helper cells differs with each virus – while in some cases, 
the response is beneficial; in other cases, it is harmful. We discuss the protective and pathological role 
of T cell immunity against influenza A virus (IAV), respiratory syncytial virus (RSV), immunodeficiency 
virus type 1 (HIV-1), and hepatitis B virus (HBV) infection.
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Introduction

The immune response elicited by virus infection is one 
of the main factors contributing to the pathogenesis of the 
disease. Both innate and acquired immune responses are 
essential for an effective viral clearance. 

T cells exert diverse functions in defense and antibody 
response against intracellular as well as extracellular 
pathogens. Naïve T cells originate from hematopoietic 

stem cells in bone marrow, and then undergo the positive 
and negative processes of central selection in the thymus. 
Differentiation into specific subsets of T-cell depends on 
the presenting stimulus and the immunological environ-
ment. Naïve T cells are precursors for effector and memory 
subsets of T cells. CD4+ effector T cells, also called helper 
(Th) cells play pivotal roles in the humoral and cellular 
adaptive immune response. The helper T cells are divided 
into several distinct subsets (e.g. Th1, Th2, Th9, Th17, 
T-follicular helper (Tfh) and T-regulatory (Treg) cells), 
differentiated by their corresponding signature cytokine 
production profiles. These cells function in host defense 
against different types of infectious pathogens. They are 
also involved in different types of tissue damage and play 
important role in antibody responses. Every subset devel-
ops by producing its unique cytokines, master regulator, 
potential transcription factors and binding sites. T cell 
differentiation to cellular subsets is an intricate process 
subtly controlled by the master regulator and many 
regulatory signals and molecules. The balance among 
different subsets of T cell sets the stage for the acquired 
immunological response and play a significant role in 
pathogenesis. 
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hepatitis B virus; HIV-1 = human immunodeficiency virus type 1; 
IAV = influenza A virus; IFNs = interferons; IL = interleukine; RA 
= rheumatoid arthritis; RORC2 = retinoic acid receptor-related 
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virus; STAT = signal transducer and activator of transcrip-
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The cytokine environment activates differentiation 
program usually via phosphorylation of STAT proteins. 
This program involves the induction of transcription fac-
tors that maintain subset identity and genes involved in 
cell migration and cytokine production. Such signaling 
is essential for the ability of the Th subset to regulate 
immune responses (Jabeen et al., 2013). The activation 
of the differentiation program requires the coordinated 
function of a network of transcription factors.

Th1 and Th2 subsets are relatively stable, but under 
certain cytokine stimulation, Treg and Th17 cells switch 
to other T helper subsets. This conversion of terminally 
differentiated lineage committed subset to other termi-
nally differentiated lineage committed subset is called 
“plasticity” (Yang et al., 2015). The defining characteristics 
of each subset of T cells are the cytokines they produce, the 
transcription factors they express and epigenetic changes 
in their specific cytokine gene loci (Fig. 1). 

Properties of Th1 subset

The signature cytokines produced by the Th1 subset is 
interferon (IFN)-γ, IL-2, and IL-10. Th1 cells express high 

level of the chemokine receptors CXCR3 and CCR5 (Sal-
lusto et al., 1998). These receptors bind chemokines, which 
elaborate in tissue during innate immune responses and 
therefore Th1 cells are abundant in sites of infection. Th1 
cells also express high level of ligands for E-selectin and 
P-selectin, which regulate migration of immune cells to 
the site of severe inflammation. The master regulator of 
Th1 cells is considered T-bet, signal transducer and acti-
vator of transcription (STAT) 1 and STAT4. T-bet initiates 
the development of the Th1 lineage from naïve T-helper 
lymphocyte cells (Thp) by both, activating Th1 genetic 
programs and repressing the opposing Th2 programs. 
Th1 cell specific expression of IFN-γ is associated with 
selective expression of T-bet (Szabo et al., 2000). T-bet 
represses Th2 lineage commitment through tyrosine 
kinase-mediated interaction between the two transcrip-
tion factors (T-bet and GATA-3) that interferes with the 
binding of GATA-3 to its target DNA (Hwang et al., 2005). 
Moreover, IL-2 and IFN-γ secreted by Th1 cells suppress 
Th2 (Mosmann et al., 1986). STAT factors are required for 
the optimal induction of the master switch determinant. 
Although STAT-independent T-bet induction, has been 
described, it seems to be incapable to achieve a necessary 

Fig. 1

Differentiation of the Th subsets
Full arrow-stimulation; dashed arrow-inhibition. 



 BEŇOVÁ, K. et al.: T CELLS AND VIRUSES 133

effector function without STAT1 and STAT4 (Kaplan et al., 
1998; Szabo et al., 2000). The IFN-γ – STAT1-T-bet pathway 
plays an important role in Th1 differentiation in vitro 
(Grogan et al., 2001; Afkarian et al., 2002). IL-12 activates 
STAT4, which is critical for Th1 responses in vitro and 
in vivo (Kaplan et al., 1998; Cai et al., 2000). STAT4 is also 
expressed in Th2 cells, although expression level is higher 
in Th1 cells (Usui et al., 2003). 

Properties of Th2 subset

The signature cytokines produced by the Th2 subset in-
clude interleukins – IL-4, IL-5 and IL-13. Th2 cells express 
the chemokine receptors CCR3, CCR4, and CCR8 (Sallusto 
et al., 1998). These receptors recognize chemokines that 
are highly produced during helminthic infection or al-
lergic reactions, especially in mucosal tissues, where Th2 
cells tend to infiltrate. STAT5, STAT6, c-Maf, GATA-3, and 
NFAT transcription factors are major regulators of Th2 
development and function (Paul and Zhu, 2010; Lambre-
cht and Hammad, 2012). Induced GATA-3 activates STAT6 
and facilitates chromatin remodeling of the IL4-IL5-IL13 
locus during Th2 cell differentiation (Kurata et al., 1999; 
Lee et al., 2000; Ouyang et al., 2000; Fields et al., 2002; Avni 
et al., 2002; Takemoto et al., 2002; Yamashita et al., 2002). 
Cytokines IL-4 and IL-13 are expressed in a copy number-
dependent manner at high level only in Th2 cells. IL-5 is 
not expressed in a copy number-dependent manner (Lee 
et al., 2003). Interferon regulatory factor IRF4 is essential 
for the development of Th2 cells, which secrete IL-4 and 
IL-10 cytokines inhibiting Th1 responses (Mosmann et al., 
1986; Staudt et al., 2010).

Properties of Th9 subset

Naïve CD4+ T cells and Th2 cells differentiate into Th9 
cells at presence of TGF-β (Zhou et al., 2009) The signature 
cytokines produced by the Th9 subset are IL-9 and IL-10 
(Dardalhon et al., 2008; Veldhoen et al., 2008). Secretion of 
IL-9 dependent on IL-2, is synergistically enhanced by a 
balanced combination of TGF-β and IL-4, and is inhibited 
by IFN-γ (Schmitt et al., 1994). B cell-activating transcrip-
tion factor-like (BATF) has been shown to be required for 
the development of Th9, Th17 cells, T follicular helper 
cells, and possibly Th2 cells (Bettz et al., 2010; Schraml et 
al., 2009; Ise et al., 2011). TGF-β in conjunction with IL-4 
reprograms Th2 cell differentiation and results in the de-
velopment of Th9 cells. The switching factor between Th2 
and Th9 subsets is PU.1, which belongs to an ETS tran-
scription factor family. The PU.1 specifically promotes 
the development of IL-9-secreting cells and restricts the 

Th2 genetic program (Chang et al., 2005, 2009; Goswami 
et al., 2012a). Differentiation of Th9 is also promoted by 
IL-4 and several transcription factors including STAT6, 
GATA-3, and IRF4, which are also required for develop-
ment of Th2 cells (Veldhoen et al., 2008; Staudt et al., 2010). 
The IFN-γ and IFN-γ promoting cytokines such as IL-12, 
IL-18, and IL-23 as well as Th1-associated transcription 
factor T-bet inhibit the induction of Th9 cells (Goswami 
et al., 2012b). 

Th9 cells lack suppressive function and promote tissue 
inflammation. IL-9 is critically involved in the resistance 
to parasites (Trichuris muris) and plays a detrimental 
role concerning the pathogenesis of asthma (Khan et al., 
2003; Temann et al., 1998; Staudt et al., 2010). Due to the 
pleiotropic function of IL-9, Th9 cells might be involved 
in pathogen immunity and immune-mediated disease.

Properties of Th17 subset

The signature cytokines produced by the Th17 subset 
are interleukins: IL-17A, IL-17F, IL-6, IL-21, IL-22, IL-23, IL-26,  
CCL20 and tumor necrosis factor alpha (TNF-α) (Korn et 
al., 2009). Th17 cells express CCR4 and CCR6. The CCR6 
receptor binds the chemokine CCL20, which is produced 
by macrophages and various tissue cells after bacterial 
and fungal infections. In addition to CCR6, CXCR3, CXCR6 
and CCR5 receptors are also expressed on the Th17 cells. 
Th17 cells control the immune response to extracellular 
pathogens such as Klebsiella or Candida, and play a key 
role in autoimmune diseases such as rheumatoid arthri-
tis. Th17 cells directly or via proinflammatory cytokines 
modulate anti-tumor immune responses. Th17 cells are 
generated from naïve T cells by IL-6, IL-1, IL-21, with or 
without TGF-β. They further expand and stabilize with 
IL-23. Retinoic acid receptor-related orphan nuclear re-
ceptor gamma t (RORγt)/ retinoic acid receptor-related 
orphan receptor C2 (RORC2) induces IL-6 expression, 
which is regulated by STAT3 (Laurence et al., 2007; Yang 
et al., 2007). The master switch factors for Th17 cells are 
the transcription factor RORγt/RORC2 (mice/human), 
RORα, basic leucine zipper transcription factor, ATF-like 
(BATF), and IRF4 (Ivanov et al., 2006; Unutmaz, 2009). 
RORγt and RORα control the key Th17 genes including 
IL-17A, IL-17F, IL-23R, CCL20 and CCR6 (Castro et al., 2017). 
The development of the Th17 phenotype is regulated by 
RORC2, STAT3 factors and BATF, which are part of a BATF/
Jun/IRF4 pathway (Ciofani et al., 2012; Li et al., 2012). Th17 
differentiation is connected with a low concentration 
of TGF-β (Zhou et al., 2008). Th17 cells can be converted 
after IL-12 stimulation into IFN-γ producing Th1 cells or 
after stimulation with IL-4 into Th2 cells producing IL-4 
(Zhou et al., 2009). 

https://www.sciencedirect.com/topics/medicine-and-dentistry/transforming-growth-factor-beta
https://www.sciencedirect.com/topics/medicine-and-dentistry/trichuris-muris
https://www.sciencedirect.com/topics/medicine-and-dentistry/pathogenesis
https://www.sciencedirect.com/science/article/pii/S1074761310002797?via%3Dihub#bib24
https://www.sciencedirect.com/science/article/pii/S1074761310002797?via%3Dihub#bib24
https://www.sciencedirect.com/science/article/pii/S1074761310002797?via%3Dihub#bib52
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Properties of Th22 subset

Th22 cells have been identified as a novel CD4+ T cells 
present in the skin.  They primarily secrete various in-
terleukins including IL-22, IL-6, IL-10, IL-13, IL-21, IL-26 
and IL-1β (Eyerich et al., 2009). The signature cytokines 
produced by Th22 cells are IL-22, IL-26, and IL-33. CCR4, 
CCR6, and CCR10 expressed on the surface of Th22 cells 
are associated with cutaneous T cell homing (Duhen et 
al., 2009; Nograles et al., 2009). 

Th22 subset is induced from CD4+ T cells in the pres-
ence of IL-6 and TNF-α. The Th22 subgroup expresses the 
ligand-activated master switching transcription factor, 
the aryl hydrocarbon receptor (AhR). By engaging this re-
ceptor and activating STAT3, Th22 cells produce a number 
of cytokines such as IL-22, IL-26, and IL-13 and one of the 
most important functional cytokine, IL-22 (Duhen et al., 
2009; Ramirez et al., 2010; Akdis et al., 2012; Jabeen and 
Kaplan, 2012; Kaplan, 2013). The transcriptional signature 
of Th22 differentiation includes pronounced expression 
of Tbx21, cell death-inducing granzymes (particularly 
Gzmb), and IL-13. RORγt and T-bet transcription factors 
act as positive and negative regulators of Th22 cells differ-
entiation, respectively (Plank et al., 2017). IL-22 production 
in Th22 cells is stimulated by many factors, including IL-1β,  
IL-6, IL-21, and IL-23 (Yeste et al., 2014; Plank et al., 2017).

Th22 cells play important role in promoting repair of 
damaged epithelial barriers as well as enhancing immune 
responses against some pathogens (Eyerich et al., 2009). 
Th22 cells can also express granzyme B and IL-13, fac-
tors associated with host defense and tissue remodeling 
(Plank et al., 2017). Elevated level of IL-22 produced by Th22 
lymphocytes are associated with various disorders, such 
as infections, autoimmune diseases, hepatitis, pancreati-
tis, rheumatoid arthritis (RA), and tumors.  

Properties of regulatory T (Treg) subset

Treg cells are divided into two groups: thymus-derived 
Treg cells (tTreg, or nTreg – natural Treg) and induced 
regulatory T cells (iTreg) (Sakaguchi et al., 2008). Tregs 
can also be classified into three new subsets: central 
Tregs, effector Tregs, and tissue-resident Tregs (Liston 
and Gray, 2014). Central Tregs (also naïve Tregs, or resting 
Tregs) and effector (memory) Tregs comprise the majority 
of all Tregs, while they are minor population of circulat-
ing and secondary lymphoid organ Tregs, respectively. 
Tissue-resident Tregs have a long-term residence in non-
lymphoid tissues such as skin/ lung, gut, germinal center, 
and adipose tissue and are distinguishable from classical 
lymphoid-organ Treg cells in phenotype and function 
(Burzyn et al., 2013).

The signature cytokines produced by the Treg subset 
are secreted factors: IL-10, IL-15, IL-35, TGF-β1, and Galen-
tin-1 (Han et al., 2012). The CD3, CD4, CD25, and CD127 are 
surface markers that define human Treg cells (Santegoets 
et al., 2015). The master switch factors for Treg cells are 
forkhead box P3 (FOXP3) and STAT5 (Hori et al., 2003; 
Zhou et al., 2009). Low TGF-β concentrations promote 
Th17 cell development, while high concentrations induce 
FOXP3 expression and Treg cell development (Zhou et 
al., 2008). TGF-β1 and IL-2 are responsible for Tregs ex-
pansion. IL-2-induced STAT5 plays an important role in 
promoting FOXP3 expression (Zhou et al., 2009). Treg 
cells are predominantly activated downstream of STAT5 
rather than MAPK and PI3K pathways partly due to the 
high expression of the phosphatase PTEN (Malek and 
Castro, 2010; Walsh et al., 2006). IL-2–STAT5 signaling also 
depends upon serine-threonine kinases Mst1 and Mst2 
(Shi et al., 2018). 

Tregs play a pivotal role in the preservation of self-tol-
erance and prevention of autoimmunity (Sakaguchi et al., 
2010). In addition, Treg cells can also directly inhibit dif-
ferentiation, proliferation, and function of conventional 
T cells, including CD4+ and CD8+ T cells, by direct cell-cell 
contact and by down-modulation of antigen presenting 
cells (APCs) function, especially dendritic cells (DCs) 
(Park et al., 2011; Maeda et al., 2014).

iTregs possess extensive plasticity and can be switched 
to Th1, Th2, Tfh, and Th17 cells. In the presence of B cells 
and CD40-CD40L interaction signaled by B-cell lympho-
ma/leukemia 6 (Bcl-6) transcription factor, iTregs can be 
switched to follicular T helper cells. IRF4 transcription 
factor mediates the switch of iTregs to Th2 cells and T-bet 
mediates the switch to Th1 cells. The conversion of iTreg 
to Th17 cells is regulated by STAT3 transcription factor, 
which is stimulated by IL-6 and IL-21 (Coomes et al., 2013). 

Properties of follicular helper (Tfh) cells

Tfh cells provide a helper function to B cells and are 
one of the most numerous and important subsets of ef-
fector T cells in lymphoid tissues. The signature cytokine 
produced by the Tfh is IL-21. Tfh can also produce IL-4 
(Jandl et al., 2017). Tfh cells express various receptors and 
proteins on their surface, including CXCR5 receptor, the 
inducible co-stimulatory receptor ICOS, the programmed 
cell death protein-1 (PD-1) and B and T lymphocyte attenu-
ator (BTLA) (Akiba et al., 2005; Haynes et al., 2007; King et 
al., 2008). The master switch factor for Tfh cells is Bcl-6. 
However, the other transcription factors such as c-Maf, 
Achaete-scute complex homolog 2 (ASCL2), basic leucine 
zipper (bZIP) transcription factor, and IRF4 are also cru-
cial. Bcl-6 expression, associated with the downregulation 
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of its antagonist Blimp-1, leads to the inhibition of the 
other transcription factors specific for other T helper cell 
lineages (T-bet, GATA3, and RORγt especially) (Gensous 
et al., 2018). Tfh cells are the specialized B cell providers 
that help to produce antibody against foreign pathogens.  

Properties of gamma delta (γδ) T cells

γδ T cells are scarce in lymphoid tissues and abundant 
at mucosal sites such as skin, tongue, intestine and repro-
ductive organs (Itohara et al., 1990). γδ T cells, depending 
on the types of signals presented in the tissue microen-
vironment, produce pro-inflammatory cytokines such 
as IFN-γ, TNF‐α and IL-17, as well as anti-inflammatory 
cytokines like TGF-β, IL-4 and IL-10, (Rochman et al. 2009; 
Rei et al., 2014). They also express several co-stimulatory 
and regulatory molecules such as CD27, CD28, CD30, B- and 
T-lymphocyte attenuator (BTLA), natural-killer group 2, 
member D (NKG2D),  natural-killer group 2, member A 
(NKG2A), Toll-like receptors (TLRs) and CD39 (Ribot et 
al., 2009; Sun et al., 2013; Bekiaris et al., 2013; Nedellec et 
al., 2010; Wang et al., 2012; Otsuka et al., 2013). Signaling 

from these receptors dictates the cytokine production 
and γδ T cells effector functions. γδ T cells can also act as 
professional antigen-presenting cells and help in shaping 
the Th1 and cytotoxic CD8+ T cells response (Brandes et 
al., 2005).

T cells and respiratory viruses

It has been thought that T-helper cells exist as two 
major subsets, Th1 and Th2 cells. This Th1/Th2 paradigm 
was based on the mechanisms involving elimination of 
microbial pathogens. Th1 cells are critical for the clear-
ance of many intracellular pathogens, such as Leishmania 
major and viruses while Th2 cells are important for the 
elimination of helminthic parasites, such as nippostron-
gylus brasiliensis and Schistosoma mansoni (Reiner and 
Locksley, 1995; Pulendran and Artis, 2012). An optimal 
immune response to viral infections requires delicate 
balance of effector responses to clear infected cells and 
regulatory mechanisms to prevent immunopathology 
(Duan and Thomas, 2016). Initial targets for respiratory 
viruses are lung epithelial cells and alveolar macrophages. 

Fig. 2

a schematic representation of the Th cells subsets involved in immune response to influenza a infection
The positive role of individual subset is displayed in green panel and negative role is displayed in red panels. 
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The helper cells behavior differs for each respiratory 
virus – in some cases, the response is beneficial; in other 
cases, it is harmful. In many cases, Treg cells inhibit exces-
sive virus specific T cell responses that may contribute to 
viral pathogenicity. 

T cells and influenza a virus (IaV)

IAV is a major respiratory pathogen that causes annual 
epidemics with serious health consequences. IAV belongs 
to the family orthomyxoviridae. The genome contains 
eight segments of negative-sense, single-stranded RNA. 
Each segment contains a viral RNA-dependent RNA poly-
merase and is embedded into ribonucleoproteins.  The 
approximately 13 kb genome encodes up to 18 proteins. 
An important host innate immune mechanism is the 
production of interferons (IFNs), which can establish 
an antiviral state by up-regulating interferon stimu-
lated genes that interfere with various steps in the virus 
life cycle (Švančarová et al., 2015a,b; Škorvanová et al., 
2015; Lachová et al., 2017). The neutralizing antibody is 
considered to be the main immune mechanism against 
influenza virus. CD4+ T cells also play an important role 
in the strong Th1-based immune response to IAV infec-
tion (Fig. 2). Tfh cells are required for highly specific and 
memory humoral responses (Miyauchi, 2017). Oh and 
Eichelberger (2000) have showed that DC infected with 
influenza virus A/PR/8/34 (PR8) stimulate T cells which 
produce different types of cytokines in a dose-dependent 
manner. The mixed Th1/Th2 response was influenced by 
NA activity. It has recently been shown, that increased 
pathogenicity of NS1-truncated virus (NS80) does not 
influence Th1/Th2 balance (Turianová et al., 2020). Th2 
cytokines such as IL-4, IL-5, IL-6, IL-10 and IL-13, are as-
sociated with the development of the influenza virus 
encephalopathy and increased pathology (Betáková et al., 
2017). Lethal influenza virus infection induces cytokine 
profiles corresponding to the mixed Th1/Th2 response 
in mice (Turianová et al., 2019). Th2-controlled immune 
responses to influenza virus infection exacerbate lung 
tissue damage and delay viral clearance (Graham et al., 
1994; Turianová et al., 2019). A dysregulated Th1/Th2 cy-
tokine profile was detected in pregnant ferrets, resulted 
in a poor immune response against IAV infection (Yoon 
et al., 2018). During severe infection with pandemic influ-
enza A (H1N1), the imbalance between pro-inflammatory 
and anti-inflammatory molecules, such as Th1 and Th17 
cytokines, is associated with complicated infections and 
mortality (Sarda et al., 2019).

Infants suffer from relatively high hospitalization 
rates, severe clinical complications, and influenza related 
mortality. Exaggerated type 2 responses that are char-

acteristic of the IL-33 mediated infant immune system 
pathway may function to prevent tissue damage due to 
excessive inflammation (de Kleer et al., 2016; Saluzzo 
et al., 2017). γδ T cells are the first T cells to appear in the 
thymus during fetal development and have the ability to 
recognize a wide range of antigens and respond rapidly to 
infections. For example, it is known that these cells play an 
important role in protecting infants from viral infection 
(Chien et al., 2014; Vantourout and Hayday, 2013). These 
cells have some important roles in regulating the produc-
tion of IL-17A and IL-33, in promoting tissue recovery after 
infection (Guo et al., 2018). 

Tregs can control immune balance during viral in-
fection and prevent tissue damage (Moser et al., 2014). 
The presence of Treg cells in lungs of IAV infected mice 
resulted in decrease of Th17 cells, infiltrated neutrophils, 
and lung inflammation (Egarnes and Gosselin, 2018).   
mTregs persist in host long time after primary IAV infec-
tion. They have a competitive advantage in migrating to 
the IAV-infected lungs. Adoptively transformed mTregs 
are able to significantly reduce body weight loss, lung 
pathology and infiltration of immune cells into infected 
lungs (Lu et al., 2019). 

T cells and respiratory syncytial virus (RSV)

RSV is common respiratory virus that causes viral 
bronchiolitis and pneumonia in the children worldwide. 
In addition, it causes considerable morbidity and mor-
tality in infants, in the immunocompromised, and the 
elderly. Seventy percent of children are infected with 
RSV in their first year of life (Bueno et al., 2008). RSV as a 
member of the Paramyxoviridae family, is an enveloped 
RNA virus and its RNA encodes 11 proteins. Both innate 
and acquired immune responses are essential for effective 
viral clearance. Since an antibody hampers infection and 
an effective B-cell response with efficient neutralizing 
antibodies is absent, the clearance of RSV infection is 
predominantly dependent on T cells response (Fig. 3) 
(Gonzáles et al., 2012).  Th1 and Treg cells play an impor-
tant role in virus clearing. Moreover, γδ T cells are critical 
in protecting infants from RSV infection (Vantourout et 
al., 2014). 

During the RSV infection, Tregs are maintained in the 
immunological environment with a focus on virus clear-
ance. During the second infection, the Tregs' response is 
decreased. Secondary RSV infection leads to an increased 
Th17 response, where a defective Tregs' response leads to 
Th2-mediated airway inflammation. Initially, the sever-
ity of RSV infection is associated with the induction of 
Th2 cells rather than Th1 cells (Becker, 2006; Durant et 
al., 2013). However, the Th17 and Treg subsets have been 

https://www.sciencedirect.com/science/article/pii/S1074761318303315?via%3Dihub#bib19
https://www.sciencedirect.com/science/article/pii/S1074761318303315?via%3Dihub#bib59
https://www.sciencedirect.com/science/article/pii/S1074761318303315?via%3Dihub#bib59
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shown to determine the nature of the immunological 
response and the severity of RSV infection. During RSV 
infection, Treg cells are responsible for early recruitment 
of activated CD8+ cytotoxic cells into the lungs in order 
to regulate/facilitate RSV viral clearance (Ruckwardt et 
al., 2009; Fulton et al., 2010). In Treg-depleted mice, the 
abundant presence of CD8+ T cells producing TNF-α 
and IFN-γ lead to tissue pathology and increased disease 
severity (Fulton et al., 2010; Durant et al., 2013). Treg cells 
perform vital anti-inflammatory functions, suppressing 
pathogenic T cell responses and inhibiting lung eosino-
philia (Durant et al., 2013). 

Treg response is different during primary and second-
ary RSV infection. During primary Th17 response, the 
concomitant reaction is Th2 response (Mukherjee et al., 
2011; Bystrom et al., 2013). The Th17 response is induced 
by activated complement factor C3 and tachykinins (Bera 
et al., 2011). IL-17 causes exaggerated mucus production, 
increases Th2 cytokine production, it is associated with 
increased neutrophils infiltration in the lungs, and di-
minishes viral clearance by negative regulation of T-bet 
and Eomes transcription factors (Mukherjee et al., 2011; 
Bystrom et al., 2013). 

T cells and human immunodeficiency  
virus type 1 (HIV-1)

HIV-1 belongs to the Retroviridae family, the subfamily 
orthoretrovirinae and it is grouped into the genus Lenti-
virus. The development of infection has several phases. 
First, the eclipse phase is a period between 1- and 2-weeks 
post infection, during which the virus replicates and 
spreads from the site of infection into various tissues and 
organs (Coffin and Swanstrom, 2013). The second phase is 
referred as an acute phase of infection characteristic of a 
rapid increase in viremia and a concomitant decrease in 
the CD4+ T cells population (particularly in gut lymphoid 
tissue, GALT). During the third phase, clinical latency 
develops after activation of host-specific cellular im-
munity, the level of viremia is usually low and this stage 
may last up to 20 years. During this phase, some virus 
replication may occur and cause a decrease in the num-
ber of CD4+ T-cell via immune activation. Phase fourth is 
characterized by a loss of control of the immune system, 
leading to opportunistic infections, malignancies, and 
death of untreated individuals. HIV-1 infection causes 
hyperactivation of the immune system and constant 
depletion of helper CD4+ T cells (Catalfamo et al., 2012). 

Fig. 3

a schematic representation of the Th cells subsets involved in immune response to respiratory syncytial virus
The positive role of individual subset is displayed in green panel.
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During pathogenesis of HIV, effector functions of CD4+ 
T cells depend on cytokine immunity and CD4+ T cells 
differentiate into Th1, Th2, Th9, Th17, Th22 as well as 
Treg and Tfh cell populations (Fig. 4) (Reuter et al., 2012; 
Gorenec et al., 2016). Th1, Th17, and Th22 cells are criti-
cally important for initiating primary immune responses 
and for maintenance of mucosal integrity. Infection and 
dysregulation of Tfh and other key CD4+ T cell results 
in hyperactive, yet non-protective immune responses 
that supports active viral replication and evolution, and 
thus persistence in host tissue reservoirs (Veazey, 2019). 
Chronic HIV infection is characterized by Th1 and Th2 
production (Gorenec et al., 2016). The number of Th17 
cells is depleted in the gut mucosa, where they play a key 
role in a host defense against bacteria (Shirazi and Pitha, 
1992). Th17 cell regeneration is inhibited by Tregs (Favre et 

al., 2010). However, HIV recovery was shown to be lower 
when γδ T cells were present (James et al., 2020). Tregs 
play both a positive but also negative role in the patho-
genesis during HIV infection. Strong Treg responses may 
contribute to the pathogenesis of HIV by suppressing 
HIV-specific immune responses, particularly effector 
T cells (Kinter et al., 2007). Tfh cells are located in a tis-
sue that undergoes significant remodeling during HIV 
infection (Estes et al., 2007). Chronic HIV infection leads 
also to depletion of Th9 and Th22 cell subsets (Kim et al., 
2012; Gorenec et al., 2016). Reduced IL-22 production and 
Th22 depletion in the gut mucosa are important factors 
in HIV mucosal immunopathogenesis (Kim et al., 2012). 
The development of T cell response depends on the HIV 
virus tropism. Th9 cells and, to a lesser extent, Th2 cells 
express higher surface levels of CXCR4, and are more 

Fig. 4

a schematic representation of the Th cells subsets involved in immune response to human immunodeficiency virus type 1
The positive role of individual subset is displayed in green panel and negative role is displayed in red panels.
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permissive to X4-tropic infection in vitro.  Th1 and Th17 
cells exhibit stronger surface expression of CCR5, and 
are more susceptible to infection by R5-tropic viruses 
(Orlova-Fink et al., 2017).

T cells and hepatitis B virus (HBV)

HBV, a member of the Hepadnaviridae family, is a small 
DNA virus, which replicates through an RNA intermedi-
ate and can integrate into a host genome. HBV infects more 
than 300 million people worldwide and it is a common 
cause of a wide range of liver diseases ranging from acute 
(including fulminant hepatic failure) to chronic hepatitis, 
cirrhosis, and hepatocellular carcinoma. Although, most 
adults infected with the virus recover, 5%–10% are un-
able to clear the virus and become chronically infected. 
Chronically infected persons usually suffer mild liver 
disease with little or no long-term morbidity or mortality. 
However, some individuals with a chronic HBV infection 

develop an active disease that can progress to cirrhosis 
and liver cancer.

HBV-associated liver damage is thought to be mediated 
by immunity (Fig. 5). It is believed that immune imbalance 
of Treg and Th17 exists in the chronic hepatitis B. Treg cells 
increase at the beginning of infection and then decrease 
with the virus clearance. However, changes of the Th17/
Treg cells ratio could lead to immune suppression, result-
ing in the virus leakage to the immune system and chronic 
disease (Gao et al., 2015). Th17 cells produce IL-17, a major 
effector cytokine that could recruit and activate immune 
cells into the liver and lead to tissue injury (Zhang et al., 
2010; Ge et al., 2010). Moreover, IL-17 could exacerbate liver 
fibrosis by facilitating the activation of hepatic stellate 
cells to myofibroblasts via signal transducer and activator 
of STAT3 (Meng et al., 2012). Transcriptional factor BATF 
regulates the Th17 differentiation and its over-expression 
might increase Th17 cell response, whereby the factor is 
related to disease progression in chronic HBV infection 
(Wang et al., 2018). In contrast, Chen et al. (2019) have 

Fig. 5

a schematic representation of the Th cells subsets involved in immune response to hepatitis B infection
The positive role of individual subset is displayed in green panel and negative role is displayed in red panels.
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shown that BATF interference significantly impedes 
proliferation of Th17 cells and secretion of IL-17 and IL-22, 
resulting in alleviated hepatic lesions.

Patients with acute hepatitis B displayed significantly 
elevated plasma level of IL-35 and the frequency of Th17 
induced by circulating HBV peptides. IL-35 expression 
negatively correlated with the liver inflammation, con-
tributing to immunosuppression in chronic hepatitis 
modulated by Th17 and Treg cells. IL-35 may be a novel 
mediator associated with hepatocyte damage and liver 
inflammation by regulating HBV peptides-induced Th17 
cells during acute HBV infection (Teng et al., 2019).

Cytokine IL-22 can stimulate innate immune responses 
against pathogens and target particularly hepatocytes, 
keratinocytes, lung, and intestine cells (Thompson et 
al., 2010). IL-22 plays two leading roles in the body, pro-
inflammatory and protective. In humans, IL-22 appears 
to be produced primarily by Th1 and Th22 T cell subsets 
and IL-22-producing cytotoxic T cells, as well as Th17 
cells (Sonneberg et al., 2011). The direct antiviral effect of 
IL-22 is utterly insignificant, and cannot promote clas-
sical IFN-stimulated antiviral pathways and mediators 
(Wang et al., 2013). In the liver of mice and patients with 
chronic HBV infection, inflammatory cells produce IL-
22, which promote proliferation of liver stem/progenitor 
cells by STAT3 (Feng et al., 2012). However, IL-22 plays a 
pathological role in exacerbating chronic liver inflamma-
tion and fibrosis by recruiting Th17 hepatic cells in HBV 
infected patients (Zhao et al., 2014). Persistently elevated 
circulating Th22 reversely correlates with the prognosis 
of acute-on-chronic liver failure, associated with hepatitis 
B virus (Mo et al., 2017).
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