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Modelisation of the contribution of the Na/Ca exchanger to cell 
membrane potential and intracellular ion concentrations
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Abstract. Modelisation plays a significant role in the study of ion transfer through the cell membrane 
and in the comprehension of cellular excitability. We were interested in the selective ion transfers 
through the KCa, Nav, Cav channels and the Na/Ca exchanger (NCX). The membrane behaves like 
an electric circuit because of the existence of ion gradients maintained by the cell. The non-linearity 
of this circuit gives rise to complex oscillations of the membrane potential. By application of the 
finite difference method (FDM) and the concept of percolation we studied the role of the NCX in the 
regulation of the intracellular Ca2+ concentration and the oscillations of the membrane potential. 
The fractal representation of the distribution of active channels allows us to follow the diffusion of 
intracellular Ca2+ ions. These calculations show that the hyperpolarization and the change in the 
burst duration of the membrane potential are primarily due to the NCX.
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Introduction

The plasma membrane constitutes a selective barrier be-
tween the inside and the outside of a cell. It controls the 
entry and the exit of various molecules and ions between 
the two compartments. All cells develop a potential differ-
ence (PD) between the two faces of the membrane. This 
PD is responsible for the electric activity of excitable cells, 
which appears in the form of oscillations of the membrane 
potential. These oscillations take place in many physiological 
processes, in particular in neuronal, cardiac and pancreatic 
cells (Wakimoto et al. 2000; Barg et al. 2001; Munekazu and 
Iwamoto 2001; Bano et al. 2005).

The aim of this work was to evaluate the role of a membrane 
protein, the Na/Ca exchanger (NCX) in the regulation of the 
oscillations of the membrane potential. NCX allows Ca2+ extru-
sion from the cell and entry of Na+ along its electrochemical 
gradient without energy consumption. In addition, because 
NCX is electrogenic and voltage dependent, it can reverse dur-

ing cellular activation and contributes to Ca2+ entry into the cell 
(Blaustein and Lederer 1999). In β-cells and the heart, NCX 
seems to be the predominant mechanism for Ca2+ extrusion, 
accounting for approximately 70 and 90% of Ca2+ extrusion, 
respectively (Bers et al. 1996; Van Eylen et al. 1998).

We used the percolation concept introduced in 1953 by 
Hammersley in order to describe statistical systems made up 
of a great number of objects which can be connected between 
them. According to the number of objects put in contact, the 
long-range communication is either possible or non-exist-
ent. Between the two modes of communication, there is 
a threshold of precise transition, called percolation threshold 
(Stauffer and Aharony 1991). The critical behaviour of the 
system in the vicinity of this threshold is characteristic of 
a phase transition.

In the case of biological systems, the research of the 
transport properties is a complex problem due to its math-
ematical aspect. It is more judicious to study the biological 
systems by modelling them on simple networks. By using the 
two-dimensional networks, we can simulate many systems 
and have very approximate values of the parameters, which 
characterise them.

The first computational model of the action potential 
(AP) was formulated by Hodgkin and Huxley for the 
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axon (Hodgkin 1948; Hodgkin and Huxley 1952). Their 
circuit model of the cell membrane remains the basis for 
modern AP models. In this case, we modelled the transfer 
of ions through channels of a cellular membrane by using 
a square electrical network of conductances randomly 
distributed, which represent three different channels: the 
potassium channels (KCa), activated by intracellular Ca2+, 
the voltage-gated sodium channels (Nav) and the voltage 
gated calcium channels (Cav). The fuses are connected in 
series with the conductances to highlight the activation 
and the inactivation of channels. The dielectric property 
of the phospholipids is represented by a capacity in paral-
lel with the network. The phase transition of the system is 
described by the change in the vicinity of the percolation 
threshold from the non-permeability to the permeability 
of the membrane.

Our goal was to study the diffusion of ions through the 
membrane. For that, we have to use the Fick’s laws, which 
treat partial derivative equations. Analytically, the solution 
of these equations is very difficult and sometimes impos-
sible. We used a very simple numerical method – the finite 
difference method (FDM) (Garrido et al. 1985; Morton and 
Mayers 1995; Miloshevsky et al. 2006) in order to find the 
concentrations at each node of the network. FDM proceeds 
by replacing the derivatives of the differential equations by 
finite difference approximations. This gives a large algebraic 
system of equations, which can be solved in place of the dif-
ferential equations.

We used to simulate two measurement techniques: the 
current-clamp (Hilgemann 1988; Zhan et al. 1999; Dallas 
et al. 2008) and the voltage-clamp (González-Caballero et 
al. 1988; Leois and Rae 1998) for better including the ion 
mechanisms. This model enabled us to study the effect of 
NCX on the membrane potential and the change in intracel-
lular Ca2+ concentration.

Ion transfer and FDM

In our simulation, we have to solve partial derivative equa-
tions. For that, it is necessary to use a numerical method of 
resolution, we chose FDM for its mathematical and data-
processing simplicity.

The transfer of the ions through the channels is a nonsta-
tionary electrochemical diffusion (Bergamini et al. 1998). We 
consider the regular mesh of field Ω represented in Fig. 1. 
We study a problem of advection diffusion (Hundsdorfer 
and Verwer 2003; El Makrini et al. 2007) characterised by 
a uniform transport velocity v according to the x direction 
and the diffusion coefficients Dα (α = K+, Na+, Ca2+, constant 
for each ion).

The equation controlling the ion transport is given by 
the Fick’s 2nd law (Flynn 1972; Flynn et al. 1974; Rappaz et 
al. 1998):
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With Cα(x,y,t) are the concentrations of K+, Na+, Ca2+ , 
respectively.

To solve this equation, we take account of the boundary 
conditions on the four borders (Rappaz et al. 1998):
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To apply the FDM, the rectangular field of dimension lx = 
ly = l is squared according to the axes directions as illustrated 
in Fig. 1. The neighbours of a central node of index C are 
located by the letters E (east), W (west), N (north), S (south). 
If the neighbour exists, we call h the distance separating it 
from the central node.

By using the Taylor’s series expansions and the FDM at 
the node C, the Eq. (1) becomes:

∂Ω1

∂Ω4

∂Ω3

∂Ω2

x

y

Ω
Cc

CN

CS

CECW

v

lx

ly

Figure 1. Representation of the regular mesh of field Ω of dimen-
sion lx = ly = l. E (East), W (West), N (North), S (South) are the 
neighbours of the central node C.
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The linear combinations of the Eq. (6) are indexed with θ 
to separate the explicit and implicit finite difference forms. 
Peh is a Péclet number: Peh = (v·h)/D, FOh is a Fourier 
number: FOh = (D·Δt)/h2.

By using the Courant, Friedricks and Levy condition 
(CFL) which is D·Δt/h2 ≤ 1/4 at v·h/D ≤ 1/2, we impose 
the stability criteria FOh ≤ 1/4 at Peh ≤ 2 (Strikwerda 1989; 
Rappaz et al. 1998).

The model

We keep the same structure of grid like the FDM and we use 
a square network of size L. The conductive ion channels are 
characterised by their elementary conductance: γK-Ca, γNa, γCa 
randomly distributed with open probability: PK-Ca, PNa, and 
PCa, and with intracellular ion concentrations CK-Ca, CNa and 
CCa, respectively. The probability of opening and closing of 
ion channels is represented by a fuse connected in series with 
the conductances. The dielectric character of the double-layer 
of lipid is represented by a capacity Cm (Fig. 2).

We chose three types of ion channels:
• The potassium channels (KCa ), activated by intracellular 

Ca2+ (Romero et al. 1998; Siwy et al. 2001; Ledoux et al. 
2006; Zhao et al. 2007), named BK or maxi-K slightly 
sensitive to the variations of the membrane potential 
whose conductance varies between 180 and 300 pS.

•  The voltage-gated sodium channels (Nav), responsible of 
the ascending phase of the action potential (Stuart and 

Hausser 1994; Hollerbach et al. 2000), with a conductance 
of 10–15 pS.

• The voltage gated calcium channels (Cav) whose conduct-
ance varies between 11 and 20 pS (Nonner and Eisenberg 
1998; Boda et al. 2004; Elbasiouny et al. 2005).
The current through a selective channel is given by the 

Ohm’s law and the Nernst equation (Hille 2001). We apply 
to the circuit the first Kirchhoff law:

)(VI
dt

dV
C ionm ��   (7)

In our model, the total current (Iion) is the sum of 
three currents: INa which represents the depolarizing Na+ 
current, IK-Ca that accounts for the hyperpolarizing K+ 
current and the slowly activating Ca2+ current ICa. We 
shall assume for simplicity that: i) the relaxation kinet-
ics are first order (Milescu et al. 2005; Rudy and Silva 
2006) and described by any time homogeneous Markov 
process (Goldman 1991; Venkataramanan and Sigworth 
2002; Faber et al. 2007), in which the channel jumps from 
the open state to the closed state; ii) the time constants 
of the Ca2+ and Na+ current are small compared to the 
potential bursting, for that we use the measured values 
for parameters and theoretical expressions for activation 
levels given by Rorsman (Rorsman and Trube 1986) and 
Sherman (Sherman et al. 1988).

These currents are given according to the Hodgkin-Hux-
ley (Hodgkin and Huxley 1952) and Morris-Lecar models 
(Morris and Lecar 1981; Rinzel and Ermentrout 1999), and 
have the following expressions:

INa = γNa·m3·h·(Vm – ENa) (8)

IK-Ca = γK-Ca·z·(Vm – EK) (9)

Figure 2. Schematization of the square network of size 6 × 6 of conductances and fuses randomly distributed.
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ICa = γCa·m·h·(Vm – ECa)    (10)

where: ENa, EK and ECa are the reversal potentials (in mV) 
and m is the open probability of the activation gate, de-
scribed by 
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h is the open probability of a single first-order inactivation 
gate, given by the sigmoidal function:
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z is the gating variable with a Hill-like dependence on CCa
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and the balance equation for CCa is:
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The FDM imposes known concentrations on the four 
edges of the circuit. We chose the potassium concentrations 
CK-Ca because, at rest, the membrane is essentially perme-
able to potassium.

Results and Discussion

In our model, the elementary conductances are: γK = 200 pS, 
γNa = 12 pS and γCa = 15 pS. The membrane capacity per unit 
of area of the biological membranes is: Cm = 1 μF/cm2.

The intracellular concentrations have values higher or 
equal to physiological values such as: CK-Ca = 100 mmol/l, 
CNa = 10 mmol/l and CCa = 1 μmol/l. The extracellular 
concentrations will not be modified and correspond to the 
physiological values (Hille 2001).

Since the studied problem is a pure diffusion, the numbers 
of Fourrier and Péclet are FOh = 1/2 and Peh = 1 (Phannkuch 
1963; Muradoglu and Tryggvason 2008).

To solve the differential Eqs. (7) and (14) we used the nu-
merical algorithms group library of Fortran and the D02BBF 
subroutine (Ermentrout 2003; Metcalf et al. 2004).

The direction of the ion flows, the gradients of con-
centration and the variations of membrane potential are 
controlled for any iteration. The results are obtained after 
1000 iterations.

Percolation threshold

In a random system, the transport phenomena are studied 
in the vicinity of the percolation threshold. We have to find 
the threshold probability for which the membrane forwards 

impermeable phase (non-conducting) to the permeable 
phase (conducting).

We varied the probabilities PK, PNa and PCa from 0 to 1, 
for the intracellular concentrations CK-Ca = 140 mmol/l, 
CNa = 20 mmol/l and CCa = 1 μmol/l. For each probability, 
we calculated the membrane conductance by the star-triangle 
transformation, in order to reduce the matrix size from [L2 × 
L2] to [L × (L + 1)]:

 ve
(χ)(i,j) = [ho(i,j)(χ–1) × ve

(χ–1)(i,j) + ve
(χ–1)(i+1,j) ×  

 × ve
(χ–1)(i,j) + ve

(χ–1)(i+1,j) × ho
(χ–1)(i,j)] / ve

(χ–1)(i,j)  (9)

ve
(χ)(i+1,j) = [ho(i, j)(χ–1) × ve

(χ–1)(i,j) + ve
(χ–1)(i+1,j) × 

× ve
(χ–1)(i,j) + ve 

(χ–1)(i+1,j) × ho
(χ–1)(i,j)] / ho

(χ–1)(i,j)  (10)

ho
(χ)(i,j) = [ho(i,j)(χ–1) × ve

(χ–1)(i,j) + ve
(χ–1)(i+1,j) ×  

× ve
(χ–1)(i,j) + ve 

(χ–1)(i+1,j) × ho
(χ–1)(i,j)] / ve

(χ–1)(i+1,j)  (11)

Where ve(i,j) and ho(i,j) represent vertical and horizontal 
conductances respectively, and χ the iteration number.

We fixed the membrane potential at the value –70 mV 
and L at 500. Fig. 3 shows the membrane conductance (gm) 
for four open probability (PK) and different open probabili-
ties: (PCa and PNa).

We notice that for PK = 0.1 and 0.15, the membrane 
conductance changes quickly from value 0 to 20 pS/cm2 
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Figure 3. Variation of the membrane conductance (gm) according 
to the probabilities PK, PNa and PCa. The percolation threshold is 
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and to 30 pS/cm2, respectively. For PK = 0.3, the membrane 
conductance is non null for all probabilities. These two be-
haviours do not describe the phase transition in the vicinity 
of the percolation threshold (Stauffer and Aharony 1991). 
On the other hand, for PK = 0.2, the membrane conduct-
ance passes from 0 to 0.1 pS/cm2 with PCa = 0.35 and PNa = 
0.45, this is the percolation threshold of our modelisation. 
The network is composed of 20% KCa, 35% Cav and 45% 
Nav channels.

Voltage clamp technique

In this part, we studied the variation of the intracellular Ca2+ 

concentration and the membrane current (Im) resulting from 
a 3 s depolarization to 0 mV from a holding potential of –70 
mV (Fig. 4), and for two intracellular sodium concentrations 
10 and 20 mmol/l.

We notice on Fig. 4B that the depolarizing voltage from 
–70 mV increases the CCa, reflecting Ca entry through 
Cav-L (L-type Ca channel) and NCX (we did not take 
into account the plasma membrane Ca2+-ATPase pump 
function). The exchanger has a stoichiometry of 3 Na+ for 
1 Ca2+, is electrogenic and displays a reversal potential at 
–20 and –40 mV for CNa equal to 10 and 20 mmol/l, re-
spectively (Herchuelz et al. 2002), so that Vm is greater than 
reversal potential and favors Ca2+ entry (outward NCX 
current). Repolarization promotes Ca2+ removal by the 
exchanger, so that CCa decreases when Vm becomes more 
negative (inward NCX current). The simulation shows that 
elevated concentrations of cytosolic Na+ induce a mode of 
activity that no longer requires allosteric Ca2+ activation 
(Condrescu and Reeves 2006; Urbanczyk et al. 2006). We 
announce that high CNa (inhibition of the Na/K pump) 
(Despa et al. 2002) reduces the Ca2+ extrusion through 
NCX. The CCa oscillation at repolarisation is due to the 
balance between an outward and an inward NCX current 
(Weber et al. 2003).

The membrane current in Fig. 4C highlights the presence 
of the Na/Ca exchanger. We notice that during the depolari-
zation, the peak inward current is shorter in 20 than in 10 
mmol/l intracellular Na+ because of the increased outward 
NCX current (Zhou and Lipsius 1993; McCarron et al. 1994). 
During the depolarization, the outward current is smaller 
in 20 than in 10 mmol/l Na+, because of the inactivation of 
the Ca2+ current (Findlay et al. 2008). What is important is 
that at repolarization, the outward tail current is larger in 
20 than in 10 mmol/l Na+, due to the activation of the KCa 
current, resulting from the increased CCa.

Current clamp technique

We imposed Im = 10 pA in order to have a resting 
potential of –70 mV and we modelised the change in 
membrane potential for two concentrations of Nav: 10 
and 20 mmol/l.

For the two intracellular Na+ concentrations, we note 
a periodic electrical activity, the active phases are named 
“bursting” (Fig. 5). The burst duration is reduced when the 
CNa decreased. The shorter burst duration led to a reduction 
of the Ca2+ influx (Sherman et al. 1988; Sherman and Rinzel 
1991). A hyperpolarization of 3.08 mV and of 6.7 mV is an-
nounced for 10 and 20 mmol/l intracellular Na+ concentra-
tions. This is in agreement with the previous results of the 
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voltage clamp technique; the hyperpolarizing K+ current is 
more important when CNa increases (Lee et al. 2002). For 
potentials higher than –45 mV, we observed a repetitive 
bursting activity due to the spontaneously active channels 
(Reboreda et al. 2003).

Distribution of the active channels

Since it is interesting to follow the evolution of the ion 
transfer through the plasma membrane, we studied the 
distribution of the active channels. For that, we represented 
the network structures of size 100 × 100 for various ion 
concentrations (Fig. 6).

The KCa active channels are located in blue, the Nav active 
channels in green and the Cav active channels in red.

We notice that for the Fig. 6, the concentrations in KCa are 
distributed on the four edges of the network that is in good 

Figure 5. Comparison of burst of membrane potential for two 
intracellular Na+ concentrations: CNa = 10 mmol/l (in black) and 
CNa = 20 mmol/l (in red), with a post-hyperpolarisation of 3.08 
and 6.7 mV, respectively.

▶
Figure 6. Temporal distribution of the active channels for a network 
100 × 100 with various ion concentrations. For the same ion, the 
colour is in range to indicate the areas moreover at least concen-
trated. The KCa active channels are located in blue, the Nav active 
channels in green and the Cav active channels in red. t = 4, 5, 
6 s (A, B, C, respectively).
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agreement with the FDM conditions. By exploring the three 
figures, we see that the concentration CCa increases from 2 to 
5 μmol/l in one second. This corresponds to a massive entry 
of Ca2+ ions. Then CCa returns to its basal concentration at 
t = 6 s, characterised by an efflux of Ca2+ ions.

Conclusion

By a simple electric model of the plasma membrane and by 
a theoretical approach based on the FDM and the percolation 
concept, we studied the role of the NCX in the regulation 
of the intracellular Ca2+ concentration and the membrane 
potential oscillations. It should be announced that the NCX 
and the plasma membrane Ca2+-ATPase pump are two con-
current mechanisms for Ca2+ extrusion from the cell.

We detected the presence of an inward current, which is 
proportional to the intracellular Na+ concentration and an 
outward tail current due to the exit of K+ ions, which causes 
the hyperpolarization of the plasma membrane. The burst-
ing duration is modified according to the Na+ intracellular 
concentration. Large activation corresponds to high CNa. 
Temporal fractal structures of the active channel distribu-
tions enabled us to follow the diffusion of the Ca2+ intracel-
lular ions. We compared these results with those of Espinosa 
Leon (Chouabe et al. 1997) and Zhengyi Wang (Wang et 
al. 2001) for the study of cardiac hypertrophy and David 
Gall (Gall et al. 1999) on the pancreatic β-cell. These works 
showed that the NCX is well implied in the lengthening of 
the action potential. The combination of the percolation 
and the FDM gave results in perfect agreement with the 
experimental results.
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