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Norepinephrine release may play a critical role in the Warburg effect: an 
integrative model of tumorigenesis
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Many cancer cells share the property of carrying out markedly elevated rates of glycolysis to generate energy even in the 
presence of sufficient oxygen, and this is known as the Warburg effect. In recent years, there has been a resurgence of interest 
in the Warburg effect, as the field of oncology has amassed evidence that cellular metabolism may play a prominent role in 
many neoplasms. Largely in the past decade, another prominent and perhaps surprising factor has emerged in the cancer 
literature: the catecholamine molecules, epinephrine (adrenaline) and norepinephrine (noradrenaline), appear to play a 
role in tumorigenesis and metastasis. The drug propranolol, which blocks beta-adrenergic receptors, may be therapeutic in 
human angiosarcoma, melanoma, and ovarian cancer. The current paper synthesizes these older and more recent findings, 
in an attempt to unify the major factors that contribute to tumorigenesis. This paper suggests that in addition to the direct 
interaction of catecholamine signaling with genetic risk factors (including mutagenesis), it interacts with environmental 
factors such as hypertension, obesity, unhealthy dietary components, physical inactivity, substance abuse, and mental or 
emotional stress, to promote the Warburg effect by facilitating glucose availability through suppression of pancreatic insulin 
release. Further, it proposes that many cancer cells synthesize and release catecholamines to activate their own receptors 
in an autocrine fashion. In summary, catecholamines are an important “new” factor in cancer that may interface with both 
genetics and environmental factors to alter the Warburg effect and modulate tumorigenesis.  
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Eminent German biochemist Otto Heinrich Warburg, 
who won the Nobel Prize in Physiology or Medicine in 
1931 and made a wide range of seminal discoveries in his 
field, conducted experiments in the 1920s that led him to 
conclude that many if not all types of cancerous cells carry 
out a markedly elevated level of glycolysis [1–4]. This pattern 
of metabolism is puzzling because many cancer cells have 
adequate levels of oxygen to generate energy through the 
much more efficient process known as oxidative phosphor-
ylation, which relies on intact mitochondria [5]. This 
metabolic phenomenon has been termed “aerobic glycolysis”, 
and it later became known as the Warburg effect [5, 6]. It is 
now known that some cancerous cells do not show elevated 
glycolysis, but the majority of cells do appear to exhibit this 
effect, and it has been suggested that blocking it could have 
anti-cancer effects [7].

The last several decades of research in oncology have been 
dominated by genetic and epigenetic models [8–12], but in 
recent years there has been a resurgence of interest in cellular 
metabolism in cancer, including the Warburg effect [13–15]. 
This is evident in research into the intracellular molecular 
mechanisms by which glucose is processed to contribute to 
the effect [16, 17]. Additionally, the diabetes drug metformin, 
which downregulates glucose signaling, is now being widely 
studied for its potentially therapeutic effects in various 
malignancies [18–20].

In the past decade or so, another signaling pathway has 
gained traction in the oncology literature: the sympathetic-
adrenomedullary system comprising epinephrine (EPI; also 
known as adrenaline) and norepinephrine (NE; noradrena-
line) [21–24], where these two catecholamines function as 
adrenal and sympathetic nervous system stress hormones 
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in the “fight-or-flight” response to environmental stressors 
or dangers [25–27]. NE in particular is an important 
neurotransmitter in the brain and at the output of the sympa-
thetic nervous system, which comprises the set of peripheral 
nerves that regulate organs throughout the body. In an appar-
ently serendipitous discovery around 2008, a group of French 
doctors published a paper suggesting the drug propranolol, 
which blocks beta-adrenoceptors (i.e., receptors that EPI 
and NE activate), can be used to shrink or eliminate benign 
tumors called infantile hemangiomas in newborns [28]. 
Since then a number of scientific papers have been published 
on this topic, and propranolol has become the first-line treat-
ment for these tumors, clinically [29, 30].

Meanwhile, mainly within the past decade or so, a number 
of studies have suggested that propranolol is therapeutic in a 
range of cancer types (counteracting both tumorigenesis and 
metastasis, including in combination with other pharmaco-
logical agents), using in vitro preparations, in vivo rodent 
models, and retrospective epidemiological studies of human 
subjects [23, 31–34]. A fairly recent, prominent retrospec-
tive study found that non-selective beta-blocker (such as 
propranolol) use in women with ovarian cancer was associ-
ated with a median overall survival of 94.9 months, whereas 
non-users survived 42 months [35]. A prospective human 
subjects study found that propranolol protects individuals 
with thick cutaneous melanoma from disease recurrence [36]. 

A number of preclinical and clinical studies now also suggest 
favorable effects of propranolol on angiosarcoma, a difficult 
to treat malignancy with a poor prognosis [37–41]. There are 
also a number of ongoing clinical trials for propranolol in a 
variety of other neoplasms. Additional studies have suggested 
that NE itself promotes cancer [24, 42], and drugs other 
than propranolol that likewise block adrenoceptors, such as 
prazosin (which blocks the alpha1 adrenoceptor), are also 
therapeutic in rodent models [43]. Prazosin is already being 
used clinically to treat benign prostatic hyperplasia [44]. An 
additional point is that the molecules – serotonin, acetylcho-
line, and melatonin – may act centrally or interact with the 
sympathetic-adrenomedullary system in the periphery to 
modulate tumorigenesis and metastasis [45–47].

The rest of this paper integrates information about the 
Warburg effect and the “new” findings on sympathetic-
adrenomedullary signaling, with the more well-established 
data on genetics and epigenetics in cancer. This framework 
also includes the following major environmental risk factors 
(which may additionally have a genetic component) for a 
broad range of neoplasms: hypertension, obesity (and associ-
ated dietary factors), physical inactivity, substance abuse, 
and (somewhat controversially) mental or emotional stress. 
I am suggesting here that elevated (partially genetic) sympa-
thetic-adrenomedullary signaling plays a significant role in 
the development or manifestation of these risk factors, and 

Figure 1. Proposed factors that contribute to tumorigenesis. In addition to the direct interaction of elevated central catecholamine release or peripheral 
sympathetic-adrenomedullary signaling with epigenetic and genetic risk factors (including mutagenesis), epinephrine (EPI) and norepinephrine (NE) 
interact with environmentally-regulated factors such as hypertension, obesity, unhealthy dietary components, physical inactivity, substance abuse, and 
mental or emotional stress, to promote the Warburg effect by facilitating glucose availability systemically through suppression of pancreatic insulin 
release (and perhaps by increasing insulin resistance). Further, this paper proposes that many cancer cells synthesize and release catecholamine mol-
ecules to activate their own alpha (a) and beta (β) adrenergic receptors in an autocrine fashion. EPI and NE may also interact with immune function, 
systemic inflammation, and oxidative stress to promote tumorigenesis and metastasis. 
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in doing so may play a critical role in the Warburg effect by 
promoting glycolysis, largely by helping supply glucose to 
the cancerous cells via suppression of insulin release by the 
pancreas. Those risk factors may in turn promote elevated 
sympathetic-adrenomedullary signaling.

Thus, in this model (Figure 1), cancer originates through 
a combination of genetic, epigenetic, and environmental 
factors over many years, usually including elevated sympa-
thetic-adrenomedullary signaling throughout the process. 
(NE is also capable of causing mutations in DNA, further 
associating sympathetic-adrenomedullary signaling with the 
genetic component of cancer [48, 49]). Through these genetic 
and environmental factors, cancer cells may begin to selec-
tively use glycolysis to fuel their growth and replication, and 
may also use glucose to help synthesize their own NE and 
EPI, which they release locally to stimulate their extracellular 
adrenoceptors in an autocrine fashion, thereby modulating 
the tumor microenvironment. This elevated sympathetic-
adrenomedullary signaling, in turn, maintains or accentu-
ates high levels of signaling in intracellular pathways that 
are already upregulated (and have previously been widely 
implicated in various neoplasms), such as Ras/MAPK, 
PI3K/Akt, and JAK/STAT, that fuel abnormal replication 
[50–53]. Thus, systemically elevated sympathetic-adreno-
medullary signaling – that has existed chronically through 
genetic, epigenetic, and environmental mechanisms – may 
be complemented by additional cellular autocrine release. 
The rest of the paper briefly provides more detail on each of 
the components of the theory, integrating them with sympa-
thetic-adrenomedullary signaling and the Warburg effect.

Genetics and epigenetics

For the last several decades, oncology research has 
focused on genetic mutations (or environmental phenomena 
that drive them) as the principal etiological factor in a broad 
range of cancer types [8–10]. For example, pioneering 
studies have identified a number of key oncogenes and 
tumor suppressor genes, that when mutated can help lead 
to tumorigenesis [54]. A potential connection of this litera-
ture with elevated sympathetic-adrenomedullary signaling is 
that NE and EPI themselves are able to induce DNA struc-
tural damage in a number of studies. For example, EPI and 
NE caused DNA damage in embryonic pluripotent cells via 
beta2 adrenoceptors [49], and NE also damaged DNA in 
human mammary epithelial MCF-10A cells [48]. Mental or 
emotional stress can also promote DNA damage, possibly 
by acting through NE [55]. I am not suggesting that NE (or 
EPI) is the main factor in mutagenesis, but rather that it is an 
important factor to consider, although most cancer-inducing 
mutations probably arise spontaneously or through other 
means. Also of note is that many of the mutated molecular 
pathways that can promote cancer – such as Ras/MAPK, 
PI3K/Akt, and JAK/STAT – have also been shown to be 
activated when NE or EPI bind to their G-protein-coupled 

receptors (i.e., adrenoceptors) on the exterior (i.e., extracel-
lular) surface of cells [50–53]. Thus, NE/EPI signaling and 
mutations arising from various means interact with the same 
molecular, protein-based pathways inside of the cancer cell, 
further reinforcing the idea that mutations as well as sympa-
thetic-adrenomedullary signaling need to be considered in 
tumorigenesis. Another point of interest is that epigenetic 
mechanisms in cancer may also interface with sympathetic-
adrenomedullary signaling: the histone deacetylase (HDAC) 
inhibitor drug, vorinostat, which modulates transcription 
of a number of genes, has been shown to increase cellular 
expression of the NE transporter (NET) molecule in the 
synapse [56]. Vorinostat and other HDAC inhibitors, such 
as valproic acid, are already being used clinically to treat 
subtypes of cancer [57, 58], and their principal therapeutic 
mechanism may be that by increasing expression of NET, 
they reduce the extracellular level of NE.

The genetics of the sympathetic-adrenomedullary system 
itself, independent of any mutations, may also play a promi-
nent role in tumorigenesis and metastasis, perhaps in large 
part by facilitating the above three molecular pathways 
through signaling via adrenoceptors. Polymorphisms in 
the various genes comprising beta-adrenergic signaling 
could facilitate cancer by increasing the tone (i.e., overall 
chronic activation) of this system, while also amplifying 
ongoing acute responses to mental or emotional stress. A 
number of studies have already implicated beta-adrenergic 
genes in various malignancies, including interaction with 
environmental or other risk factors [59–62]. Polymorphisms 
in adrenoceptors, as well as the NE-synthesizing enzyme 
dopamine beta-hydroxylase, can modulate insulin resistance 
and alter glucose signaling [63–66], and may thereby influ-
ence the Warburg effect.

Hypertension

A number of studies, including epidemiological analyses 
as well as rodent data, suggest that hypertension (i.e., high 
blood pressure) is a risk factor for developing a number of 
types of neoplasms, although this is a controversial topic 
[67]. For example, spontaneously hypertensive rats (SHR) 
exhibited heightened sensitivity to the carcinogen, methyl-
cholanthrene (MCA), which may be mediated in part by 
age-related deficits in T cell functioning, as well as elevated 
natural killer cell activity [68]. SHR also exhibited a greater 
frequency of chromosomal aberrations upon exposure to 
7,12-dimethylbenz[a]-anthracene (DMBA) than control 
Wistar Kyoto rats [69]. Regarding human subjects data, a 
meta-analysis found a weak, albeit statistically significant, 
elevation in prostate cancer risk in men with hypertension 
[70]. A retrospective cohort study of Taiwanese subjects 
found that hypertension was associated with elevated rates of 
renal and uterine corpus cancers [71]. This ties in with a large 
body of evidence, including genetic and physiological studies, 
implicating elevated sympathetic-adrenomedullary signaling 
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[93] cancer. Consumption of dietary sucrose is also associ-
ated with elevated noradrenergic and sympathetic-adreno-
medullary signaling, both in human subjects and in rodents 
[94–96]. A high-fat diet also confers greater risk of colon [97, 
98], breast [99], and prostate [100] neoplasms. This dietary 
factor is associated with elevated noradrenergic turnover and 
augmented sympathetic activity as well [83, 101, 102]. Finally, 
high sodium intake is associated in males with a greater risk 
of colorectal [103] and gastric [104] cancer; it likewise boosts 
plasma NE in spontaneously hypertensive rats [105] and 
can do the same in salt-sensitive human subjects [106]. In 
summary, dietary intake of significant amounts of sucrose, 
fats, and sodium confers greater risk for a number of cancer 
types, while also being associated with elevated noradren-
ergic signaling and sympathetic-adrenomedullary activation. 
Whereas intake of sucrose, which is a disaccharide consisting 
of a glucose and a fructose molecule, can directly boost 
glucose signaling to contribute to the Warburg effect, high 
fat or sodium intake (as well as sucrose consumption) boosts 
sympathetic-adrenomedullary signaling and could thereby 
indirectly contribute, possibly through pancreatic beta-cell 
modulation of insulin release.

Physical exercise

An adequate amount of physical exercise, perhaps aerobic 
exercise in particular, is associated with a number of health 
benefits, including a reduction in cancer risk, as well as 
improved survival in existing cases of cancer. For example, 
engaging in recreational physical activity is associated with a 
reduction in risk for breast [107, 108], colorectal [108], and 
lung [109] cancer. A number of studies suggest that exercise 
acutely boosts sympathetic-adrenomedullary signaling [110, 
111]. Some studies suggest that repeated exercise, carried out 
over for example a number of weeks or months, suppresses 
sympathetic-adrenomedullary signaling both in animal 
models [112–115] and in humans [116], which is a possible 
mechanism for the reduced risk of developing or recurrence 
of cancer. Repeated exercise may also help counteract hyper-
tension, obesity, metabolic syndrome, and insulin resistance 
– entities that may all be characterized by elevated sympa-
thetic-adrenomedullary signaling – and may thereby reduce 
glucose signaling and oppose the Warburg effect.

Substance abuse

Substance abuse, particularly alcohol abuse and cigarette 
smoking, is associated with an increased risk of a number 
of cancer types, not limited to liver and lung neoplasms, 
respectively [117–119]. Although the molecular mechanisms 
underlying this effect on cancer risk are not well established, 
a broad range of substances of abuse, including alcohol and 
nicotine, acutely boost brain noradrenergic signaling (for 
review, see reference [120]). In the long-term, substance 
abuse may also be associated with chronically elevated 

in high blood pressure [72, 73]. For example, polymorphisms 
of beta-adrenoceptor genes are associated with hypertension 
[74], and SHR are known to exhibit elevated plasma NE [75]. 
Moreover, drugs that interfere with sympathetic-adrenomed-
ullary signaling such as clonidine, propranolol, and prazosin, 
have long been used to treat high blood pressure clinically 
[76]. Thus, one possibility is that hypertension is a factor in 
various malignancies through elevated sympathetic-adreno-
medullary signaling and its associated molecular processes 
[21], where this elevation may facilitate glucose signaling to 
enhance the Warburg effect, through suppression of insulin 
release by the pancreas as described below.

Obesity and metabolic syndrome

Being markedly overweight is also a risk factor for a 
number of cancer types. For example, obesity is associated 
with elevated risk or aggressiveness of colorectal [77], prostate 
[78], and breast [79] neoplasms. As for hypertension, there is 
an extensive literature, both in human subjects and animal 
models, linking obesity with elevated sympathetic-adreno-
medullary signaling [80, 81]. For example, in healthy men, 
beta2 adrenoceptor polymorphisms associated with height-
ened sympathetic nervous system activity may predict future 
onset of obesity [82]. Rats fed a diet enriched in lard for four 
weeks exhibited 61% higher plasma NE relative to control 
animals fed regular chow [83]. Not surprisingly, there is 
also a known association between obesity and hypertension, 
and the two conditions coexist in many cases of metabolic 
syndrome, which itself is a major public health concern [84]. 
Metabolic syndrome is widely believed to be characterized by 
elevated sympathetic nervous system activity, further impli-
cating sympathetic-adrenomedullary signaling in its patho-
physiology [85]. Since one of the hallmarks of metabolic 
syndrome is insulin resistance, the disorder is further associ-
ated with elevated plasma glucose levels (since insulin, which 
is secreted by the pancreas, lowers blood glucose levels) [84, 
86]. There are a number of physiological studies demon-
strating that EPI suppresses insulin release from pancreatic 
beta cells [87]. Thus, hypertension, obesity, and also the often 
resulting condition of metabolic syndrome, are associated 
with elevated sympathetic-adrenomedullary signaling that 
raises systemic glucose levels and could thereby promote the 
Warburg effect in a number of organ systems and cell types 
throughout the body.

Dietary factors

Particular dietary factors, such as increased consumption 
of simple carbohydrates or foods high in saturated fat, could 
directly or indirectly boost glucose signaling to facilitate the 
Warburg effect, and chronically contribute to obesity and 
metabolic syndrome as well [88]. Significant consumption 
of high sucrose foods is associated with greater risk of colon 
[89], breast [90], lung [91], pancreatic [92], and endometrial 
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noradrenergic signaling, both in the brain and the periphery 
[120]. Hence, substance abuse represents another means 
through which increased central noradrenergic or sympa-
thetic-adrenomedullary signaling may promote tumorigen-
esis, including through facilitation of glucose signaling.

Mental or emotional stress

Whether exposure to marked mental or emotional stress or 
trauma promotes cancer is a controversial topic. For example, 
a recent, large epidemiological study of breast cancer in Great 
Britain found only mixed evidence with regard to an increase 
in cancer risk [121], whereas three recent studies support 
a role for stress in breast cancer [122–124]. A recent meta-
analysis of English and Scottish studies found that mental or 
emotional distress is a predictor of mortality in a variety of 
neoplasms [125]. Further, a Canadian epidemiological study 
found that men who reported higher levels of perceived 
stress in the workplace across a lifetime were at greater risk 
for neoplasms at five major sites of the body [126]. Data 
from rodent models provide strong evidence that mental or 
emotional stress promotes tumorigenesis and worsens overall 
survival [127, 128]. For example, Adamekova et al. found in 
female rats that seven consecutive days (120 min per day) 
immobilization stress, applied within the initiation phase 
of chemically-induced carcinogenesis, had a remarkable 
stimulatory effect on evaluated parameters in a breast carci-
noma model. They found a marked 153% increase in tumor 
frequency per group, a 57% increase in tumor incidence, and 
a shortened latency period by seven days, all of which were 
statistically significant compared to controls [129].

As stated earlier, NE and EPI are “stress hormones” that 
are known to be released from cells, in the brain and the 
peripheral adrenal glands (as well as the sympathetic nervous 
system), as part of the fight-or-flight response to environ-
mental threats or other aversive situations. Thus, exposure 
to trauma or marked mental or emotional stress, perhaps 
especially when such exposure is ongoing and chronic, may 
be another avenue through which elevated central or sympa-
thetic-adrenomedullary signaling has deleterious effects on 
cancer onset, progression, or recurrence, perhaps in part by 
suppressing insulin production and promoting the Warburg 
effect.

Synthesis and autocrine release of NE and EPI

Another aspect of the overall hypothesis put forth in this 
paper is that many (but probably not all) cancer cells may 
synthesize their own pools of NE and EPI. One possibility 
is that such biosynthesis is facilitated by the increased avail-
ability of glucose. While biosynthesis of NE and EPI has 
historically been primarily localized to neurons in particular 
brainstem nuclei, cells in the adrenal glands, and sympathetic 
nerve endings, there are some data supporting catecholamine 
biosynthesis in other cell types, including immune cells [130, 

131]. There are also findings from Schuller and colleagues that 
certain pancreatic and lung cancer cells synthesize their own 
NE, and then release it locally to stimulate their own extracel-
lular adrenoceptors in an autocrine manner [132, 133] that 
modulates the tumor microenvironment. I am suggesting 
here that such a “self-stimulation loop” may be present in 
a wide range of cancer types, and it promotes signaling in 
already upregulated molecular pathways – such as Ras/
MAPK, PI3K/Akt, and JAK/STAT – through adrenoceptor 
activation that sustains and facilitates further tumorigenesis 
and metastasis. One possibility is that NE increases glucose 
availability in the tumor microenvironment and beyond, and 
glucose availability may increase NE production in cancerous 
cells and possibly systemically, thereby potentially setting up 
a positive feedback loop that may be critical for tumorigen-
esis, growth, and metastasis. A recent osteosarcoma study 
found that NE is elevated in the tumor microenvironment 
relative to the adjacent and non-oncological bone, as are beta-
adrenoceptors and the enzyme dopamine beta-hydroxylase 
which synthesizes NE [134]. A related point on the tumor 
microenvironment: viral-based cancers [135] may interact 
with local NE to promote tumorigenesis and metastasis.

Propranolol

There is increasing interest in using the non-selective beta-
adrenoceptor (beta1 and beta2) blocking drug, propranolol, 
to prevent or treat various malignancies in human subjects 
[31, 41]. Cancer cells, in a given case, however, need not 
manufacture their own NE/EPI nor release it in an autocrine 
fashion to be susceptible to propranolol treatment, since this 
drug or related ones (carvedilol, nebivolol) may help lower 
blood sugar via modulation of insulin release by the pancreas 
or increasing insulin sensitivity [136, 137]. Propranolol and 
related beta-blockers may also improve glycemic control 
through modulation of GLUT4 glucose transporter expres-
sion and hexokinase-2, including in breast cancer cells 
[138–140]. In this scenario, propranolol could also block 
beta-adrenoceptors on the extracellular surface of the cancer 
cells, where these receptors would be responding to NE/EPI 
from others (i.e., non-autocrine) sources such as the adrenal 
glands. Cancer cells, in addition, need not exhibit the Warburg 
effect to be susceptible to propranolol (or related drugs): the 
drug could still block beta-adrenoceptors on the surface 
of these cells and thereby dampen intracellular molecular 
pathways associated with cancer. Also, if cancer cells exhibit 
the Warburg effect but do not have adrenoceptors, in a given 
case, they could still be susceptible to propranolol because 
this drug or related ones could still lower blood glucose via 
the pancreas or increase insulin sensitivity.

Summary and conclusions

As reviewed above, a wide range of genetic, epigenetic, 
and environmental factors may interact with central and 
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sympathetic-adrenomedullary pathways to modulate glucose 
signaling and thereby influence tumorigenesis and metas-
tasis via the Warburg effect. Hypertension, obesity (and by 
extension, unhealthy dietary factors), physical inactivity, 
substance abuse, and recurrent mental or emotional stress 
– which may all be associated with chronically elevated 
sympathetic-adrenomedullary signaling – could promote 
cancer not only through the catecholaminergic lowering of 
insulin release (via pancreatic beta cells) or sensitivity to 
enhance systemic glucose signaling but also by NE and EPI 
binding to and activating adrenoceptors directly on cancer 
cells. Catecholaminergic autocrine signaling by cancer cells 
themselves may complement, in some individuals, already 
genetically elevated sympathetic-adrenomedullary tone that 
is present throughout the body and may also interact with 
the above environmental factors to promote malignan-
cies. The beta-blocking drug propranolol already shows 
promising effects in a wide range of cancer types in human 
subjects, and other drugs that may lower catecholamine 
release or transmission – clonidine, guanfacine, dexmedeto-
midine, for example – should also be investigated in greater 
detail for their potentially therapeutic effects. The glucose 
modulating drug, metformin, which has been used clinically 
for years to treat diabetes, is gaining further traction for use 
in various neoplasms [18, 141], including in combination 
with propranolol [142]. Perhaps propranolol, metformin, 
and related catecholamine or glucose-modulating agents 
may not only attenuate the Warburg effect [143, 144] but 
also synergize with existing or emerging agents, such as in 
metronomic chemotherapy [39] or immunotherapy [145], to 
improve clinical outcomes.
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