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Abstract. Nucleosome sliding and nucleosome digestion are two main ways for regulating gene tran-
scription. We constructed three characteristic parameters (CP) based on the information of CG0, CG1 
and CG2 motifs, and used these parameters to analyze the sliding trend of −1 and +1 nucleosomes 
around TSS of genes with NFR in yeast. The CP distribution was used to describe the features of nucleo-
some sequences, and the slope of fit line of CP distribution curve was used to represent the potential 
energy of nucleosome sequences. Results show that nucleosome sliding trend could be reflected by CG0 
and CG2 CP distributions, and CG0 CP distribution has a good correlation with nucleosome sliding 
trend. In addition, the sliding trend of nucleosomes is different in various expression level genes. For 
high expression gene, sliding trend of −1 nucleosome is weaker and that of +1 nucleosome is stronger. 
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Introduction

k-mer, as an important frequency-based algorithm, is widely 
used in computational genomics. Because of its fast and 
efficient advantages, many k-mer-based approaches have 
been developed and used in similarity analyses (Blaisdell 
1986; Sims et al. 2009; Huang et al. 2011; Yu 2013; Wen 
et al. 2014). For some special k-mer motifs, they could be 
used as signature signals to predict CpG islands (Yang et 
al. 2012; Mohamed Hashim et al. 2015), promoters (Li et 
al. 2006; Lin et al. 2011, 2014), noncoding RNA (Feng et 
al. 2016), DNA binding sites (Badis et al. 2009; Liu et al. 

2012; Liu et al. 2015), and nucleosome positioning (Segal 
et al. 2009; Guo et al. 2014). k-mer has also been involved 
in probe design (Fofanov et al. 2004), repeat sequence an-
notation (Kurtz et al. 2008), genome assembly (Compeau et 
al. 2011), epigenetic analysis (Quante et al. 2016), and drug 
design (Chou 2015). In addition, based on k-mer, informa-
tion entropy can be further calculated, and which has been 
used in biological computational analysis (Meng et al. 2017). 
k-mer spectra of whole genome sequences are a visualization 
approach to reveal the genomic features. It has been found 
that frequency distributions of k-mers 8 ≤ k ≤ 10 is basically 
in agreement with that of k-mer 5 ≤ k ≤ 15 (Das et al. 2007), 
and 8-mer spectra are multimodal in human and mouse, 
but unimodal in bacteria (Stacey et al. 2003). G+C content 
and CpG suppression are thought to contribute to the multi-
modal (Chor et al. 2009). Our previous study has also found 
that multimodal of 8-mer spectrum is only closely related to 
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the amount of CG dinucleotide in 8-mer motif, in analyzed 
model organism genomes, the spectra of only CG2, CG1, 
and CG0 subsets form independent unimodal distributions. 
The functions of 8-mer sets containing different amounts 
of CG dinucleotide are different, CG1 motifs are related to 
the nucleosome-binding and CG2 motifs are related to the 
modular units of CpG islands (Zheng et al. 2017).

In eukaryotic cells, DNA is highly packaged into nu-
cleosome arrays, and a nucleosome core particle comprises 
146/147 base pairs of DNA wrapped around an octamer of 
histone proteins (Luger et al. 1997; Zhu et al. 2016). Nucleo-
some positioning is very important for transcription regula-
tion (Jiang et al. 2009; Bai et al. 2010; Radman-Livaja et al. 
2010). It is generally recognized that there are two well posi-
tioned nucleosomes around TSS (transcription start site), and 
a nucleosome-free region (NFR) on the upstream of the TSS 
(Struhl et al. 2013; Lieleg et al. 2015). However, not all genes 
have the typical nucleosome organization (Kornberg et al. 
1988; Becker 2014). Kubik et al. (2015) have pointed out that, 
in yeast, about 40% promoters have narrower NFR, and the 
formation of wider NFR in these promoters depends on the 
digestion of the “fragile” −1 nucleosome. For the “stable” −1 
nucleosome promoters, the transcription regulation is mainly 
depended on the sliding of nucleosome. It has been proved 
that chromatin-remodeling complex is related to the sliding 
of nucleosome (Gangaraju et al. 2007; Zhou et al. 2016; Sinha 
et al. 2017), and sequence also has an effect on nucleosome 
sliding (McKnight et al. 2016; Niina et al. 2017; Brandani 
et al. 2018; Guoqing Liu et al. 2018). Here, we constructed 
three characteristic parameters based on the information of 
8-mer sets containing different amounts of CG dinucleotide, 
and used these parameters to analyze the relations between 
sequence potential energy and nucleosome sliding trend.

Materials and Methods

Data sources

Nucleosome positioning data of Saccharomyces cerevisiae 
(unique map) were accessed from Brogaard et al. (2012). The 
reference genome sequence and gene annotation informa-
tion of Saccharomyces cerevisiae were obtained from UCSC 
(SAC2 version) (http://genome.ucsc.edu/). The experimental 
data of gene expression levels were obtained from Holstege 
et al. (1998). 

k-mer of genomic sequence 

k-mer could be described as follows: supposing there is 
a genomic sequence S with length L, ‘N1, N2,…NL’, where 
Ni ∈ {A,T,C,G}. A string of consecutive k nucleotides within 
genetic sequence S is called a k-mer. The k-mers appearing 

in a sequence can be enumerated by using a sliding window 
of length k, shifting one base each time from position 1 to 
L – k + 1, until the entire sequence has been scanned. Given 
any k, there will be 4k different possible permutations.

Relative motif number of 8-mers

According to the definition of k-mer, for a given DNA se-
quence with length L, all of the 8-mer frequencies could be 
counted. The relative motif number (RMN) of the 8-mers with 
frequency i could be calculated by the following equation:
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frequency after the i-th m-mer in the given sequence is assigned by m-mer RF in a given 8-mer subset. The 
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nucleosome distribution around TSS of yeast genes. The 
nucleosome located at TSS or nearest to the TSS is defined 
as +1 nucleosome, and the first nucleosome on the upstream 
of +1 nucleosome is defined as −1 nucleosome (Teves et al. 
2014), and the distances between nucleosome dyad and TSS 
were calculated. Results show that not all genes have an obvi-
ous nucleosome free region on the upstream of TSS (Fig. 1). 
About 2/3 genes have a traditional nucleosome distribution 
pattern, and a longer interval appears between −1 and +1 nu-
cleosome. These genes are called NFR genes. Meanwhile, about 
1/3 genes have a different nucleosome distribution pattern. 
There is no NFR on the upstream of TSS, and the distance 
between −1 and +1 nucleosome dyad is much shorter than 
the average. These genes are called non-NFR genes. In Kubik’s 
research, they have given a reasonable explanation through 
analyzing the stability of −1 nucleosome, and thought that 
the transcription regulation in non-NFR genes depends on 
the digestion of −1 nucleosome, and in NFR genes depends 
on the sliding of −1 and +1 nucleosome (Kubik et al. 2015). 
Sequence preference is an important factor in nucleosome 
positioning, and the difference of nucleosome stability could 
also be reflected in the interaction between histone and DNA. 
In our study, we made further analysis about these two tran-
scription regulation mechanisms by the information content 
of −1 and +1 nucleosome sequences.

We separately analyzed −1 and +1 nucleosome sequences 
of NFR genes and non-NFR genes by 3 characteristic param-

eters constructed by the information of 8-mer set of CG0, 
CG1 and CG2, and the CP distribution was used to describe 
the characteristic of nucleosome sequences. Results show 
that (Fig. 2), no matter which parameter was used, the CP 
distributions of +1 nucleosome sequences have no obvious 
differences between NFR genes and non-NFR genes, but 
CP distributions of −1 nucleosome sequences are differ-
ent. For the CP distributions obtained by the information 
of CG1 set, only the CP distribution of −1 nucleosome 
sequence in non-NFR genes deviates obviously from that 
of all nucleosome sequences. Our previous research showed 
that the CG1 motif was the important positioning signal 
for nucleosome (Zheng et al. 2017), so this deviation could 
reflect the instability of −1 nucleosome in non-NFR genes 
to some extent. For the CP distributions obtained by the in-
formation of CG0 set, in NFR genes, the downstream of CP 
distribution of −1 nucleosome shows an increasing trend, so 
the CP distribution line of −1 nucleosome is tilted. In non-
NFR genes, either the downstream or the upstream of CP 
distribution of −1 nucleosome shows an increasing trend, so 
the CP distribution line of −1 nucleosome is aclinic. For the 
CP distributions obtained by the information of CG2 set, the 
CP distribution of −1 nucleosome shows a decreasing trend 
in NFR genes, but not in non-NFR genes. In NFR genes, we 
thought that transcription regulation should depend on the 
slide of −1 and +1 nucleosome, and the slide of nucleosomes 
must be closely related to the sequence construction. In our 

Figure 1. Two types 
of nucleosome distri-
butions around TSS. 
A. Nucleosome distribu-
tions around TSS in NFR 
genes. B. Nucleosome 
distributions around 
TSS in non-NFR genes. 
C. Schematic diagram of 
the most probable posi-
tion of nucleosomes in 
NFR genes. D. Schemat-
ic diagram of the most 
probable position of nu-
cleosomes in non-NFR 
genes. NFR, nucleosome-
free region; TSS, tran-
scription start site.
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Figure 2. The CP distri-
butions of nucleosome 
sequences in NFR genes 
and non-NFR genes. The 
blue line represents −1 nu-
cleosome. The red line 
represents +1 nucleosome. 
The gray line represents 
all  nucleosomes. A.–C. 
The CP distributions ob-
tained by the information 
of CG0, CG1 and CG2 sets 
separately in NFR genes. 
D.–F. The CP distributions 
obtained by the informa-
tion of CG0, CG1 and CG2 
sets separately in non-NFR 
genes. CP, characteristic 
parameter of a  given se-
quence; CG0, subset of 
8-mer motif that contains 

no CG dinucleotide; CG1, subset of 8-mer motif that contains only one CG dinucleotide; CG2, subset of 8-mer motif that contains 
two or more CG dinucleotide; NFR, nucleosome-free region. (See online version for color figure.)

previous study, it has been shown that CG1 motifs are as-
sociated with nucleosome positioning. The distribution of 
CG1 motifs in nucleosome sequences has the balanced and 
symmetrical characteristic, and this characteristic could be 
used to predict the nucleosome positioning. However, the 
distribution characteristics of CG1 motifs have no difference 
between special nucleosomes (−1 and +1 nucleosome) and 
normal nucleosomes. Oppositely, the distribution charac-
teristics of CG0 and CG2 motifs have difference between 
special nucleosomes and normal nucleosomes, so the po-
tential energy of sequence reflected by the CP distribution 
obtained by the information of CG0 and CG2 sets could 
be an appropriate parameter to describe the sliding trend 
of nucleosome. 

Potential energy of nucleosome sequences with different 
length of NFR

For discussing the correlation between the potential en-
ergy of sequence and the sliding trend of nucleosome, we 
analyzed −1 and +1 nucleosome sequences with different 
length of intervals in NFR genes by the CP distribution ob-
tained by the information of CG0 and CG2 sets. NFR genes 
were divided into 3 groups: (1) when the distance between 
−1 and +1 nucleosome dyad is shorter than 217 bp (or the 
length of NFR is shorter than 70 bp), these genes were called 
short NFR genes (S-NFR); (2) when the distance between 
−1 and +1 nucleosome dyad is between 217 bp and 287 bp 
(or the length of NFR is between 70 bp and 140 bp), these 
genes were called middle NFR genes (M-NFR); (3) when 

the distance between −1 and +1 nucleosome dyad is longer 
than 287 bp (or the length of NFR is longer than 140 bp), 
these genes were called long NFR genes (L-NFR). The CP 
distributions of −1 and +1 nucleosomes in each group of 
NFR genes obtained by the information of CG0 and CG2 
sets are shown in Fig. 3A–D. The main characteristics of 
−1 and +1 nucleosome sequences in 3 groups of genes have 
not changed. Though it shows some differences, the cor-
relation between the potential energy of sequence and the 
sliding trend of nucleosome could not be described directly. 
In physics, potential energy curve is often used to describe 
the change of potential energy with relative position. In this 
study, we introduced the idea of potential energy curve and 
expected it to describe the relation between nucleosome 
sliding tendency and position of sequence. To visualize 
this relation, the linear fitting analysis was applied in these 
distribution curves, and the slope of the fit line was used 
to represent the difference of the potential energy of se-
quences (Fig. 3E–H). In CG0 linear fitting analysis, −1 and 
+1 nucleosomes both show a reasonable relation between 
potential energy of sequence and sliding trend of nucleo-
some. With the decrease of the interval between −1  and 
+1 nucleosomes, the absolute values of the slope of the fit 
line of −1 and +1  nucleosome increase. It is appropriate 
that the −1 and +1 nucleosomes with shorter interval need 
more sliding trend to facilitate transcription initiation. So 
CG0 CP distribution could well reflect the sliding trend of 
nucleosome. The slope of fit line obtained by CG2 could 
not show a  reasonable relation between potential energy 
of sequence and sliding trend of nucleosome, because the 

Distance from the dyad
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amount of CG2 motif is so small that it has no universality. 
However, the CG2 motif also affects nucleosome sliding 
in some case, and this affection is just the opposite to that 
of CG0 motif. Totally, the potential energy of sequences 
reflected by CG0 CP distribution is the most appropriate 
to describe the nucleosome sliding trend.

Potential energy of nucleosome sequences with different gene 
expression level

Further, the −1 and +1 nucleosome sequences in NFR genes 
with different expression levels were analyzed by CG0 CP 
distributions. NFR genes were divided into 3 groups ac-
cording to gene expression level: (1) genes with expression 
values less than 1 mRNA/h were called low expression genes; 
(2) genes with expression values among 1–4 mRNA/h were 
called middle expression genes; (3) genes with expression 
values higher than 4 mRNA/h were called high expression 
genes. The CG0 CP distributions of −1 and +1 nucleosomes 
in each group of NFR genes are shown in Fig. 4A, B. and 
the fit lines of distribution curves are shown in Fig. 4C, D. 
For −1 nucleosome, the slope of fit line of middle expres-
sion genes is the highest, and that of high expression genes 
is the lowest. This phenomenon is reasonable, because the 
statistical distance between −1 and +1 nucleosome in high 
expression genes is obviously higher than those in other 

two groups of genes, and the distances in other two groups 
of genes are similar (Fig. 4). In high expression genes, the 
length of NFR is sufficient, so the −1 nucleosome has a weak 
sliding trend. The potential energy of −1 nucleosome se-
quences in middle expression level genes is different from 
that in low expression level genes, which indicates that the 
−1 nucleosome with stronger sliding trend would be more 
beneficial to gene transcription. For +1 nucleosome, the 
absolute value of the slope of fit line of high expression genes 
is obviously higher (about 50% higher) than those in other 
two groups of genes. For most of yeast genes, +1 nucleo-
some occupies the TSS. The sliding of +1 nucleosome is 
for exposing TSS, and not only for extending NFR. So the 
stronger sliding trend of +1 nucleosome in high expression 
genes is necessary. 

Discussion 

The position of nucleosomes in the genome is dynamic. 
The functions of nucleosomes in different positions in the 
genome are different. −1 and +1 nucleosomes, as two special 
nucleosomes, are closely related to transcription regulation, 
and the nucleosome sliding is an important way of regula-
tion. The nucleosome sliding mechanism is complex, and it 
is regulated by many factors, such as chromatin-remodeling 

Figure 3. The CG0/CG2 CP distributions and fit lines of −1 and +1 nucleosome sequences in NFR genes with different length of intervals 
between −1 and +1 nucleosomes. The blue line represents nucleosomes in long NFR genes (L-NFR). The red line represents nucleosomes 
in middle NFR genes (M-NFR). The green line represents nucleosomes in short NFR genes (S-NFR). k value represents the slope of the 
fit line. A.–D. The CG0/CG2 CP distributions of −1 and +1 nucleosome sequences. E.–H. The fit lines of CP distribution curves. For 
abbreviations, see Fig. 2. (See online version for color figure.)
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complex and sequence matter. Sequence preference de-
termines nucleosome positioning, and it also affects the 
stability of nucleosomes. However, not all sequence motifs 
are related to the nucleosome sliding. Our results show that 
the usage of CG1 motifs is always equalizing, and these mo-
tifs should determine the stability of nucleosomes but not 
sliding. CG0 and CG2 motifs both reflect the changes of po-
tential energy of nucleosome sequence, but the correlation 
between potential energy and sliding trend obtained by CG2 
motifs is poor. This may be attributed to the small amount 
of CG2 motifs. The CP constructed by the information of 
CG0 motifs is the most appropriate parameter to describe 
the sliding trend of nucleosomes. Because of our previous 
study has found that multimodal of 8-mer spectrum is only 
closely related to the amount of CG dinucleotide, we payed 
more attention on CG dinucleotide. Therefore, we can’t yet 
conclude that CG determines nucleosome sliding. The po-
tential energy of sequences reveals the nucleosome sliding 
mechanism. The sliding trend of −1 and +1 nucleosomes 
is mainly determined by the length of NFR. The longer the 
NFR is, the weaker the trend will be. For middle and low 
expression genes, the higher expression level genes have 
a stronger sliding trend of −1 nucleosome. For high expres-
sion level genes, it only needs the strong sliding trend of +1 
nucleosome to expose TSS. 
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