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oncogenes E6 and E7 (Demeret et al., 1997). In addition to 
regulating viral processes, E2 modifies the expression of 
several cellular genes that are involved in proliferation, 
differentiation, apoptosis, senescence, and cell motility 
(Burns et al., 2010; Ramírez-Salazar et al., 2011; Gauson et 
al., 2014). Although multiple cellular promoters harbor 
potential E2BS sequences, E2 binding does not always af-
fect the transcriptional activity of these promoters (Võsa 
et al., 2012). Therefore, E2 uses an indirect mechanism 
to modify cellular gene expression, which involves its 
interaction with cellular proteins (Muller and Demeret, 
2012; Jang et al., 2015).

The HPV16 E2 protein interacts with a wide spectrum 
of cellular proteins involved replication, RNA processing, 
chromatin remodeling, cell cycle control, and apoptosis. 
From E2's interaction with TATA binding protein (TBP), 
Homeobox C9 (HOXC9), transducer of ERBB2 (TOB1) (Mul-
ler and Demeret, 2012), P53 (Massimi et al., 1999), p300 
(Krüppel et al., 2008), BRD4 (Wu et al., 2016), and TATA-box 
binding protein associated factor 1 (TAF1) (Centeno et 
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High-risk human papillomaviruses (e.g., HPV16 and 
HPV18) are strongly associated with cervical cancer, 
anogenital cancer, and a growing number of head and 
neck tumors (Egawa et al., 2015). The early-expressed 
gene E2 encodes a protein that performs several relevant 
functions in the viral replication cycle. E2 initiates HPV's 
genome replication by recruiting the viral helicase E1 
and the cell's replication machinery to the viral repli-
cation origin. During mitosis, E2 segregates replicated 
viral genomes into daughter cells through its interaction 
with chromatin adaptor proteins, such as bromodomain-
containing protein 4 (BRD4). E2 also binds to DNA se-
quence ACCG4NCGGT (E2-binding site (E2BS)) present 
in the viral lCR to regulate the expression of the viral 
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al., 2008), it can be deduced that E2 also has a significant 
participation in transcriptional regulation.

In a previous report, we demonstrated that E2 has a 
direct protein-protein interaction with TAF1, and this 
interaction is crucial for the transcriptional regulation 
of the viral early gene promoter (Centeno et al., 2008), 
pointing out the importance of TAF1 in transcription of 
HPV genes. In the present work, we evaluated whether the 
HPV16 E2 protein affects TAF1 expression and its activity 
as a transcriptional regulator.

Using a previously reported lentiviral system 
(Domínguez-Catzín et al., 2017), C-33A cells were infected 
with lenti-HPV16-E2 or lenti-lacz for 24 h to allow virus 
adsorption. The viruses where then removed and puromy-
cin selection (0.45 μg/ml) was applied 48 h post infection 
to obtain C-33A cells that constitutively express HPV16-E2 
(C-33A-HPV16-E2 cells) or control C-33A cells that express 
lacz (C-33A-lacz). To prevent loss of the lentiviral vector, 
cells were permanently maintained in the presence of 
puromycin. To determine transduction and transgene 
expression in cells, total RNA was extracted using TRIzol 
™ reagent method and treated with RQ1 DNase (Promega, 
USA) for 2 h at 37°C. Two μg of total RNA were transcribed 
into cDNA using the enzyme M-MlV RT at 42°C and Oligo-
dT15 (Promega, USA). Then, the relative expression of the 

E2 mRNA was determined by RT-qPCR using a specific 
pair of primers (Fw: 5' ATTCCGAATTCATGGAGACTCT 3', 
Rev: 5' TTCGGGATCCTCATATAGACAT 3') that generate 
a 250 bp amplicon of the HPV16 E2 gene. Untranscribed 
RNA was used as a no template control (NTC). To assess 
the biological activity of E2 protein, we cloned the HPV18 
lCR (6929nt-88nt from the viral genome) into the 5'-Kpn 
I/Xho I-3' sites of the pGl4.10-basic® vector (Promega, 
USA) that encodes the luciferase reporter gene to generate 
the pGl4.10-lCR18 construct. The HPV18 lCR promoter 
harbors four E2-BSs. Both cell lines, C-33A-HPV16-E2 and 
C-33A-lacz, were transfected with 2 µg the pGl4.10-lCR18 
vector using lipofectamine® 2000 reagent, following the 
manufacturer's instructions. luciferase activity was eval-
uated using the luciferase assay system (Promega, USA).

The relative levels of TAF1 and p27 mRNA were evalu-
ated after reverse transcription by RT-qPCR with specific 
primers for TAF1 (Fw: 5' ACAACATCGGGAAGAGATGC 3', 
Rv: 5' CAGGACGCTCCTTCATTTTC 3'), p27 (Fw: 5' TAACTCT 
GAGGACACGCAT 3', Rv: 5' TTCTTCTGTTCTGTTGGCTC 3'), 
and β-actin as a housekeeping endogenous control (Fw: 
5' GCGGGAAATCGTGCGTGACATT 3', Rev: 5' GATGGAGTT 
GAAGGTAGTTTCGTG 3'). As NTC we used untranscribed 
RNA. The relative expression of these genes was calcu-
lated based on ∆∆Ct values. The protein level was evalu-

Fig. 1

HPV16 E2 expression and activity
RT-qPCR analysis of HPV16-E2 mRNA levels in C-33A-lacz and C-33A-HPV16-E2 cells (a). Top: representation of HPV18 lCR cloned into 
pGl4.10 vector showing four E2-binding sites and a TATA box; bottom: pGl4.10-HPV18 lCR transcriptional activity (E2 responsive promoter) 
in C-33A-lacz and C-33A-HPV16-E2 cells (b). Data from three independent experiments presented as mean ± SD (**p <0.05).

(a) (b)
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ated by western blot analysis. Briefly, cells were lysed in 
RIPA buffer (25 mM Tris-HCl pH 7.6, 150 mM NaCl, 5 mM 
EDTA, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% 
SDS) supplemented with protease inhibitors (Complete 
1x, Roche Diagnostic, Switzerland). Equal amounts of 
total proteins (30 μg) from the different samples were 
separated on a denaturing polyacrylamide gel (SDS-PAGE). 
Proteins were transferred to a nitrocellulose membrane 
and blocked with 5% non-fat milk in PBS. Membranes 
were incubated with anti-TAF1 (1:500) or anti-p27 (1:250) 
monoclonal antibodies (Santa Cruz Biotechnology, USA), 
followed by horseradish peroxidase-conjugated goat anti-
mouse antibody (Jackson, ImmunoResearch laboratories, 
USA). Proteins were observed using SuperSignal™ West-
ern Pico chemiluminescent substrate (Thermo Scien-
tific, USA). The membranes were stripped and re-blotted 
with anti-actin antibodies (1:100,000) (Sigma, USA). The 
quantification of the digital images of three independent 
experiments was performed using ImageJ software. The 
statistical significance of the difference between inter-
group comparisons was obtained using Student's t-test. 
Data were expressed as mean ± SD and were representa-
tive of at least three independent experiments. Statistical 
significance was defined as a p value <0.05. 

Figure 1a shows the RNA expression of the HPV16 E2 
gene in the transduced cells (C-33A-HPV16-E2 cells). The 
survival of these cells for several passages indicates that 
HPV16 E2 is expressed at low levels because it has been 
reported that high levels of HPV16 E2 induce apoptosis 
(Demeret et al., 2003). The luciferase activity in C-33A-
HPV16-E2 cells transiently transfected with the pGl4.10-
lCR18 vector demonstrates that E2 binds HPV18-lCR to 
promote transcription of the luciferase gene (Fig. 1b). This 
confirms that our cell-based system is an appropriate 
model for studying E2's transcriptional activity in the 
absence of other HPV proteins. In a previous study, we 
used a recombinant adenoviral system that permitted 
HPV16 E2 expression in C-33A cells for a short period of 
time to demonstrate that E2 modifies the mRNA levels of 
multiple cellular genes, including several TAF1 regulated 
genes (Ramírez-Salazar et al., 2011).

TAF1 is essential for the assembly of TBP with the rest 
of the TAFs to create the TFIID complex. TAF1 interacts 
with transcriptional activators to recruit this complex 
to particular promoters, thus allowing its transcription 
(Wassarman and Sauer, 2001). Our results indicate that the 
constant expression of the viral protein increases TAF1 
mRNA levels (Fig. 2a). Increase in TAF1 mRNA levels could 

Fig. 2

An increase in TAF1 levels modifies p27 expression levels in C-33A-HPV16-E2 cells
RT-qPCR analysis of TAF1 mRNA levels in C-33A-lacz and C-33A-HPV16-E2 cells (a). Representative western blot image (left) and densito-
metric analysis of the TAF1 protein (right) in C-33A-lacz and C-33A-HPV16-E2 cells (b). RT-qPCR analysis of p27 mRNA levels in C-33A-lacz 
and C-33A-HPV16-E2 cells (c). Representative western blot image (left) and densitometric analysis of the p27 protein (right) in C-33A-lacz 
and C-33A-HPV16-E2 cells (d). Data from three independent experiments presented as mean ± SD (**p <0.05).

(a) (b)

(c) (d)
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be caused by E2-mediated transcriptional activation of 
TAF1's promoter. E2 may bind DNA directly or indirectly 
via interactions with a particular transcription factor or 
factors. TAF1 protein levels were considerably higher in 
cells that expressed E2, reaching more than six times the 
amount observed in control cells (Fig. 2b). To our knowl-
edge, this is the first report that shows evidence of an 
increase in TAF1 protein levels induced by the presence of 
a viral protein. However, determining the precise mecha-
nism by which E2 regulates TAF1 overexpression and its 
biological consequences requires more experiments. The 
increased expression of TAF1 could have biological conse-
quences in cellular processes that involve HPV16 E2 and/
or TAF1. Additionally, the E2-TAF1 protein interaction we 
described previously (Centeno et al., 2008) could aid in 
stabilizing TAF1, which is an important factor of the basal 
transcriptional machinery, and differentially directs its 
binding to particular gene promoters. 

In the cell, TAF1 controls the expression of a high num-
ber of genes, including some associated with apoptosis 
and cell cycle regulation (Kimura et al. 2008). The CDKN1B 
(p27) gene is implicated in both processes (Abbastabar 
et al., 2018) and is a well-known TAF1 target gene. Using  
RT-qPCR, we analyzed p27 mRNA levels in C-33A-HPV16-E2 
cells, which were about two times higher than in control 
cells (Fig. 2c). A similar behavior was observed at the 
protein level, i.e., we detected twice higher amounts of 
p27 in E2-expressing cells than in control cells (Fig. 2d). 
These results agree with those reported by Kimura et al., 
2008, who demonstrated that TAF1 regulates apoptosis 
by controlling p27 expression. Our study also suggests 
that when HPV16 E2 increases TAF1 protein levels, it may 
modify the expression of other TAF1 target genes.

Increased levels of TAF1 protein in HPV-infected cells 
might benefit the virus' replication cycle in two points: 
first, the HPV16 E2-TAF1 interaction impedes E2 from re-
pressing the viral p97 promoter to allow early viral gene 
expression (Centeno et al., 2008); and second, downstream 
TAF1-regulated genes could help generate a cellular en-
vironment that is favorable for several stages of HPV's 
replication cycle (Kim et al., 2005).

E2 expression promotes differentiation, which is 
required for late gene expression and viral maturation. 
Increased TAF1 levels, and possibly, its interaction with 
HPV16 E2, could participate in the regulation of many 
genes involved in differentiation that E2 affects, such as 
involucrin, filaggrin, CK1, and CK10 (Burns et al., 2010). 
The transcriptional promoters of some of these genes 
harbor a TATA box and/or an Inr sequence, which could 
be regulated by TAF1.

In this work, we demonstrated that increased TAF1 
levels in C-33A-HPV16-E2 cells correlates with an increase 
in p27 mRNA levels, suggesting that at least a portion of 

TAF1 is transcriptionally active to regulate some of its 
target genes. Preliminary results in our research group 
indicate that TAF1 binding to the Inr sequence in p27's 
promoter region of p27 is not increased in HPV16 E2-
expressing cells, suggesting the existence of alternative 
transcription start sites in the p27 gene that involve TAF1. 
TAF1's role in regulating apoptosis was demonstrated us-
ing RNA interference to downregulate TAF1, in turn, p27's 
expression was also decreased and cells became resistant 
to oxidative stress-induced apoptosis (Kimura et al., 2008). 
Additionally, p27 downregulates the kinase activity of the 
cyclin E/cdk2 complex to avoid the G1-S transition in the 
cell cycle. Because both apoptosis and cell proliferation 
must be finely controlled by key regulators in response 
to particular stimuli, the role of TAF1 and p27 in these 
processes in cells expressing HPV16 E2 should be evalu-
ated in the future.

The results in this work suggest that increasing TAF1 
levels might generate a positive feedback system with 
E2. Initially, E2 upregulates TAF1 expression, and a por-
tion of it interacts with E2 to regulate the viral early gene 
promoter and particular cellular genes. Subsequently, 
another portion of TAF1 that is E2-free can regulate a dif-
ferent group of cellular genes.
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