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Summary. – Duck Tembusu virus (DTMuV) is a single-stranded, positive-sense RnA arbovirus, belong-
ing to the genus Flavivirus, the family Flaviviridae. As a transmembrane protein, non-structural protein 
2A (nS2A) plays an important role in virion assembly, replication complex and antagonizing host immune 
response. Since nS2A protein contains many hydrophobic amino acids, it is hard to gain the full-length 
protein of nS2A for prokaryotic expression. Therefore, to make a deep study, prokaryotic expression and 
polyclonal antibody preparation of truncated DTMuV nS2A was performed. The truncated nS2A gene 
(178–450 bp) was obtained, and sub-cloned into the prokaryotic vector pgeX-4T-1 (pgeX-4T-1-nS2A178–450bp). 
Subsequently, the recombinant gST-nS2A60–150aa protein was successfully expressed in E. coli BL21 (De3) 
with the induction by 0.3 mmol/l isopropyl β-D-thiogalactoside (iPTg) for 6 h at 37°C. The gST-nS2A60–150aa 
protein was extracted from the gel. The BALB/c mice were immunized with the purified recombinant nS2A 
protein to prepare polyclonal antibodies against the truncated nS2A protein. The titer of the polyclonal 
antibodies, determined by eLiSA analysis, was 1:128,000. The specificity of the polyclonal antibodies 
(mPAb-DTMuV-nS2A60–150aa) were verified by Western blot analysis. Furthermore, the indirect immuno-
fluorescence (iFA) was performed to explore the subcellular localization of nS2A. nS2A protein was, in 
the transfected cells, located mainly around nucleus in the endoplasmatic reticulum. Taken together, 
our study provided a useful tool for the further exploration of the biological functions and molecular 
mechanism of DTMuV nS2A.
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ducks and infected 15 million meat ducks, resulting in 
serious economic loss of several billion dollars in the 
Chinese poultry industry (Su et al., 2011). in addition to 
duck, DTMuV can infect also many other birds, such as 
chickens, geese and house sparrows (Liu et al., 2012; Tang 
et al., 2013; Wang et al., 2016). in previous study, it was 
proved that DTMuV can infect many mammalian cells 
including, heK293, BhK21, Vero cells (Shaozhou et al., 
2015; Sun et al., 2017; Wang et al., 2016) and duck embryo 
fibroblasts (DeF). The DTMuV genome, consists of three 
structural proteins (C, prM and e) and seven non-structur-
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Duck Tembusu virus (DTMuV) is an emerging member 
of the genus Flavivirus within the family Flaviviridae 
(Bhatt et al., 2013; Zhang et al., 2017). The DTMuV outbreak, 
in 2010, in China caused egg-drop of almost 120 million 
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al proteins (nS1, nS2A, nS2B, nS3, nS4A, nS4B and nS5). 
As a transmembrane protein, non-structural protein 2A 
(nS2A) is an important component of replication complex 
and is associated with the endoplasmic reticulum (eR). As 
reported, nS2A has 8 transmembrane domains (TMDs) 
which help nS2A to anchor to eR membrane. Flavivirus 
nS2A is a hydrophobic protein with a size of approxi-
mately 22 kDa (Chambers et al., 1989). it has been shown 
that nS2A takes part in the membrane rearrangements 
and helps to the rearrangement of four non-structural 
proteins: nS2A, nS2B, nS4A and nS4B, which take part in 
the construction of replication complex (Westaway et al., 
1997). in previous study, nS2A has been found to possess 
many functions also in other flaviviruses. For example, 
nS2A takes part in the replication of the virus and has 
an essential role in virion assembly (Kummerer and Rice, 
2002; Leung et al., 2008; Xie et al., 2013). in addition, nS2A 
antagonizes the host immune response (Liu et al., 2004; 
Liu et al., 2006; Munoz-Jordan et al., 2003). Furthermore, 
nS2A has been proved to take part in the production of 
infectious particles (Chambers et al., 1989; Tu et al., 2012). 
however, there are only few studies about DTMuV nS2A. 
Therefore, to further study the function of DTMuV nS2A, 
prokaryotic expression and polyclonal antibody prepara-
tion of nS2A were performed in this study.

Because, TMDs contain many hydrophobic amino acids 
and rare codes, we were not able to obtain the full-length 
protein of nS2A. Thus, in our research, the recombinant 
truncated nS2A (gST-nS2A60–150aa with his tag in C-termi-
nal) was purified and used to immunize mouse for the 
preparation of polyclonal antibody. Finally, we obtained 
mouse-anti nS2A polyclonal antibodies (mPAb-DTMuV-
nS2A60–150aa), with high titer determined by enzyme-linked 
immunosorbent assay (eLiSA). Additionally, the localiza-
tion of nS2A was detected by indirect immunofluores-
cence (iFA) with mPAb-DTMuV-nS2A60–150aa.

in our study, a sensitive and specific polyclonal anti-
body (mPAb-DTMuV-nS2A60–150aa) was used to detect the 
localization of nS2A in the DTMuV infected DeF, which 
provides a basis for further exploration of the biological 
functions of DTMuV nS2A. 

According to the previous report, a topology model of 
DenV-nS2A on the eR membrane was obtained (Fig. 1a) 
(Sun et al., 2017). To obtain the antigen, we have used trun-
cated nS2A (60–150 aa), as shown in Fig. 1b. The sequence 
of this fragment was amplified by PCR and inserted into 
pgeX4T-1 vector. The recombinant plasmid was trans-
formed into Escherichia coli BL21 (De3) cells. Bacterial 
colonies were screened by PCR and the positive colonies 
were sequenced.

Fig. 1

Membrane topology of NS2A and optimization analysis of the expression conditions of the NS2A60-150aa protein
A topology model of DenV-nS2A on the eR membrane was obtained from previous study (a) and model of our truncated DTMuV nS2A 
(b). The truncated nS2A protein optimization of the induction time, 3 h, 6 h and 12 h (c), optimization of iPTg concentration (d) and op-
timization of the induction temperature (e). 

(a)

(c)

(b)

(d)

(e)
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Fig. 2

SDS-PAGE and Western blot of the recombinant GST-NS2A60-150aa protein
SDS-PAge of bacterial culture and lysates stained with Coomasie brilliant blue (a). Detection of gST-nS2A60-150aa by Western blot analysis 
with the mouse anti-his antibody (b). Mock: negative control without recombinant protein; bacterial culture: culture containing recom-
binant nS2A protein before lysis; supernatant: supernatant of the sonicated gST-nS2A lysate; insoluble fraction: insoluble fraction of 
the sonicated gST-nS2A. SDS-PAge of the purified recombinant protein gST-nS2A stained with Coomasie brilliant blue (c). Detection of 
purified recombinant protein gST-nS2A by Western blot analysis with the mouse anti-his antibody (d).

(a) (c)(b) (d)

Fig. 3

Titer determination of polyclonal antibodies by ELISA and Western blot analysis of the purified recombinant NS2A protein
The titer of anti-serum was determined by eLiSA (a). Western blot analysis of the purified recombinant non-structural protein nS2A with 
polyclonal anti-serum, lane 1: negative control; lane 2: purified recombinant protein (b).

(a) (b)
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At the exponential stage, the cells were induced by iPTg 
and cultivated at different temperatures and samples were 
collected at different time points to optimize the expres-
sion conditions. As shown in figure 1c,d,e, we obtained the 
highest expression by induction with 0.3 mmol/l iPTg 
for 6 h at 37°C. After sonication and centrifugation, the 
supernatants and the insoluble fraction were analyzed by 
SDS-PAge and Western blot. The results showed that the 
recombinant proteins were accumulated in the inclusion 
bodies in the insoluble fraction (Fig. 2a,b). The purified 
nS2A protein was verified by SDS-PAge and Western blot 
(Fig. 2c, d) (mouse anti-his was used in WB). The mice 
were immunized with three doses of recombinant protein 
(200 μg protein and Freund's adjuvant were used to immu-
nize one mouse). one week after the third immunization, 
serum was collected. Then, sensitivity was measured by 
eLiSA. in eLiSA, we have used purified truncated nS2A 
protein as antigen. The polyclonal serum was applied in 
different dilutions and followed by secondary goat anti 
mouse igg antibody. The absorbance was measured at 450 
nm. The titer of the serum was the highest dilution of the 
serum where the absorbance ratio of the treatment group 
and the negative control was greater than or equal to 2. As 
shown in Fig. 3a, the titer of the serum was approximately 
to 1:128,000. The specificity of the polyclonal antibod-
ies was tested by Western blot. The recombinant nS2A 
protein was used for electrophoresis and after transfer 

Fig. 4

Localization of NS2A in DTMUV infected DEF cells
indirect immunofluorescence was used to analyze the localization of nS2A at different time points during DTMuV infection. FiTC (green) 
was used to show the localization of nS2A, DAPi (blue) was used to indicate the nucleus. Magnification ×400.

it was detected by the polyclonal serum followed by the 
goat anti mouse igg as secondary antibody. Polyclonal 
antibodies specifically recognized the recombinant nS2A 
protein (Fig. 3b). 

As shown in figure 4, the localization of DTMuV nS2A 
have changed greatly in the infected DeF cells with the 
increasing time of infection. During the beginning of the 
infection, we could find only small proportion of fluo-
rescence in the cell. Later, the fluorescence could be seen 
closer to the nucleus. At the end of infection, the fluores-
cence was distributed in the whole cell. The changes of 
the localization were in connection with the life cycle of 
the virus, because nS2A plays part in the construction of 
replication complex and assembly of DTMuV. We assume 
that the localization of nS2A changes with the localiza-
tion of where replication or assembly of DTMuV takes 
place. To verify the localization of nS2A within other 
cell organelles in BhK21 cells, egFP was linked to nS2A. 
The plasmids pDsRed2-eR or pDsRed2-Mito were used in 
this experiment. We found that DTMuV nS2A was local-
ized predominantly within the endoplasmic reticulum 
(eR) (Fig. 5a). Meanwhile, nS2A did not localize within 
mitochondria in BhK21 cells (Fig. 5b). Those results are 
consistent with previous reports.

Altogether, the polyclonal antiserum against 60–150 
amino acids long domain of nS2A with high sensitivity 
and specificity was prepared. By fluorescence imaging, 
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Fig. 5

Localization of DTMUV NS2A within endoplasmatic reticulum or mitochondria in transfected BHK21 cell
BhK21 cells were co-transfected with DTMuV egFP-nS2A plasmid and pDsRed2-eR plasmid (a) or pDsRed2-Mito plasmid (b) 24 h post 
transfection. Fluorescence was detected by fluorescence microscope. Magnification ×400.

(a) (b)

we have proved that of nS2A was localized within the 
eR, but not mitochondria in mammalian BhK1 cells. We 
have shown that DTMuV nS2A might play an important 
role in the replication of the virus and that our polyclonal 
antibodies could be a useful tool for further research.
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