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Inhibitory effects of four active components in  saffron on human 
ether-a-go-go-related gene (hERG) K+ currents
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Abstract. The main active components of saffron are crocin, crocetin, picrocrocin, and safranal. There 
are many studies on their cardioprotective effects, but their cardiotoxicities have not been reported. 
The human ether-a-go-go-related gene (hERG) K+ channels are of considerable pharmaceutical 
interest as the target responsible for acquired long QT syndromes. The aim of this study is to ex-
plore the effects of crocin, crocetin, picrocrocin, and safranal on the K+ channels encoded by hERG. 
The interaction of these components with the rapid delayed rectification of K+ currents (IKr) were 
studied using the perforated patch recording technique. Crocin and picrocrocin had no significant 
effects on IKr, but crocetin and safranal inhibited hERG K+ currents in a concentration-dependent 
manner, with IC50 values of 36.35 μM and 37.86 μM, respectively. The maximum inhibitory effects 
were 37.74 ± 4.14% and 33.74 ± 4.81%, respectively, and the effects were reversible upon washout. 
The results demonstrate that crocetin and safranal significantly inhibit hERG K+ current, but crocin 
and picrocrocin do not. This suggests that crocetin and safranal may increase the risk of cardiac 
arrhythmias by inhibiting IKr.
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Introduction

Crocus sativus L. (saffron) is a perennial herb and has been 
used for medicinal purposes for many centuries (Bathaie 
and Mousavi 2010; Bukhari et al. 2018). It is of great value 
for changing the color and flavor of a variety of foods and 

drinks and has been widely used in medicine to treat several 
illnesses, including cardiovascular diseases (Razavi and Hos-
seinzadeh 2017; Hatziagapiou and Lambrou 2018).

The medicinal part of saffron is its dry stigma, and its 
main active components are crocin, crocetin, picrocrocin 
and safranal (Fig. 1) (Li et al. 1999; Broadhead et al. 2016; 
Bagur et al. 2017; Mykhailenko et al. 2019). Many studies 
have shown various cardioprotective effects of the active 
components of saffron, including attenuating myocardial 
ischemia-reperfusion injury, inhibiting cardiac hypertro-
phy and improving myocardial ischemia (Bharti et al. 2012; 
Huang et al. 2016; Feidantsis et al. 2018). However, there have 
been few reports about their side effects on the cardiovas-
cular system. Our previous studies have demonstrated that 
crocin blocks L-type calcium channels (LTCCs) (Liu et al. 
2015). Considering that most calcium channel blockers can 
cause Q-interstitial syndrome (Huang et al. 2015; Pilote et al. 
2017), it is necessary to study the influence of saffron’s active 
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components on hERG K+ currents to avoid potentially toxic 
cardiac-related side effects.

A variety of drugs, including antihistamines and anti-
arrhythmics, have been shown to induce prolongation of 
the QT interval and lead to severe and potentially fatal 
ventricular tachyarrhythmias (Darpo et al. 2013; Cubeddu 
2016). The side effects of drug-induced QT prolongation 
have become an important issue that threatens the safety 
of the currently approved drugs, and many of them have 
been withdrawn from the market. The cardiac K+ channels’ 
human ether-a-go-go-related gene (hERG) encodes the 
rapid delayed rectification of K+ currents (IKr) in the heart. 
In the ventricular myocytes of the heart, IKr is crucial for 
repolarization of myocardial action potentials (Barhanin et 
al. 1996; Wu and Sanguinetti 2016). IKr inhibition can lead 
to the extension of the QT interval and cause arrhythmia 
(Witchel and Hancox 2000; Thomas et al. 2006). 

Therefore, in this study, we used the perforated patch re-
cording techniques to observe the effects of crocin, crocetin, 
picrocrocin and safranal on IKr. This technique is a classic 
and widely used experimental method for the measurement 
of hERG K+ currents (Horn and Marty 1988; Lippiat 2008; 
Linley 2013). Our results show detailed insights into the 
biophysical mechanisms of hERG K+ currents being blocked 
by crocetin and safranal.

Materials and Methods

Cell culture and transfection

To induce hERG K+ currents in human embryonal kidney 
293 (HEK 293) cells, Lipofectamine (Invitrogen) was used to 
stably transfect these cells with hERG cDNA. The transfected 
cells were cultured in Dulbecco’s Eagle’s medium (DMEM, 
Invitrogen) in an incubator at 37°C with saturated humidity 
and 5% CO2. The cultures were passaged every 2–3 days with 
trypsin-EDTA according to the cell density, followed by seed-
ing onto a 12-mm glass microscope coverslip. Electrophysi-
ological experiments were performed after 12–24 hours.

Reagents

Crocin (17304-1G) was obtained from Sigma-Aldrich (St. 
Louis, MO, USA). Crocetin (PRF8042401) was obtained 
from Chengdu Purifa Technology Development Co., Ltd. 
(Sichuan, China). Picrocrocin (20180327) was purchased 
from Hubei Wande Chemical Co., Ltd. (Hubei, China). 
Safranal (Lot# 1-KOP-14-1) was purchased from Toronto 
Research Chemicals Inc. (Ontario, Canada). Purity levels 
were all more than 98%. The transfer pipette solution con-
tained 150 mM KCl, 10 mM HEPES, 5 mM MgCl2 (pH 7.2), 
and 250 μg/ml amphotericin B (Song et al. 2017). Crocin, 
crocetin, picrocrocin and safranal were separately dissolved 
in dimethyl sulfoxide (DMSO) to obtain stock solutions of 
100 mM and further diluted into working solutions. The ex-
ternal solution contained 160 mM NaCl, 2.5 mM KCl, 2 mM 
CaCl2, 1 mM MgCl2, 8.8 mM glucose, and 10 mM HEPES 
(adjusted to pH 7.4 with KOH). The final concentration of 
DMSO was 0.1%. This amount of DMSO was also added to 
the normal external solution as a control and had no effects 
on the potassium current.

Electrophysiological recordings

Experiments were performed at room temperature (20–
25°C). hERG K+ currents were recorded by the perforated 
patch-clamp technique (Song, et al. 2017) with an Axopatch 
200B patch-clamp amplifier. Micropipettes were created from 
glass tubing (PG10165-4; World Precision Instruments) 
using a puller (PC-97; Narishige). Micropipettes producing 
resistances of 2–5 MΩ in the external solution were used. 
Voltage pulse generation and data acquisition were con-
trolled with the software pClamp 10.0 (Axon Instruments, 
Union City, CA, USA).

Statistical analysis

The results are presented as the means ± standard error of 
the mean (SEM). Intergroup differences were assessed for 

A

B

C D

Figure 1. Structures of crocin (A), crocetin (B), picrocrocin (C), 
and safranal (D).
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significance using an analysis of variance (ANOVA) or an 
independent-sample t-test. A  value p  < 0.05 was deemed 
statistically significant.

Results

Different actions of crocetin, safranal, crocin and picrocro-
cin on hERG K+ currents 

We studied the effects of saffron components on hERG 
K+ currents in detail, as shown in Figure 2. Extracellular 
application of crocetin (300 μM) and safranal (300 μM) 
potently inhibited the hERG K+ currents by 37.74 ± 4.14% 
and 33.74 ± 4.81%, respectively (p < 0.01, n = 8). However, 
crocin and picrocrocin had no significant inhibitory ef-
fect on IKr. 

Figure 3 shows the effects of crocetin (100 μM) and 
safranal (100 μM) on hERG K+ currents during the drug 
wash-in and wash-out. Crocetin and safranal effectively 
reduced the hERG K+ currents by 31.48 ± 0.46% and 28.48 
± 0.23%, respectively, and this inhibition was reversible 
(p < 0.01, n = 8). 

Effects of crocetin and safranal on activation curve of hERG 
K+ currents

Figure 4A and B shows an instance of a voltage-clamp re-
cording of hERG K+ currents with representative current 
traces in the absence or presence of drugs (10 and 100 μM) 
or 100 nM terfenadine. Figure 4C–F shows the steady-state 
activation and current-voltage relationship curves of K+ 
currents ± drugs (10, 100 μM). The application of 100 nM 
terfenadine, a specific blocker of IKr (Tanaka et al. 2014; Chu 
et al. 2015), was used to compare the inhibitory efficiency 
of the drugs (10, 100 μM). Tail currents were normalized 
to the maximum currents in the absence (control) and 
presence of drugs (10 and 100 μM), as shown in Figure 
5A and B. Crocetin at a concentration of 10 and 100 μM 
caused the mean half-maximum activation voltage (V1/2) of 
the activation curve of the hERG tail currents to be shifted 

Figure 2. Effects of crocin, 
crocetin, picrocrocin, and sa-
franal on hERG-mediated K+ 
currents. A–D. Time courses of 
drugs on the effects of the hERG 
K+ currents. E. Inhibition of K+ 
current by drugs (300 μM). Val-
ues are means ± SEM (n = 8). 
** p < 0.01 versus Control.

Figure 3. Effects of crocetin and safranal on hERG K+ currents. 
Time courses (A, B), exemplary traces (C, D) and pooled data (E, 
F) of hERG K+ currents recorded during the application of drugs 
and washout. Values are means ± SEM (n = 8). ** p < 0.01 versus 
Control; ## p < 0.01 versus drugs.
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by 7.3 ± 2.7 mV (p < 0.05) and 10.7 ± 2.3 mV (p < 0.01) 
toward negative potentials, respectively. Safranal at a con-
centration of 10 or 100 μM caused respective shifts of by 
6.1 ± 1.8 mV (p < 0.05) or 16.7 ± 1.7 mV (p < 0.01) toward 
negative potentials. 

The concentration-response relationship of hERG-mediated 
K+ currents by crocetin and safranal

As shown in Figure 6A and B, the time courses of the hERG 
K+ currents were recorded. The hERG K+ currents were 
suppressed by crocetin and safranal in a concentration-de-
pendent manner. Compared with the drugs (3, 30, 300 μM), 
terfenadine (100 nM) almost completely inhibited hERG K+ 
currents (Fig. 6C and D). Figure 6E shows the concentration 
dose-response curves. The IC50 values of crocetin and safra-

nal were 36.35 μM and 37.86 μM for the hERG K+ currents, 
respectively. The inhibition rates of 3, 10, 30, 100, and 300 μM 
crocetin on hERG K+ currents were 7.21 ± 0.20, 12.58 ± 0.62, 
21.50 ± 0.66, 31.48 ± 0.38, and 37.74 ± 4.14%, respectively. 
The inhibition rates of 3, 10, 30, 100, and 300 μM safranal 
on hERG K+ currents were 8.21 ± 0.18, 13.67 ± 0.66, 20.50 
± 0.65, 28.48 ± 0.24, and 33.74 ± 4.81%, respectively.

Discussion

We investigated the effects of crocin, crocetin, picrocrocin, 
and safranal on hERG K+ currents in HEK293 cells. The 
results demonstrate that crocetin and safranal effectively 
inhibit the expression of hERG K+ channels in HEK293 
cells in a concentration and state-dependent manner. The 

Figure 4. Effects of crocetin and safranal on the 
steady-state activation and current-voltage rela-
tionship of hERG K+ currents. A, B. Exemplary 
hERG K+ currents. C–F. Steady-state activation 
curves and current-voltage curves of hERG K+ 

currents. Values are means ± SEM (n = 8). 
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beginning of the block was fast, and the effects were partly 
reversed after washing-out the drug. However, crocin 
and picrocrocin had no significant effects on hERG K+ 
currents. 

Long QT syndrome (LQTS) is associated with the 
torsade de pointes (TdP). This syndrome can slow down 
myocardial repolarization and can cause action potential 
extension (Towbin and Vatta 2001; Li and Ramos 2017). 
Inhibition of IKr is the main cause of drug-induced LQTS, 
which may induce arrhythmia and relative bradycardia in 
many circumstances (Fenichel et al. 2004; Ten-Tusscher 
and Panfilov 2006). Crocetin can provide protection 
against myocardial ischemia reperfusion injury (MIRI) 
in rats by inhibiting ROS production, blocking inflam-
mation, and reducing myocardium apoptosis (Wang et 
al. 2014). Safranal can alleviate MIRI injury due to its 
strong antioxidant and anti-apoptotic potential (Bharti 
et al. 2012). However, to the best of our knowledge, there 
has been no report about the influences of these drugs on 
hERG K+ currents. 

Acquired LQTS occurs frequently as a side effect of the 
blockade of cardiac hERG K+ channels by commonly used 
medications. A large number of structurally diverse com-
pounds have been shown to inhibit K+ current through 
hERG, such as anti-arrhythmics, antibiotics, antihistamines, 
antipsychotics, gastrointestinal prokinetics, antifungals, 
and antimalarial drugs. These drugs have been reported to 
cause LQTS risk and are involved in inhibiting the hERG 
K+ channels (Rajamani et al. 2006; Chen et al. 2010). The 
assessment of a direct hERG channel block has proven use-
ful for the evaluation of drugs suspected of causing delays 
in cardiac repolarization and TdP (Yap 2003). In the present 
experiments, terfenadine was used as the positive control 
drug and showed a stronger inhibitory effect on hERG K+ 
currents than the tested drugs crocetin and safranal. The 
inhibitory effect of 100 nM terfenadine was 82.98 ± 0.32%, 
which is consistent with a previous study (Song, et al. 2017). 
However, crocetin and safranal inhibited hERG K+ currents 
in a concentration-dependent manner. The IC50 values were 
36.35 μM and 37.86 μM, and the maximum inhibitory ef-
fects were 37.74 ± 4.14% and 33.74 ± 4.81%, respectively. 
Compared with terfenadine, crocetin and safranal are weak 
hERG K+ channel inhibitors. 

The risk of QT prolongation of ventricular repolarization 
or TdP is increased in patients with organic heart diseases, 
such as congenital LQTS, myocardial infarction, congestive 
heart failure, dilated cardiomyopathy, hypertrophic cardio-
myopathy, bradycardia, hypokalemia, and hepatic impair-
ment (Yap 2003). Therefore, clinicians must practice constant 
vigilance when using crocetin or safranal in patients with 
pre-existing heart disease, any of the risk factors listed above, 
previous ventricular arrhythmias, or electrolyte imbalances, 
such as hypokalemia.

Crocetin or safranal at 3 μM can suppress hERG K+ 

currents. The peaks of the hERG K+ currents were reduced 
after exposure to 100 μM. After washing out the drugs, the 
hERG K+ currents partially recovered, indicating that the 
inhibitory effect was reversible (Fig. 3A–D). Crocetin or 

Figure 5. Effects of crocetin (A) and safranal (B) on the activa-
tion curves of hERG normalized tail currents. Values are means 
± SEM (n = 8).

Figure 6. The concentration-
response relationship of 
hERG-mediated K+ currents 
by crocetin and safranal. A, 
B. Time courses. C, D. Ter-
fenadine (100 nM) almost 
completely inhibited hERG 
K+ currents. E. Concentration 
dose-response curves repre-
senting the inhibitory effects 

of crocetin and safranal in regard to hERG K+ currents. IC50 values 
were 36.35 μM and 37.86 μM. Values are means ± SEM (n = 8). 
** p < 0.01 versus Control. 
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safranal blocked hERG currents with a  negative shift in 
voltage-dependent activation (Figs. 4 and 5). Exemplary 
traces of the hERG K+ currents were recorded at various 
concentrations of drugs (3–300 μM). Crocetin or safra-
nal significantly reduced the current density of hERG in 
a concentration-dependent manner. Their IC50 values were 
36.35 μM and 37.86 μM, respectively, while their maximum 
inhibitory effects on hERG K+ currents were 37.74 ± 4.14% 
and 33.74 ± 4.81% (Fig. 6A–E). The doses of crocetin and 
safranal in experiments in vivo are 20–200 mg/kg (Liang 
et al. 2007; Zhang et al. 2017) and 0.25–725.7 mg/kg (Hos-
seinzadeh and Sadeghnia 2005; Samarghandian et al. 2017), 
respectively. The two drugs are commonly administrated 
by intraperitoneal injection. According to Diehl (Diehl et 
al. 2001), the blood concentrations of crocetin or safranal 
were higher than those in this study, which suggests that 
attention should be paid to the risk of arrhythmia caused 
by crocetin or safranal in the treatment of cardiovascular 
diseases.

Acquired LQTS has become an important liability for 
clinically available drugs and developmental compounds. 
The mechanism commonly proposed for drug-induced QT 
interval prolongation is the direct block of hERG (Kv11.1) 
K+ channels or its native current, which rapidly results in 
delayed rectifier potassium current (IKr) (Sanguinetti and 
Mitcheson 2005). Ketoconazole was reported to block hERG 
channels predominantly by binding to the closed state of 
hERG channels and causing tonic block, with lower affinity 
binding to the open state (Dumaine et al. 1998). In addition, 
it has been reported that the blockage of hERG channels by 
miconazole required channel activation in the closed state, 
and the blockage was not easily reversed by drug washout 
(Kikuchi et al. 2005). 

In conclusion, the present results have shown that crocetin 
and safranal block the hERG K+ currents in a concentration-
dependent manner. However, crocin and picrocrocin do not 
have this effect. Thus, the results suggest that crocetin and 
safranal may increase the risk of LQTS by inhibiting IKr.
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