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ABSTRACT
The novel coronavirus COVID-19 outbreak quickly spread across many countries and has become a 
worldwide threat to health, trade and travel. In terms of clinical manifestations, although it starts as an acute 
respiratory disorder, it could eventually lead to death by causing damage to many organs such as: lung, liver, 
kidney and heart. It has been shown that COVID-19 pathology is mediated by an excessive infl ammation, 
oxidation and an aggravated immune response. Vitamin D is a an immunomodulator hormone and has 
receptors in many tissues and organs. In many studies, vitamin D was shown to have antimicrobial and anti-
infl ammatory properties. In addition, since COVID-19 infection causes a cytokine storm, vitamin D can have 
a protective effect on many tissues and organs by reducing the production of proinfl ammatory cytokines. 
Vitamin D has a high safety profi le, and thus could be benefi cial against multiple organ damage in COVID-19 
patients. This paper aims to highlight the potential benefi ts of vitamin D against multiple organ damage 
caused by COVID-19 (Fig. 1, Ref. 109). Text in PDF www.elis.sk
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Introduction

Pneumonia outbreak caused by the novel coronavirus (CO-
VID-19), which was fi rstly reported in Wuhan town in the Chinese 
State of Hubei, spread rapidly all over China, and despite the ef-
forts to prevent its spread, virus has now reached a pandemic level 
around the world (1, 2, 3). This virus is transmitted by droplets, 
close contact and other means, and patients in the incubation period 
can potentially infect other people (4). Mild cases of COVID-19 
cause symptoms of fatigue, fever, vomit, diarrhoea and dry cough. 
In severe cases, on the other hand, hypoxemia and respiratory dis-
tress develop about seven days after the start of the infection, fol-
lowed by an acute respiratory distress syndrome (ARDS), septic 
shock, metabolic acidosis, and even death (5, 6). In the study, in 
which 1099 laboratory-confi rmed cases were examined, common 
manifestation included fever (88.7 %), cough (67.8 %), sputum 
production (33.4 %), fatigue (38.1 %), shortness of breath (18.6 %), 
headache (13.6 %), sore throat (13.9 %), diarrhoea (3.8 %), and 
vomiting (5.0 %) (2). 

Coronaviruses infect humans and other vertebrates. Novel 
COVID-19 is a coronavirus and is closely related to the viruses 
responsible for Severe Acute Respiratory Syndrome (SARS-CoV) 

in 2003 and Middle East Respiratory Syndrome (MERS-CoV) in 
2012, which generated severe pneumonia symptoms. These three 
viruses can lead to intestinal, neuronal, hepatic and respiratory 
diseases, and may cause the multiple organ failure, ARDS, and 
in severe cases even death (7, 8, 9). A small-scale autopsy study 
on heart, lung, spleen, liver, kidney, bone marrow, stomach, pan-
creas, intestine, skin and thyroid performed in three patients, who 
died of the novel coronavirus-related pneumonia in Chongqing, 
China revealed signifi cant pathological lesions in the lungs of 
the patients including alveolar exudative infl ammation, alveo-
lar epithelial proliferation, interstitial infl ammation and hyaline 
membrane formation (10). It was reported in the same study that 
although 2019-nCoV was mainly located in the lung, infection-
related damage was also observed in blood vessels, heart, kidneys, 
liver and other organs. Huang et al (6) reported that about 20 % 
of the 41 cases had diabetes, while Chen et al (11) reported that 
about 40 % of 99 cases had cardio-cerebrovascular disease. Li et 
al (12), on the other hand, studied 1.527 novel COVID-19 cases, 
and reported that 17.1 % of the patients had hypertension, 16.4 % 
cardio-cerebrovascular disease, 9.7 % diabetes and at least 8.0 % 
an acute cardiac injury. In another study conducted in China with 
over 40,000 confi rmed COVID-19 cases, fatality rate was 2.3 %, 
and old age > 70 years (10.2 %), diabetes (7.3 %), cardiovascular 
disease (10.5 %), and hypertension (6.0 %) were the most fre-
quently reported co-morbidities (13). The incidence of liver in-
jury was reported (14) in deaths associated with COVID-19. The 
recent reports pointed to a high degree of infl ammation in patients 
diagnosed with COVID-19. Indeed, multiple organ failure and 
deaths were reported to be caused by a widespread infl ammation.
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Vitamin D is a fat-soluble vitamin, and it is either taken in 
diet or synthesized in the skin by exposure to solar ultraviolet B 
radiation. Vitamin D is inactive, and it is metabolized twice: fi rst 
in the liver and then in the kidney by cytochrome P450 enzymes 
to the active form 1,25 dihydroxyvitamin D (1,25(OH)2D (15). 
It plays a crucial role in phosphorous and calcium homeostasis 
(16). Besides, it is an immunomodulatory hormone and steroid, 
and regulates body’s immune response (17). A high prevalence of 
vitamin D defi ciency was demonstrated in critical diseases involv-
ing an acute respiratory failure, acute kidney failure, increased 
rates of infection, cardiovascular disease, sepsis (18, 19, 20, 21, 
22). Benefi cial effects of vitamin D supplements on blood glucose 
and lipid levels, body fat mass and blood pressure were reported 
in most studies (23). In addition, Chang and Lee (24) mentioned 
vitamin D defi ciency as a risk factor for chronic liver and renal 
diseases, hyperparathyroidism, growth hormone defi ciency and 
diabetes mellitus. Similarly, Hu et al (25) suggested that low levels 
of the serum 25(OH)D was indicative of the type 2 diabetes risk.

The use of approved drugs with anti-infl ammatory properties 
and with a proven safety profi les could be useful in preventing 
the hyperinfl ammation and decreasing the mortalities caused by 
COVID-19.

COVID-19 and infl ammatory cytokine storm 

ACE2 is a homologue of angiotensin converting enzyme 
(ACE) with a 40 % identity and 61 % similarity (26). ACE2 is 
involved in the formation of angiotensin-(1–7) and angioten-
sin-(1–9) from angiotensin II and angiotensin I, respectively (27, 
28). CoV and 2019-nCoV are known to use ACE2 as a receptor 
for entering the cell. ACE2 is abundantly expressed in the type 
II alveolar cells (AT2) in the lung (14, 29, 30), endothelial cells 
in liver (31), upper and stratifi ed epithelial cells in oesophagus, 
absorptive enterocytes in ileum and colon (32), kidney proximal 
tubule cells, myocardial cells and bladder urothelial cells (29) 
and cholangiocytes (33). These tissues and organs are potential 
targets for 2019-nCoV. The recent study showed that ACE2 is 
abundantly expressed in mouth and tongue, facilitating the viral 
entrance into the host (34).

In order to enter the target cells, 2019-nCoV fi rst should tightly 
bind to ACE2. Transmembrane protease serine 2 (TMPRSS2) is 
vital for spike glycoprotein in coronaviruses priming after bind-
ing to ACE2 (35, 36, 37). The virus damages the cell by copying 
itself inside the cell. 

Recent studies showed that 2019-nCoV virus triggered a T-
helper 1 (Th1) type cytokine response upon the infection of mac-
rophages. Patients infected with 2019-nCoV could have plasma 
cytokines and chemokines such as: interleukin (IL)-1, IL-1B, 
IL-2, IL-6, IL-7, IL-8, IL-10, IL-12, IL-13, IL-17, granulocyte 
colony stimulating factor (GCSF), interferon-γ inducible protein 
10 (IP-10), monocyte chemoattractant protein 1 (MCP-1), fi bro-
blast growth factor (FGF), macrophage infl ammatory protein 
1-α (MIP-1α), and tumour necrosis factor-α (TNF-α), hepatocyte 
growth factor (HGF), platelet-derived growth factor (PDGF), 
vascular endothelial growth factor (VEGF), tumour necrosis fac-

tor (TNFα), and gamma interferon (IFN-γ ), (6, 38, 39, 40). Both 
IL-1B and TNFα promote TH17 responses and increase vascular 
permeability and leakage (41). The clinical trial with IL-6 recep-
tor blocker tocilizumab has been approved in China for the CO-
VID-19 patients, who developed pneumonia and had elevated 
IL-6 (ChiCTR2000029765). Chloroquine is a drug with immu-
nomodulator effects suppressing production/release of the TNF-
a and IL-6 and has long been used for the treatment of malaria 
(42, 43). Recently, Wang et al (44) reported that chloroquine is 
eminently effective in the control of 2019-nCoV infection under 
in vitro conditions. Clinical data collected so far revealed that in-
fl ammation is the major characteristic of COVID-19 patients. It 
was shown in many studies that the cytokine storm activated by 
an excessive infl ammation contributes considerably to the patho-
genesis of COVID-19. Thus, drugs that are effective in reducing 
infl ammation appear to be benefi cial.

Vitamin D and infl ammatory cytokine storm

Preventing h yperinfl ammation caused by COVID-19 using ap-
proved drugs with anti-infl ammatory effects and proven safety pro-
fi les could be useful to reduce the mortality. Activation of vitamin 
D receptors (VDRs) needs 1,25(OH)D3, the active form of vitamin 
D. Almost every organ and system of the body including immune 
cells have vitamin D receptor. VDRs are found in many differ-
ent cell types such as: gonad, pancreas, kidney, liver, heart, lung, 
brain, breast cells, hematopoietic cells, and macrophages, mono-
cytes and dendritic cells of the immune system. The activation of 
VDR affects both innate and adaptive immunity (45). Vitamin D 
is a direct and indirect modulator of Th1 cells. The production of 
Th1 cells is suppressed by vitamin D (46, 47, 48). Additionally, 
vitamin D can decrease the production of infl ammatory cytokines 
such as: IL-6, IL-8, IL-12 and IL-17, and thus prevent infl amma-
tion from progressing and damaging to other organs (49, 50, 51). 
Vitamin D also reduces the production of TNFα and NFκB (52, 53). 
Moreover, 1,25(OH)2D directly inhibits IFN-γ and IL-2 (54,55). 
Vitamin D could diminish cytokine storm caused by COVID-19 
and could exert protective effects against multiple organ damage. 

Association of Vitamin D with COVID-19 and renin angio-
tensin system

The renin angiotensin system (RAS) is of critical role in the 
regulation of volume, electrolyte homeostasis and blood pressure. 
ACE2 is the crucial counter-regulator of the RAS. ACE2 hydro-
lyses angiotensin II (Ang II) into Ang-(1-7) and reduces its level. 
Angiotensin II, the fi nal product of RAS, is a powerful vasocon-
strictor. It could lead to systemic vasoconstriction and promotes 
the release of aldosterone and regulates the blood pressure (56). 

As in COVID-19, ACE2 is the potential receptor for SARSCoV 
virus to enter the cell, and the main cause of deaths is the progres-
sion of pneumonia to ARDS, which is an acute severe lung fail-
ure (57). ACE2 expression in lungs was shown to be signifi cantly 
down-regulated in the wild type mice infected with the SARS-
CoV (58). In a similar way, in vivo intraperitoneal administration 
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of recombinant SARS-spike protein to wild type mice or in vitro 
application of Vero E6 cells were reported to downregulate ACE2 
expression. Similarly, Ang II peptide levels were increased and 
ARDS improved in mice injected with recombinant SARS-spike 
protein. Pharmacological inhibition of Ang II and partial reme-
diation of ARDS symptoms were shown (58, 59). This fi nding 
indicates that a negative control of the level of Ang II by ACE2 
has an important role in ARDS pathogenesis.

In COVID-19 infection, the virus binds to ACE2 receptors to 
enter the cell, and ACE2 cannot perform its physiological function. 
Thus, COVID-19 infection may downregulate ACE2, causing a 
toxic overaccumulation of Ang II (60, 61). Accumulated Ang II 
causes a pulmonary vasoconstriction through AT1 receptors and 
develops pulmonary oedema by increasing the pulmonary vascu-
lar permeability (62). In addition, elevated Ang II level triggers 
oxidative stress, causing the development of infl ammation and 
fi brosis (60). This condition can lead to the occurrence of ARDS, 
which is the most severe form of the lung injury. It often induces 
multiple organ damage. 

Vitamin D is also a negative endocrine regulator of the renin 
release. In many studies, vitamin D and analogues were shown 
to directly inhibit the renin biosynthesis (63, 64, 65). The study 
reported that vitamin D receptor-lacking mice had elevated levels 

of renin and Ang II (63). The experimental diabetes model created 
by STZ, vitamin D supplementation was demonstrated to suppress 
the renin and Ang II levels (66). Vitamin D supplementation was 
shown to protect against lipopolysaccharide-induced acute lung 
injury by inhibiting the expression of renin, ACE and Ang II (67). 
Vitamin D can interfere with Ang II accumulation by suppressing 
the release of renin in patients infected with COVID-19, thereby 
preventing ARDS development and multiple organ damage.

Vitamin D and lung diseases

Many patients with COVID-19 develop ARDS, which could 
eventually lead to pulmonary oedema, lung failure, heart, liver and 
kidney damage. These outcomes are associated with the cytokine 
storm, manifested with elevated serum levels of proinfl ammatory 
cytokine and chemokines.

Vitamin D was found to have major effects on primary hu-
man alveolar type II cells in in vitro conditions, and more than 
600 genes were activated or inhibited by vitamin D in these cells 
(68). Hansdottir et al (69) showed that during a viral infection, in-
active vitamin D (25(OH) D) can be converted to active vitamin D 
(1,25(OH)2D) by the alveolar epithelial cells, and a higher level 
of expression is observed in host defence gene cathelicidin. This 

Fig. 1. A) Physiological function of RAS and the task of ace2 enzyme in the lung. B) The COVID-19 virus binds to the ACE2 receptor in the 
lungs. TMPRSS2 enters the cell thanks to the serine protease enzyme and replicates itself. Then, a cytokine storm occurs, resulting in ARDS 
and multiple organ damage. C) Vitamin D suppresses the release of cytokines, preventing a cytokine storm caused by COVID-19. It exerts an 
antimicrobial effect by increasing the release of cathelicidin. Vitamin D prevents Ang II accumulation by suppressing renin release. Thus, ARDS 
development and multiple organ damage could be avoided. Vitamin D also reduces ACE2 expression in the kidney and provides a protective 
effect against COVID-19 infection in patients with diabetes and acute renal failure.
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fi nding might indicate that vitamin D might have an organ-specifi c 
protective effect in lungs. Vitamin D was also reported to inhibit 
airway smooth muscle proliferation and to increase surfactant syn-
thesis (70, 71). The in vitro study suggested that physiologically 
relevant doses of vitamin D had a direct protective effect on alveo-
lar epithelium by stimulating cellular proliferation, wound repair 
and decreased death of human type 2 alveolar epithelial cells (68).

Miroliaee et al (72) demonstrated that a single high dose vita-
min D treatment (300,000 IU) could decrease IL-6 level and reduce 
the mortality in patients with ventilator-associated pneumonia. 
Similarly, Lei et al (73) reported that vitamin D3 (300 IU/kg/day) 
reduced the production of the proinfl ammatory cytokines (IFN-γ, 
TNF-α, and IL-6) and inducible nitric oxide synthase (iNOS), in-
creased the production of antimicrobial peptide cathelicidin, ele-
vated the expression of antioxidation level (glutathione reductase 
and glutamate-cysteine ligase modifi er subunit), and increased the 
autophagy in mice with pneumonia (73). Interestingly, a single 
high-dose preoperative vitamin D oral administration (300,000 
IU, a single dose) was reported to prevent an acute respiratory 
distress syndrome following esophagectomy (74).

Deaths associated with infl uenza H1N1 pandemics during the 
1918‒1919 were linked to both secondary bacterial lung infections 
and to infl uenza virus itself. As in infl uenza pandemics, it is known 
that large proportion of deaths with COVID-19 occur two weeks 
after the onset of the symptoms. Strong correlations were found 
between UVB doses in July and pneumonia outcome (‒0.77, p = 
0.005) or fatality (r = ‒0.72, p = 0.009) rates of the cases (75). 
Similar results were obtained with wintertime UVB doses. A pneu-
monia rate of 9.3 % and fatality rate of 3.14 % were observed with 
infl uenza, when the UVB dose was 4.7 kl/m2, which were 4.5 and 
0.78 %, respectively, when the UVB dose reached 8.2 kl/m2 (75). 
It is well known that vitamin D level increases depending upon 
ultraviolet doses. Vitamin D was reported to upregulate increased 
antiendotoxin, to increase antimicrobial activities and to reduce 
the production of the proinfl ammatory cytokines, consequently, it 
could reduce pneumonia and mortality rates in infl uenza patients 
(75). Similarly, vitamin D prevents the lung against COVID-19 
infection through reducing the production of the proinfl amma-
tory cytokines and increasing antimicrobial peptide cathelicidins.

Vitamin D and cardiovascular diseases

According to current literature, at least 8.0 % of COVID-19 
patients suffer from an acute heart damage (12). Chen et al (11) 
examined 99 COVID cases and found that 40 % of the patients had 
cardiocerebrovascular disease history. At least 8.0 % of COVID-19 
patients were reported to have an acute heart damage with a strong 
association with mortality (12). It was even suggested that infl am-
mation could be a potential cause of myocardial damage (76).

Cytokine accumulation directly affects vascular endothelial 
function and myocardial contractility. IL-6 and TNF-α can de-
crease myocyte contractility precisely through the reduction of the 
systolic calcium level. The experimental study with myocardial 
ischemia-reperfusion model in rats showed that vitamin D (500 
IU/5 day) alleviated myocardial injury considerably with reduced 

ST segment and infl ammatory cytokine (IL-6), IL-1β, TNF-α) 
levels (77). In another rat study, vitamin D prevented myocardial 
infarction by decreasing TNF-α and IL-6 level in isoprenaline-
induced myocardial infarction (78). We demonstrated that vitamin 
D treatment (60.000/single doses) reduced myocardial damage in 
cardiotoxicity model in rats (79, 80). Vitamin D treatment (4,000 
IU/for 5 days) was also shown to reduce serum IL-6 and IL-8 levels
in patients with acute myocardial infarction (81).

The meta-analysis demonstrated that vitamin D supplement 
reduced the concentrations of TNF-α in patients with heart  failure 
(82). Vitamin D supplement (2,000 IU oral, daily for nine months) 
reduced TNF-α, and increased IL-10 in adult patients with conges-
tive heart failure (47). Reductions in IL-10, IL-6 and TNF-α levels 
were also reported for vitamin D supplement (1,000 IU oral, daily 
for three months) in infant patients with congestive heart failure 
(83). Reduction IL-6, TNF-α and eleviated IL-10 levels were also 
reported for vitamin D supplement (1,000 IU oral, daily for three 
months) in infant patients with congestive heart failure (83). Witte 
(84) found that vitamin D supplement (4000 IU oral, daily for 12 
months) has benefi cial effects on o left ventricular structure and 
function in older patients with a chronic heart failure. levels and 
reduced risk of coronary heart disease mediated by decreased 
IL-6, C-reactive protein, interferon-γ-inducible protein-10 and 
soluble intercellular adhesion molecule-1 levels (85). In indi-
viduals with any cardiovascular disease, it was shown that the 
increase in cytokines played a signifi cant role in the pathogenesis 
and that proinfl ammatory cytokines could be reduced by vitamin 
D supplementation. Consequently, vitamin D supplementation 
administered in different doses was found effective especially in 
high doses in reducing the release of proinfl ammatory cytokines 
at all ages. It is known that the mortality rate is high in patients 
with a cardiovascular disease, when they contract COVID-19 in-
fection. Vitamin D supplementation could reduce the mortality 
rate in cardiovascular patients infected with COVID-19 through 
preventing the infl ammation.

Vitamin D and kidney diseases

Following the infl ammation, an increased incidence of acute 
renal injury was reported in patients with COVID-19 (34, 86, 87). 
Also, compared to other patients, Cheng et al (86) demonstrated 
that patients with an acute renal injury had a higher mortality rate. 
In the meta-analysis, severe COVID-19 infection was suggested 
to be associated with a chronic kidney disease (CKD) (88). Thus, 
CKD patients were recommended to be extremely careful against 
COVID-19 infection.

In chronic kidney disease, active vitamin D level was reported 
to be associated with a decreased mortality (89). In CKD, 1-hy-
droxylated vitamin D analogues were found effective for second-
ary hyperparathyroidism treatment (90). In vitamin D-defi cient 
diabetic patients with the comorbid chronic kidney disease, vita-
min D administrations of 1,000 or 2,000 IU/day were reported to 
safely increase serum 25(OH)D concentrations (91). However, 
signifi cant improvements were observed for lipid profi les in higher 
vitamin D dose. Higher dietary vitamin D3 content was reported 



Bratisl Med J 2020; 121 (12)

870 – 877

874

to improve immune function in yellow catfi sh through down-
regulation of IFN-β and pro-infl ammatory factors TNF-α, IL1-β, 
IL-6, IL-8 and up-regulation of anti-infl ammatory factor IL-10 
(92). Brito et al (93) reported that vitamin D could have protec-
tive effects against infl ammation at least mediated by monocytes. 
They also revealed that cathelicidin was associated with the IL-6 
and TNF-α levels, which lent further support for this hypothesis 
(93). Vitamin D supplementation was reported to lower fasting 
blood sugar, insulin, TNF-α and IL-6 levels (94). Lower TNF-α 
and malondialdehyde levels after vitamin D treatment were also 
reported by Shamardl et al (95).

Vitamin D was reported to protect against drug-induced kidney 
and liver injury (96). Similarly, BaSalamah et al (97) reported that 
vitamin D alleviated kidney infl ammation and protected kidney. 
Accordingly, it could be stated that vitamin D supplement could 
ease cytokine storm caused by COVID-19 and lower mortality in 
COVID-19 patients with renal disease.

Abundant expression of ACE2 protein in many cell types 
was reported to be linked with a high probability of kidney dam-
age (98). Increased ACE2 expression was documented in kidney 
damage and experimental diabetes models (99,100). Vitamin D 
treatment was shown to inhibit ACE2 expression (101). Thus, 
vitamin D supplement could lower ACE2 expression in kidney, 
preventing COVID-19 entry into kidneys and protecting against 
possible damage in kidney.

Appropriate vitamin D doses

Despite the lack of a specifi c guideline from endocrinology or 
vitamin D societies, vitamin D concentrations of above 30 μg/L (75 
nmol/L) are recommended in many studies (102). Misra et al (103) 
recommended a daily dose of 400 IU for adolescents and children. 
Daily vitamin D supplements ranging from 200 IU to 600 IU were 
suggested by The Institute of Medicine (104) for adults to sustain 
enough vitamin D levels in the body. In vitamin D defi ciency situ-
ation, however, much higher supplementation rates of 28,000 IU 
weekly or 50,000 IU monthly are recommended depending on the 
severity of the defi ciency (105). No toxicity was observed in pa-
tients supplemented with vitamin D doses as high as 10,000 IU of 
vitamin D3 administered daily for fi ve months (106). Differences 
were reported between the countries for vitamin D recommenda-
tions and their implementation to achieve the adequate vitamin D 
levels (107). A daily dose of up to 2,000 IU a day was suggested 
to maintain an adequate level of 25-hydroxyvitamin D (25OHD) 
(108). Chang and Lee (24) stated that people could take 2000 IU 
per day for 6 to 12 weeks after the fi rst year of life, and a daily 
dose of 600 to 1000 IU is appropriate to maintain adequate vita-
min D supply. However, for high-risk groups, this daily allowance 
could be as high as 6000 IU. In another study, Shirvani et al (109) 
mentioned that 10,000 IU daily vitamin D supplementation for six 
months was safe and regulated parathyroid hormone (PTH) levels. 
They also mentioned that this supplement regime had a consid-
erable effect on the expression of 1200 genes and on metabolic 
patterns. Thus, considering the results of literature, it is seen that 
the safe dose range of vitamin D is high. Due to that fact it may 

be benefi cial to administer high doses of the vitamin D in patients 
with Covid 19. However, specifi c vitamin D supplementation re-
commendations should be applied for each patient individually. 

Conclusion

COVID-19 is viral agent with a very high contagion and causes 
mainly pneumonia. Development of the effective prevention and 
treatment methods for COVID-19 is an urgent need. Vitamin D is 
an immunomodulator hormone with a high safety profi le whose an-
ti-infl ammatory, antimicrobial and antioxidant effects were proven 
in many studies. Vitamin D supplement could provide a protective 
effect against the infection of COVID-19 virus. It could be used 
as an agent to alleviate the infl ammation in COVID-19-infected 
patients and to prevent multiple organ damage due to the virus. 
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