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Colorectal cancer (CRC) is one of the most common malignancies globally, and the morbidity and mortality rates associ-
ated with it are among the highest around the world. Not even great advances in colorectal cancer diagnosis and treatment 
technologies have been able to increase the 5-year survival rate in this disease. Recidivation and metastasis are the main 
causes of death in CRC, although the underlying mechanism remains unknown. Long non-coding RNA (lncRNA) is a 
type of non-coding RNA that is greater than 200 nt in length. LncRNAs are involved in cell proliferation, apoptosis, metas-
tasis, and differentiation. Abnormal expression of lncRNAs is reported in various diseases. Relevant studies have demon-
strated that lncRNAs are capable of interacting with DNAs, RNAs, and proteins, thereby regulating the Wnt, p53, and other 
signaling pathways and playing an important role in the biogenesis, progression, metastasis, and drug resistance in CRC. In 
the present report, recent progress in the research related to lncRNAs in colorectal cancer is reviewed. 
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Colorectal cancer is one of the most common malig-
nancies worldwide that currently ranks third in incidence 
and second in cancer-related mortality [1]. In China, CRC 
ranks third in the incidence of malignant tumors and fifth in 
mortality rate [2]. Moreover, compared with European and 
American countries, CRC morbidity is significantly higher 
in males than in females and demonstrates a younger trend. 
In addition, the newly diagnosed cases of rectal cancer, 
middle, and lower rectal cancers, and young patients with 
CRC have been increasing annually [3], posing a serious 
threat to human health and creating a heavy burden on 
society. Despite the improvement in patient prognosis due to 
advances in the early diagnostic techniques and treatment for 
CRC, approximately 60% of the patients who seek medical 
advice have been reported to be associated with distant 
metastasis. Moreover, most of the patients who underwent 
surgery for CRC, unfortunately, presented with relapse and 
metastasis shortly after the surgery, and the 5-year survival 
rate of stage IV patients was less than 10% [4]. Therefore, it is 
imperative to improve the rate of early diagnosis and identify 
a suitable therapeutic target for CRC.

Advances in sequencing technology and genomics 
research over the years have revealed that only 1% to 2% 
of genes in the whole genome encodes proteins, whereas 
the majority of the remaining genes are transcribed as 
non-coding RNAs. Long non-coding RNAs (lncRNAs) are a 
type of non-coding RNAs that are greater than 200 nucleo-
tides in length. LncRNAs interact with different biological 
macromolecules (DNA, chromatin, and proteins) and RNAs 
(mRNAs, miRNAs, and other lncRNAs) and play signifi-
cant roles in various biological functions such as chromo-
some dosage compensation [5], epigenetic regulation [6], 
imprinting, nuclear and cytoplasmic transport, splicing, 
transcription, translation, cell cycle regulation, and cell 
differentiation [7, 8]. The majority of lncRNAs are located 
in the nucleus or cytoplasm, and their location within the 
cell determines their function [9]. LncRNAs located in the 
nucleus often interact with DNA, chromatin, transcrip-
tion factors, chromatin regulatory factors, splicing bodies, 
and other nuclear proteins for transcription and epigenetic 
regulation [10], whereas those in the cytoplasm are involved 
mainly in the post-transcriptional, translational, and post-
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translational regulation via epigenetic modifications and 
signaling pathways [11]. Several studies have demonstrated 
dysregulation of multiple lncRNAs, capable of activating or 
inhibiting metastasis in CRC, thereby promoting or inhib-
iting tumor development. In addition, lncRNAs regulate 
signaling pathways, such as PI3K/AKT, NF-κB, and CAMP, 
and ceRNAs, leading to drug resistance and reduced efficacy 
of fluorouracil (FU), oxaliplatin (OXA), and other drugs 
[12–14]. To generate novel ideas for the early diagnosis and 
treatment of CRC, we reviewed the studies concerning the 
impact of lncRNAs on the occurrence, development, metas-
tasis, and drug resistance in CRC.

Types of lncRNAs and their functions

LncRNA is a type of non-coding RNA with a length greater 
than 200 nucleotides, no open reading frames (ORFs) and/or 
conservative codons, and no protein-coding sequences [15]. 
Compared to protein-encoding mRNAs, lncRNAs are more 
abundantly present with lower interspecific conservation and 
expression. According to several studies, certain lncRNAs 
encode small peptides and also translate into proteins greater 
than 50 amino acids in length [16, 17].

Types of lncRNAs. Based on genomic origin and relative 
positions of neighboring protein-encoding genes, lncRNAs 
are categorized into the following types [18–20]: sense 
lncRNAs that overlap with one or more exons of a coding 
gene; antisense lncRNAs that partially or completely comple-
ment the transcription product on the opposite chain; 
intronic lncRNAs that are produced from an intron; bidirec-
tional lncRNAs that share a promoter with a protein-coding 
gene, whereas the transcription direction is opposite to that 
of the coding gene; intergenic lncRNAs (lincRNA) that 
are independently transcribed from the sequences located 
between protein-coding genes; enhancer RNAs (eRNAs) that 
are produced from the enhancer regions of protein-coding 
genes; and circRNAs that are covalently closed circular 
RNAs spliced from transcription products. Classification of 
lncRNAs is necessary to understand their functions, which 
are provided in the next section.

Functions of lncRNAs. Functions of lncRNAs are 
primarily based on their secondary structure that combines 
with proteins to enable chromatin remodeling and regulate 
the functions of transcription factors. In addition, lncRNAs 
affect the mRNA expression by acting as a “sponge” for 
adsorbing miRNAs, maintaining mRNA stability, and influ-
encing the translation, shearing, and degradation of mRNAs 
by binding directly with the mRNA. To date, four categories 
of lncRNA functional modes have been identified: signaling 
– research has revealed specific transcription of lncRNAs 
under the effect of different stimulants and signaling 
pathways, and the participation of lncRNAs as signal trans-
duction molecules in specific signaling pathways to regulate 
the transcription of downstream genes; lure: certain lncRNAs 
bind directly to RNA (ceRNAs)/proteins (transfer factors 

and transcription regulators), blocking the function of the 
latter and consequently the downstream signaling pathways, 
thereby regulating the transcription of the downstream 
gene; guidance: certain lncRNAs combine with transcrip-
tion factors and locate the protein complex on specific DNA 
sequences, thereby affecting the transcription of downstream 
molecules similar to the action of a molecular chaperone; 
and molecular scaffolds: such lncRNAs perform a “central 
platform” role of combining multiple related transcription 
factors to exchange and integrate the information between 
different signaling pathways, allowing for rapid feedback 
and regulation of external signals and irritants. According 
to correlation research, similar to proteins, the expression 
of lncRNAs varies with the tissues and cells they are present 
in and regulated precisely. In addition to regulating normal 
physiological activities, lncRNAs play a significant role in the 
occurrence and development of several diseases, including 
colon cancer. Abnormal expression of lncRNAs is associated 
with proliferation, invasion, metastasis, and drug resistance 
in CRC [13, 21–23]. In contrast, stable expression of lncRNAs 
has been reported in peripheral blood, exosomes, plasma, 
and other tissues, which could be utilized as biomarkers for 
early diagnosis of CRC [24, 25].

LncRNAs as biomarkers for diagnosis 
and prognosis of colorectal cancer

Colon cancer-associated transcript 1. Colon cancer-
associated transcript 1 (CCAT1), also known as CARLo-5, 
is located at chromosome position 8q24 in humans, a region 
containing several single nucleotide polypeptides (SNPs) 
associated with tumors [26], where the homozygosity of the 
G allele of rs6983267 augments the risk of diversified cancers 
[27, 28]. Nissan et al. [29] were the first to report in 2012 that 
the expression of CCAT1 in colon adenocarcinoma was 235 
times higher than that in normal colon mucosa during the 
early-stage tumorigenesis, such as in adenomatous polyps, as 
well as in the proximal colonic epithelial mucosa of the tumor. 
The CCAT1 overexpression was detected in 40% of patients 
with CRC, whereas it was absent in the healthy controls. 
Kim et al. reported a frequently high CCAT1 expression in 
normal colon tissues of patients at high risk of CRC [30], 
resulting in high sensitivity and specificity of CCAT1. Zhao 
et al. [31] evaluated the clinical significance of peripheral 
blood CCAT1 as a biomarker for CRC and reported that the 
plasma levels of CCAT1 in patients with CRC were overtly 
higher compared with the healthy volunteers. According to 
the ROC curve analysis, plasma CCAT1 exhibited advanced 
diagnostic performance in CRC detection, with 75.7% sensi-
tivity and 85.3% specificity. CCAT1 is a potential diagnostic 
biomarker for CRC and a therapeutic target of CRC-related 
lncRNAs.

Colon cancer-associated transcript 2. Colon cancer-
associated transcript 2 (CCAT2) is also located at chromo-
some position 8q24 in humans. CCAT2 is overexpressed in 
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numerous tumor tissues, where it is involved in the prolif-
eration, invasion, and metastasis of tumor cells [32–34]. The 
expression of CCAT2 is higher during chromosome instability 
and in microsatellite-stable (MSS) CRC tissues compared 
with normal mucosa lacking chromosome instability and 
microsatellite-unstable (MSI-H) CRC tissue. Further-
more, CCAT2 upregulates MYC, miR-17-5p, and miR-20a 
through TCF7L2-mediated transcription regulation, leading 
to increased activity of the Wnt signaling pathway [35]. In 
comparison with non-cancerous tissues, the colon cancer 
tissues, particularly the metastatic tissues, exhibit a signifi-
cantly higher CCAT2 expression. Further, patients with high 
CCAT2 expression are more likely to present tumor recur-
rence and poorer clinical prognosis [36, 37]. Both serum and 
exosome levels of CCAT2 were distinctly higher in patients 
with CRC and preoperative specimens compared with 
healthy subjects and postoperative specimens, respectively, 
indicating that serum and exosome CCAT2 may serve as 
novel biomarkers for diagnosis of CRC [38].

Hepatocyte nuclear factor 1 alpha-antisense 1. HNF1A-
AS1 is located at chromosome position 12q24.31 in humans 
and is expressed at abnormal levels in numerous tumors. 
The upregulation of HNF1A-AS1 has been reported in CRC 
[39], lung cancer [40], oral squamous cell carcinoma [41], 
bladder cancer [42], and liver cancer [43], where it promotes 
the proliferation, invasion, and metastasis of tumor cells. Two 
meta-analyses [44, 45] have independently demonstrated a 
close association of HNF1A-AS1 expression with histological 
grade, stage, lymph node metastasis, and distant metastasis. 
Dramatically lower disease-free survival (DFS) was reported 
in patients with high HNF1A-AS1 expression compared with 
patients with low HNF1A-AS1 expression, suggesting that the 
expression of HNF1A-AS1 could be utilized as a biomarker 
for poor prognosis in cancer. Fang et al. reported that 
HNF1A-AS1 regulated the expression of miR-34a via ceRNA, 
inhibited the miR-34a/SIRT1/p53 pathway, and activated 
the Wnt signaling pathway, thereby playing a significant 
oncogenic role and promoting metastasis in CRC, indicating 
that HNF1A-AS1 could serve as a prognostic marker and a 
potential therapeutic target for CRC [46].

Growth arrest-special transcript 5. Growth arrest-special 
transcript 5 (GAS5) is located at chromosome position 
1q25.1 in humans and belongs to the tumor suppressor gene 
cDNA subtractive library. GAS5 is downregulated in various 
cancers and is closely associated with the clinicopathological 
features and prognosis of patients. GAS5 participates in cell 
proliferation, metastasis, invasion, apoptosis, and epithelial–
mesenchymal transition (EMT) through a variety of molec-
ular mechanisms [47–50]. Li et al. [51] detected 126 pairs of 
CRC tissues and their matched para-cancerous tissues and 
reported that the expression of GAS5 was distinctly lower 
in tumor tissues as compared with that in para-cancerous 
tissues and was closely related to tumor size and the clinical 
stage. In addition, the authors observed that GAS5 upregu-
lation inhibited the proliferation, migration, and invasion of 

CRC cells by restraining the ALK/ERK pathway. The expres-
sion of GAS5 could serve as an independent prognostic 
factor. Liu et al. [52] monitored the levels of GAS5 in the 
tissues, plasma, and exosomes of 158 patients with CRC and 
173 healthy subjects, and reported that the former exhibited 
significantly lower GAS5 expression than the latter. Huang 
et al. [53] measured the serum levels of GAS5 in 109 patients 
with CRC and 99 normal volunteers and discovered that the 
total serum GAS5 levels were significantly downregulated 
in patients with CRC compared with normal controls and 
were closely related to solid tumor volume and lymph node 
metastasis. Altogether, these results suggested that GAS5 
was closely related to CRC and could serve as a biomarker 
for its screening.

HOX transcript antisense RNA. HOX transcript 
antisense RNA (HOTAIR), located at chromosome position 
12q13.13 in humans, is an antisense RNA transcribed from 
the HOX locus. With a length of 2.2 kb, HOTAIR was the 
first identified lncRNA, exhibiting a trans-regulatory effect 
and regulating the expression of the HOXD gene [54]. In 
addition, HOTAIR interacts with PRC2 and recruits it 
to the target gene to mediate H3K27me3 and silence the 
gene. Chang et al. observed that HOTAIR interacted with 
histone demethylase LSD1/CoREST/REST complex and 
consequently regulated H3K4me2 and gene silencing [55]. 
Furthermore, HOTAIR promotes the proliferation, invasion, 
and metastasis of CRC cells via the miR26-mediated PI3K/
AKT/mTOR pathway [56]. Ismail et al. [57] reported that 
HOTAIR expression in CRC patients with lymph node 
metastasis was significantly higher than that in those 
without metastasis. The levels of HOTAIR in the serum of 
patients with CRC were 7.55 higher as compared with those 
in the healthy volunteers. The sensitivity and specificity of 
HOTAIR expression in patients with CRC were 92.9% and 
100%, respectively. Eighty-five percent of cases of early 
CRC could be detected by examining the levels of CCAT1 
in the peripheral blood simultaneously [31]. Wang et al. 
[12] observed that HOTAIR promoted 5-FU resistance by 
inhibiting miR-218, consequently regulating VOPP1 expres-
sion and activating the NF-kB pathway in CRC. In contrast, 
HOTAIR knockdown reversed these effects. Moreover, 
HOTAIR suppressed the cytotoxic impact of 5-FU on CRC 
cells by promoting the expression of thymidylate synthetase. 
Among the 152 patients treated with 5-FU, the effective rate, 
overall survival (OS), and DFS of patients exhibiting high 
HOTAIR expression were distinctly lower compared with 
those with low HOTAIR expression. The Cox regression 
analysis revealed that HOTAIR levels served as an indepen-
dent prognostic factor for OS in patients with CRC following 
5-FU treatment.

Colorectal neoplasia differentially expressed. 
Colorectal neoplasia differentially expressed (CRNDE) is 
located at chromosome position 16q12.2 in humans and is 
upregulated in pancreatic cancer [58], gastric cancer [59], 
CRC [60], and breast cancer [61], where it promotes prolif-
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LncRNAs and drug resistance

With great advances in molecular biology techniques, 
anti-EGFR and anti-VEGF therapies have notably improved 
the effective rate and survival time of advanced CRC. 
However, chemotherapy continues to be the standard treat-
ment for patients with CRC. Currently, FU, OXA, and irino-
tecan are commonly used drugs for chemotherapy. The 
overall response rate (ORR) of first-line chemotherapy is 
40%, indicating that 60% of the patients are counteractive 
to chemotherapy. Several studies have reported that [72–74] 
the mechanism of drug resistance is interrelated with the 
expression of mRNAs and ncRNAs in the tumor tissue, with 
lncRNA the current focus.

LncRNAs related to fluorouracil resistance. Fluorouracil 
is one of the fundamental chemotherapy drugs used in CRC. 
Within cells, 5-FU is transformed through various mecha-
nisms into effective fluorouracil deoxynucleotides, which 
subsequently interfere with DNA synthesis by blocking TS, 
ultimately leading to cell death. The ORR of 5-FU is approxi-
mately 50% when used alone or in combination for treating 
metastatic CRC, implying that nearly half of the patients 
exhibit resistance to 5-FU [75]. Although the resistance to 
5-FU has been extensively studied, the underlying mecha-
nism remains unknown.

Small nucleolar RNA host gene 15. Small nucleolar RNA 
host gene 15 (SNHG15), located at chromosome position 
7p13 in humans, has a short half-life. Chen et al. [22] were 
the first to report the upregulation of SNHG15 in early gastric 
cancer, which is related to tumor progression. Subsequently, 
SNHG15 was reported to be overexpressed in liver cancer 
[76], breast cancer [77], and lung cancer [78], where it was 
associated with the prognosis of patients. Multiple studies 
have demonstrated that the increased expression of SNHG15 
in CRC is related to liver metastasis, lymph node metastasis, 
TMN stage progression, and low overall survival rate (OSR). 
In addition, SNHG15 overexpression promotes cell migra-
tion and tumor growth in vivo and stabilizes Slug in colon 
cancer cells by inhibiting the ubiquitination and degradation 
of its zinc finger domain [79, 80]. Saeinasab et al. proposed 
SNHG15 as the carcinogenic lncRNA of CRC based on the 
results obtained by comparing the RNA-seq data of tumor 
tissues and adjacent normal tissues of 456 patients with CRC. 
Subsequently, it was reported that SNHG15 and MYC are 
co-expressed in CRC tissues and that MYC protein combines 
with two E-box motifs of the SNHG15 sequence, suggesting 
that MYC regulates the transcription of SNHG15. Knock-
down of SNHG15 inhibited cell proliferation and invasion, 
reduced colony formation, and increased the sensitivity of 
cells to 5-FU, whereas its overexpression produced opposite 
effects. Functional studies have revealed significant differ-
ences in the expression of several genes associated with the 
function of apoptosis-inducing factors, including CTGF, 
GADD45A, GADD45B, HAS2, LAMC3, NRAS, BAG3, 
ERBB3, and CASP3. SNHG15 knockdown increased the 

eration and metastasis, interacts with chromatin-modified 
complex, and influences the epigenetic regulation of gene 
expression [62]. CRNDE has several alternative splicing 
variants, among which the most studied are CRNDE-h and 
CRNDE-p. Yu et al. [63] discovered that the expression of 
CRNDE-p in the serum and exosomes of 410 patients with 
CRC was higher than that in 58 patients with adenoma and 
175 healthy people. In addition, the CRNDE-p expression 
was closely related to the clinical stage, tumor invasion 
depth, lymph node metastasis, and distant metastasis, and 
was observed to decrease significantly after chemotherapy in 
patients with CRC. Liu et al. [64] reported that the expres-
sion of CRNDE-h noticeably increased in the exosomes 
of patients with CRC in comparison with healthy volun-
teers. In addition, with a sensitivity of 70.3% and a speci-
ficity of 94.4%, CRNDE-h presented a better diagnostic 
value compared to CEA (carcinoembryonic antigen). The 
expression of CRNDE-h in the serum and tissues of patients 
with CRC highly correlated, whereas levels of CRNDE-h 
in the serum and exosomes of postoperative patients were 
significantly lower as compared with those in preoperative 
patients. Overall, CRNDE-p and CRNDE-h served as novel 
diagnostic biomarkers. Han et al. [65] reported that HCT116 
and SW480 cells with downregulated CRNDE were more 
sensitive to 5-FU and OXA, whereas those with upregu-
lated CRNDE were less sensitive to these two chemotherapy 
drugs. Moreover, chemoresistant HCT116 and SW480 cells 
displayed a marked increase in the expression of CRNDE. 
These findings suggested that CRNDE increased the resis-
tance of CRC cells to chemotherapy drugs.

Nuclear-enriched abundant transcript 1. Nuclear-
enriched abundant transcript 1 (NEAT1), located at chromo-
some position 11q65 in humans, is a 3.2 kb long non-coding 
RNA, which is enriched mainly in the nucleus and is crucial 
for the formation and maintenance of nuclear substruc-
ture paraspeckles. NEAT1 regulates gene expression in the 
nucleus, consequently impacting several pathophysiological 
processes [66, 67]. For instance, Yang et al. [68] reported that 
NEAT1 prevented DNA damage and maintained tumor cell 
proliferation and cell cycle in prostate cancer. Choudhry et 
al. [69] reported that NEAT1 promoted breast cancer cell 
proliferation and reduced apoptosis under the effect of HIF2 
in hypoxic conditions and that high NEAT1 expression was 
associated with poor prognosis among the patients. The 
expression of NEAT1 is closely related to the TNM stage, low 
survival rate, and tumor recurrence in CRC, and therefore 
could serve as an independent prognostic factor for tumor 
recurrence [70]. Wang et al. observed that NEAT1 levels 
were higher in the tumor tissue as well as in the serum (ROC 
AUC = 0.9471) of 56 patients with CRC relative to healthy 
controls [71]. Because of the small sampling capacity, the 
use of NEAT1 as a diagnostic marker remains to be further 
explored, warranting multicenter studies with a larger 
sample size in the future. For summarization of the roles of 
all discussed lncRNAs see Table 1.
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sensitivity of colorectal cells toward 5-FU [81]. This indicates 
that SNHG15 mediates the resistance of CRC cells to 5-FU by 
regulating the AIF activity, suggesting SNHG15 as a potential 
prognostic marker and target for RNA-based therapy.

Heart and neural crest derivatives expressed 2-antisense RNA 
1. Heart and neural crest derivatives expressed 2-antisense 
RNA 1 (HAND2-AS1) is an antisense lncRNA located at 
chromosome position 4q34.1 in humans. It functions as an 
anti-oncogene in several tumors. For instance, low HAND2-
AS1 expression in cervical cancer inhibits the proliferation, 
migration, and invasion of cell lines through negative regula-
tion of ROCK1 in cervical cancer cells [82]. Downregulation 
of HAND2-AS1 in breast cancer is reported to be associated 
with poor clinical characteristics and prognosis in patients. 
In addition, HAND2-AS1 is reported to inhibit the prolifera-
tion and metastasis of breast cancer cells by regulating the 
expression of SOX7 via adsorption of mir-1275 [83]. Chen et 
al. [84] measured the expression of HAND2-AS1, miR-20a, 
and PDCD4 in tumor tissues and their matched para-carci-
noma tissues in 50 patients with CRC (among whom 23 
relapsed) receiving 5-FU-based chemotherapy, and reported 
the following results (in comparison with normal tissues): 
the levels of HAND2-AS1 and PDCD4 in patients with CRC 
were significantly lower; the miR-20a levels were significantly 
higher; the expression of HAND2-AS1 and PDCD4 in the 
relapse group was lower than that in the no-relapse group, 
whereas the expression of miR-20a was negatively correlated 
with the expression of HAND2-AS1 and PDCD4 in tumor 
tissues, and the PDCD4 expression was positively correlated 
with HAND2-AS1 expression. In addition, the OSR was 
markedly higher in patients with high HAND2-AS1 expres-
sion compared with those with low HAND2-AS1 expres-
sion. The overexpression of miR-20a and under-expression 

of HAND2-AS1 were also detected in HCT116/5-FU and 
SW480/5-FU cell lines. High HAND2-AS1 expression 
enhanced the sensitivity of 5-FU-resistant CRC cells to 5-FU, 
decreased the IC50 of HCT116/5-FU and SW480/5-FU cells, 
prominently reduced the levels of Bcl-2, MMP2, and MMP9, 
and promoted Bax expression. Studies exploring the under-
lying mechanism demonstrated that HAND2-AS1 enhanced 
the sensitivity of 5-FU-resistant CRC cells to 5-FU; inhib-
ited the proliferation, migration, and invasion of cells; and 
promoted cell apoptosis by regulating PDCD4 expression via 
miR-20a adsorption.

Human urothelial carcinoma-associated 1. Human urothe-
lial carcinoma-associated 1 (UCA1) is located at chromo-
some position 19p13.12 in humans. Initially, UCA1 was 
observed to be highly expressed in bladder metastatic cell 
carcinoma as three different transcripts of 1.4 kb, 2.3 kb, and 
1,456 bp. It is now reported that UCA1 is highly expressed 
in multiple tumors [85–87], where it promotes the prolif-
eration, invasion, and metastasis of tumor cells and inhibits 
apoptosis both in vitro and in vivo. A meta-analysis [88] 
of seven studies involving 775 patients with CRC revealed 
that UCA1 overexpression was associated with poor OS in 
patients with CRC (H = 2.25, 95% confidence interval [CI]: 
1.77–2.87, p<0.001). High UCA1 levels were negatively 
correlated with tumor differentiation (odds ratio [OR]=2.84, 
95% CI: 1.87–4.31, p<0.001), lymph node metastasis 
(OR=3.48, 95% CI: 2.24–5.41, p<0.001), distant metastasis 
(OR=2.67, 95% CI: 1.32–5.38, p=0.006), tumor invasion 
depth (OR=2.18, 95% CI: 1.03–4.61, p=0.04), and tumor 
size (OR=2.27, 95% CI: 1.56–3.32, p<0.001). It is suggested 
that UCA1 could serve as an indicator of poor prognosis in 
patients with CRC. Huang et al. [23] confirmed that patients 
with high UCA1 expression had a poor prognosis. COX 

Table 1. Summarization of the roles of discussed lncRNAs in CRC.
LncRNA Chromosome location Dysregulation in CRC Potential role and impact in CRC
CCAT1 8q24 ↑ diagnostic biomarker and therapeutic target
CCAT2 8q24 ↑ new biomarker for diagnosis
HNF1A-AS1 12q24.31 ↑ prognostic marker and potential therapeutic target
GAS5 1q25.1 ↓ biomarker for its screening
HOTAIR 12q13.13 ↑ independent prognostic factor of OS after 5-FU treatment
CRNDE 16q12.2 ↑ novel diagnostic biomarker and increases the resistance to chemotherapy drugs
NEAT1 11q65 ↑ independent prognostic factor for tumor recurrence
SNHG15 7p13 ↑ increases 5-FU resistance
HAND2-AS1 4q34.1 ↓ enhances the sensitivity of 5-FU-resistant CRC cells to 5-FU
UCA1 19p13.12 ↑ indicator of poor prognosis and increase the resistance to 5-FU
LINC00957 7p13 ↑ induces 5-FU resistance
TUG1 22q12.2 ↑in 5-FU resistant patients induces 5-FU resistance
CASC15 6p22.3 ↑ enhances resistance to OXA
LINC00152 2p11.2 ↑ promotes L-OHP resistance
MIR100HG 11q24.1 ↑in cetuximab resistant cell lines maybe increase cetuximab resistance
KCNQ1OT1 11p15.5 ↑ increases MTX resistance

Note: The sign ‘↑’ stands for upregulation, and the sign‘↓’stands for downregulation in tissues, serum or serum exosomes, and/or plasma of colorectal can-
cer patients; Abbreviations: CRC-colorectal cancer; 5-FU-fluorouracil; OXA/L-OHP-oxaliplatin; MTX-methotrexate; OS-overall survival
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regression analysis indicated that UCA1 levels and distant 
metastasis were independent prognostic factors for patients 
with CRC. In vitro knockdown of UCA1 inhibited the 
growth of CRC cells and promoted 5-FU-induced apoptosis. 
When treated with different concentrations of 5-FU, the 
survival rate of CRC cells with UCA1 deletion was signifi-
cantly reduced compared with the control group, whereas the 
opposite effect was observed in UCA1-overexpressed CRC 
cells, indicating that UCA1 increased the resistance of CRC 
cells to 5-FU. Studies exploring the underlying mechanism 
demonstrated that UCA1 adsorbed miR-204-5p and inhib-
ited its endogenous activity, thereby regulating the protein 
expression downstream of CREB1 and inducing apoptosis to 
affect the sensitivity to 5-FU. Moreover, several studies have 
demonstrated that UCA1 increased cisplatin resistance in 
the bladder and ovarian cancers [89, 90]. UCA1 may induce 
non-T790M acquired resistance after EGFRTKI treatment in 
EGFR-mutant non-small cell lung cancer [91]. Altogether, 
these findings suggested that UCA1 played a significant role 
in chemoresistance.

LINC00957. LINC00957, located at chromosome position 
7p13 in humans, is a recently discovered lncRNA, which is 
rarely reported in the literature. Zhang et al. [92] analyzed the 
lincRNA expression profiles of 440 patients with CRC avail-
able in the TCGA database and observed that LINC00957 
significantly correlated with patient survival. In a study 
involving 160 pairs of tumor tissues and their matched para-
carcinoma tissues, LINC00957 expression was observed to 
be dramatically higher than that in the normal tissues, and 
it was closely related to the TNM stage and the efficacy of 
chemotherapy. Patients with CRC with high LINC00957 
expression have a worse prognosis. Furthermore, the 
LINC00957 expression is higher in CRC cells compared with 
NCM460 (normal colorectal epithelial cells). This overex-
pression has also been detected in 5-FU-resistant cell lines. 
si-RNA-mediated silencing of LINC00957 in 5-FU-resistant 
cells dramatically reversed this resistance. A low-throughput 
screening of related drug-resistant genes revealed a downreg-
ulated transcription of ABCB1 gene and reduced P-gp 
expression. LINC00957 has been reported to be positively 
correlated with P-gp in terms of transcription and protein 
levels in tumor samples from patients with clinically ineffec-
tive 5-FU treatment. P-gp overexpression is one of the main 
mechanisms underlying the reduction in drug accumula-
tion and the development of multi-drug resistance (MDR) 
in human MDR tumor cells [93], indicating that LINC00957 
induces chemotherapy resistance through regulation of P-gp 
expression.

Taurine upregulated gene 1. Taurine upregulated gene1 
(TUG1) is located at chromosome position 22q12.2 in 
humans. Initially, TUG1 was identified as a taurine upregu-
lated transcript with a function related to retinal develop-
ment [94]. The expression of TUG1 varies with the type of 
tumor. It is overexpressed in bladder cancer [95], gastric 
cancer [96], and cervical cancer [97], and downregulated in 

non-small cell lung cancer [98]. Wang et al. [99] detected the 
expression of TUG1 in 124 patients with CRC and subse-
quently observed that the expression of TUG1 in 42 patients 
with failed FU treatment was significantly higher than that in 
42 patients without recurrence. Moreover, TUG1 levels are 
related to the depth of tumor invasion and the TNM stage. 
The risk of recurrence in patients with high TUG1 expres-
sion is notably higher compared with those with low TUG1 
expression. In vitro studies have revealed a significantly 
higher IC50 for HCT8-5-FU-resistant cell line (HCT8FU) 
compared with the HCT8 cell line and a markedly higher 
TUG1 expression in the HCT8-5-FU cell line. After TUG1 
knockdown, compared with the control group, the IC50 
of HCT8-5-FU was reduced by 64.9%, the proliferation 
ability of cells significantly decreased, and the proportion of 
apoptosis was significantly increased. Furthermore, TUG1 
knockdown significantly increased the level of miR-197-3p, 
a ceRNA regulated by TUG1, in CRC cells. The structure of 
miR-197-3p contains the binding site for thymic synthetase 
(TYMS) mRNA 3’UTR. TYMS is one of the pivotal enzymes 
in the 5-FU catabolic pathway, and patients with CRC and 
a low expression of this enzyme are more sensitive to 5-FU 
chemotherapy [100]. TUG1 downregulation restored the 
sensitivity to 5-FU in resistant cells, the overexpression of 
TYMS largely reversed the effect of TUG1 gene knockout. 
Therefore, it was concluded that TUG1 induced 5-FU resis-
tance in CRC by inhibiting the miR-197-3p/TYMS axis. 
Thus, TUG1 inhibition could serve as a feasible treatment 
strategy to reverse 5-FU resistance.

LncRNAs related to oxaliplatin resistance. Oxaliplatin 
represents the third-generation of water-soluble platinum 
compounds. The covalent combination of platinum atoms in 
OXA with G on the DNA chain allows the formation of intra-
strand and interstrand DNA cross-links as well as protein 
cross-links, thereby causing DNA damage, impairing DNA 
replication, and leading to apoptotic cell death. Oxaliplatin-
based chemotherapy dramatically improved the treatment 
efficacy and increased the survival time in patients with 
metastatic CRC. Nevertheless, drug resistance resulted in 
poor patient prognosis.

Cancer susceptibility candidate 15. Cancer susceptibility 
candidate 15 (CASC15) is located at chromosome position 
6p22.3 in humans and is expressed abundantly in gastric 
cancer [101], lung cancer [102], nasopharyngeal cancer 
[103], and several other cancer types. CASC15 promotes 
the proliferation and invasion of tumor cells, resulting in 
poor clinical prognosis. Gao et al. [13] detected CASC15 
expression in tumor tissues and para-carcinoma tissues of 
48 patients with CRC (among whom 25 were OXA-resistant, 
whereas 23 were OXA-sensitive), and observed that the levels 
of CASC15 in tumor tissues were significantly higher than 
those in the para-carcinoma tissues. Consistent with this, 
the levels of CASC15 in the tumor tissues of OXA-resistant 
patients were higher than those in OXA-sensitive patients, 
and patients with high CASC15 expression presented worse 
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prognosis compared with those with low CASC15 expres-
sion. In vitro investigation revealed that the downregulation 
of CASC15 expression in CRC cells reversed the resistance 
of HT29/OXA and HCT116/OXA to OXA. In addition, 
CASC15 was reported to regulate the resistance of CRC 
cells to OXA via the miR-145/ABCC1 axis, suggesting it as 
a potential therapeutic target for chemoresistance in CRC.

LINC00152. LINC00152 is located at chromosome 
position 2p11.2 in humans. It is 828 nucleotides in length and 
is involved in cell growth, cycle arrest, EMT, and invasion. 
LINC00152 binds directly to the enhancer of ZESTE homolog 
2, thereby inhibiting p15 and p21 and promoting tumor 
progression [104, 105]. Moreover, LINC00152 promotes 
tumor growth via the epidermal growth factor receptor 
(EGFR)-mediated AKT pathway [106]. Abnormal AKT 
activation frequently leads to chemotherapy resistance [107]. 
Yue et al. [108] observed that the LINC00152 expression was 
higher in SW620 and HT29 cells compared to SW480 and 
Caco-2 cells and that the sensitivity of SW620 and HT29 
cells to OXA-induced apoptosis was prominently lower than 
that of SW480 and Caco-2 cells. LINC00152 overexpression 
increased the expression of ERBB4 protein in SW620 and 
HT29 cells, downregulated miR-193a-3p, and decreased the 
sensitivity of these two cell lines to L-OHP as well as decreased 
cell apoptosis. Opposite effects were observed upon lowering 
the LINC00152 expression. In addition, increased sensitivity 
of cells to OXA-induced apoptosis was observed in colon 
cancer cells transfected with control or LINC00152 shRNA 
after blocking the AKT signaling pathway using MK2206 
and IGF-1, demonstrating that LINC00152 is involved in the 
resistance of colorectal cells to L-OHP through regulation 
of the miR-193a-3p/ERBB4/AKT axis. Huang et al. [109] 
confirmed that LINC00152 expression was significantly 
increased in CRC tissues and that LINC00152 promoted the 
growth and metastasis of CRC cells. Increased LINC00152 
expression antagonized 5-FU-induced apoptosis, whereas 
loss of LINC00152 expression intensified 5-FU-induced 
apoptosis. Furthermore, a study exploring the underlying 
mechanism of LINC00152 function revealed that LINC00152 
regulated the activity of NOTCH1 via miR-139-5p adsorp-
tion to regulate the growth and metastasis of CRC cells as 
well as the resistance to 5-FU. Therefore, LINC00152 could 
serve as a potential biomarker for predicting chemotherapy 
resistance.

Other lncRNAs. LncRNA MIR100HG. MIR100HG, 
located at chromosome position 11q24.1 in humans, is 
a microRNA host gene [110] having three microRNA 
sequences in its introns, namely, mir-100, mir-125b-1, and 
let-7a-2. MIR100HG is either upregulated or downregulated 
in several human tumor tissues. For instance, MIR100HG 
expression is suppressed in non-small cell lung cancer 
compared with normal lung tissue [111]. In contrast, in 
gastric cancer [112], triple-negative breast cancer [113], and 
laryngeal squamous cell carcinoma [114], the MIR100HG 
expression is higher compared with that in normal control 

tissues and is associated with the clinical prognosis of 
patients. Fan et al. [110] established cetuximab-resistant 
CRC cell lines and performed whole-genome sequencing 
and RNA sequencing. The sequencing results revealed 
that the transcript with the most upregulated expres-
sion in cetuximab-resistant cell lines was that of lncRNA 
MIR100HG. Polymerase chain reaction results revealed 
that compared with the control group, the expression of 
lncRNA MIR100HG, pri-miR-100, and pri-miR-125b-1, as 
well as their corresponding mature miRNAs (miR-100 and 
miR-125b), increased in cetuximab-resistant cell lines. In 
addition, the authors collected 10 pairs of matched tumor 
tissues from advanced patients with non-KRAS mutations 
who received treatment with cetuximab before and after 
the treatment and verified the dysregulation of lncRNA 
miR100 hg, miR-100, and miR-125b in tumor tissues of 
these patients. Fluorescence in-situ hybridization (FISH) 
results revealed that signals for MIR100HG, miR-100, 
and miR-125b in tissues of seven patients (including two 
patients with secondary NRAS and KRAS mutations) were 
significantly enhanced in advanced tumors compared to 
pre-treatment. These findings provide a novel strategy for 
overcoming cetuximab resistance in clinical cases.

KCNQ1 overlapping transcript 1. KCNQ1 overlapping 
transcript 1 (KCNQ1OT1) is a common lncRNA that acts 
as a signal molecule. It is located at chromosome position 
11p15.5 in humans. In addition to binding to chromatin, 
KCNQ1OT1 inhibits the expression of the KCNQ1 gene by 
recruiting the PRC2 complex and histone methyltransfer-
ases specific to H3K9 and H3K27. Zhao et al. [14] reported 
an abnormally upregulated KCNQ1OT1 expression in CRC 
tissues and cell lines. Further investigation revealed that 
KCNQ1OT1 downregulation increased the sensitivity of 
CRC cells to MTX while decreasing the activity and prolifer-
ation capacity of HT29/MTX cells, which promoted tumor 
cell apoptosis and delayed cell cycle. Studies exploring the 
mechanism have demonstrated that KCNQ1OT1 is involved 
in the regulation of CREB and CBP genes and the activa-
tion of the cAMP signaling pathway via “sponge adsorption” 
of miR-760. Several studies on chemotherapy resistance 
have reported an association between KCNQ1OT1 and 
drug resistance. KCNQ1OT1 downregulation is reported 
to significantly inhibit the proliferation and invasion of 
A549 cells and promote their apoptosis. The KCNQ1OT1 
expression is significantly increased in tumor tissues of 
patients with paclitaxel-resistant lung adenocarcinoma. The 
KCNQ1OT1 downregulation markedly inhibited chemo-
therapy resistance of A549/PA cells as well as the expres-
sion of its multi-drug resistance 1 (MDR1) protein [115]. 
Moreover, Zeng et al. [116] reported the regulation of 
OXA resistance by KCNQ1OT1 in liver cancer cells via the 
miR-7–5p/ABCC1 axis. For summarization of the roles of 
all discussed lncRNAs see Table 1 and for summarization 
of the mechanism axis of all discussed lncRNAs related to 
chemotherapy resistance see Figure 1.



LNCRNA IN COLORECTAL CANCER 247

Summary and prospects

With developments in the field of bioinformatics, 
lncRNAs have attracted considerable attention from several 
academicians. Numerous lncRNAs have been reported to 
be involved in the complex regulatory network involved 
in the development of CRC, playing important roles in 
the diagnosis, treatment, and prediction of prognosis in 
CRC. Moreover, recent studies have demonstrated the role 
of lncRNAs in disease development, metastasis, and drug 
resistance in CRC. Nonetheless, several challenges are 
being encountered in this research area. First, low levels 
of lncRNAs in the body fluids or tissues warrant the use 
of advanced and reliable methods to amplify and enrich 
lncRNAs. Second, most of the studies in this area are 
currently in the initial stage, and the identification of novel 
tumor biomarkers with better sensitivity and specificity 
is, therefore, imperative to improve the diagnosis of CRC. 
Furthermore, determining the actual critical lncRNAs in 
CRC is a challenge as well, considering the effects of race, 
subject population, TNM stage, or other confounding 
factors. Despite these challenges, lncRNAs have immense 
potential in the early diagnosis, treatment efficacy estima-
tion, and prediction of prognosis in CRC, and are expected 
to become efficient molecular biomarkers and clinical 
therapeutic targets for enhanced diagnosis and treatment 
of CRC.
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