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PROSPECTS FOR HEPATITIS C VACCINE
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Summary. – Hepatitis C virus (HCV) is a major cause of chronic liver disease, cirrhosis and hepatocellular
carcinoma worldwide. Unfortunately, neither a vaccine nor any effective therapy is available. Efforts are now
directed towards the development of an effective vaccine besides chemotherapy. This review briefly summarizes
the properties of an effective vaccine for the control of HCV infection. The mechanisms of protective immune
response induced by HCV are not well understood. It is presumed that humoral and cellular immune responses
play an important role. Even though there are various obstacles in the development of HCV vaccine, we
describe a few promising approaches such as DNA vaccine, recombinant virus vaccine, HCV-like particles
(HCV-LPs), peptide-based vaccine and plant-derived recombinant subunit vaccine.
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1. Introduction

HCV infection poses a major threat to public health as it
is frequently becomes chronic and in this way it may lead to
cirrhosis and hepatocellular carcinoma (Boyer and
Marcellin, 2000). Approximately 170 million people are
infected with HCV worldwide (Cohen, 1999). Currently, the

most effective therapy utilizes a combination of interferon
alfa with ribavirin. However, only about 50% of treated
patients have sustained benefit from such a therapy (Manns
et al., 2001; Fried et al., 2002). Under the present scenario,
development of either a new drug or vaccine is an attractive
alternative. This article highlights the progress made towards
the development of a vaccine against HCV.

2. Hepatitis C virus

HCV is a spherical enveloped virus of approximately 50
nm in diameter. Its genome consists of single-stranded
positive-sense RNA molecule of approximately 9.5 kb
(Clarke, 1997). The genome consists of highly conserved
5'- and 3'-noncoding regions and a single large ORF that
encodes a polyprotein of 3008–3037 amino acids. The
polyprotein is processed co- and post-translationally by both
host and viral proteases into at least 10 structural (C, E1, E2
and P7) and nonstructural proteins (NS2, NS3, NS4a, NS4b,
NS5a and NS5b) (Fig. 1). The core C protein appears to
play multiple roles in various cellular processes.

The viral envelope proteins E1 and E2 are heavily
glycosylated transmembrane proteins that form stable
noncovalent heterodimers. P7 is a small hydrophobic
peptide. NS2 and NS3 are responsible for the cleavage of
all nonstructural proteins. Furthermore, NS3 has a helicase
activity, which plays a role in viral RNA replication. NS4
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comprises two proteins, namely NS4a and NS4b. The former
appears to have diverse functions such as anchorage of
replication complexes and cofactor for the NS3 protease.
NS4b is likely to play an integral role within replication
complexes. NS5 is composed of two major proteins, NS5a
and NS5b, which are released as mature products by the
action of the NS3 protease in conjunction with NS4a. NS5a
appears to be involved in interferon resistance.

There are at least six genotypes and more than 50 subtypes
of HCV (Bukh et al., 1995). HCV enters a susceptible host
mainly either directly, through needle (injection or transfusion
of contaminated blood products) or sexually. Acute hepatitis
C is marked by appearance of HCV RNA in the serum within
1 to 2 weeks of exposure followed by elevation of serum
alanine aminotrasferase and then jaundice. The latter occurs
in less than 20% of the infected cases and is often preceded
and accompanied by fatigue, lethargy, myalgia, low grade
fever, nausea, vomiting and right upper quadrant pain or
discomfort. The chronicity appears to be more frequent in
young individuals and in African blacks in comparison to
Caucasians and Hispanic whites (Howell et al., 2000;
Bellentani and Tiribelli, 2001). The quasi-species of HCV
may also contribute to the development of chronicity. Hepatitis
steatosis is a characteristic feature of hepatitis C and
contributes to the progression of liver disease. Major longterm
complications of chronic hepatitis C are cirrhosis and
hepatocellular carcinoma, which develop after many years.
Approximately 20% of those infected chronically develop
cirrhosis and 1% to 5% of the patients with cirrhosis progress
to hepatocellular carcinoma (Cohen, 1999).

3. Protective immune response

The immune response to HCV is multispecific both in
terms of humoral and cellular immune responses. These
responses remain poorly defined despite an increasing
evidence suggests that both humoral and cellular immune
responses are likely to contribute to protection and/or
neutralization of the virus.

HCV infection generates antibodies against structural and
nonstructural viral proteins. The hypervariable region of the
E2 protein is a major site of antienvelope antibody response

and contains a principal neutralization epitope. Antibody
responses to envelope proteins develop slowly and achieve
only modest titers during primary infection (Chen et al.,
1999). Therefore, neutralizing antibodies may emerge too
late to prevent chronic infection. The cellular immune
response plays an important role in the clearance of HCV
infection based on strong association of a sustained vigorous
and multispecific antiviral CD4 and CD8 cell response
(Chen, 2003). A strong T cell proliferative response against
structural and nonstructural proteins was found to be
associated with self limited infection (Ferrari et al., 1994;
Missale et al., 1996). Following acute infection the vigorous
CD4 T cell response to HCV is maintained for many years,
while the memory CD8 T cell response may be maintained
with variable efficacy. Several studies (Ferarri et al., 1994;
Missale et al., 1996; Bassett et al., 2001) have suggested
that strong HCV-specific cytotoxic T Cell (CTL) responses
against structural and nonstructural proteins are likely to be
important in viral clearance and possible protection. Thus
an ideal HCV vaccine should induce a strong humoral
response and prime strong HCV-specific T helper and CTL
responses.

4. Vaccine candidates

The identification of potential vaccine candidates is not
easy due to difficulties in culturing the virus in vitro.
However, most of the work related to the HCV vaccine
development was focused on structural proteins (C, E1 and
E2) and nonstructural proteins (NS3, NS4 and NS5). These
proteins play crucial functions in viral host recognition, virus
neutralization and virus life cycle. Among them, NS3 seems
to play a key role in virus clearance.

5. Approaches for vaccine development

Several approaches have been used to develop the vaccine
(Table 1) (for reviews see Lechmann and Liang, 2000;
Brinster and Inchauspe, 2001; Forns et al., 2002). In this
article we summarize a few recent promising studies on HCV
vaccine development.

Fig. 1
Genomic organization of Hepatits C Virus
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5.1 DNA vaccines

A DNA vaccine consisting of a recombinant plasmid
encoding the virus antigen of choice is a novel approach to
induction of immunity against target protein. The ability of
the encoded antigen to induce the immune response offers
the possibility of generating effective prophylactic immunity
against the HCV.

The HCV core protein is highly conserved among various
genotypes and therefore an attractive target for DNA-based
vaccine. Immunization with the core protein DNA results
only in a weak humoral immune response in mice. To
enhance the immune response Geissler et al. (1997) have
coinjected recombinant plasmids expressing the granulocyte
macrophage-stimulating factor (GM-CSF), interleukin-2
(IL-2) or interleukin-4 (IL-4) with the core protein DNA.
The results showed increased humoral and cellular immune
responses as compared with the core protein DNA alone.

The E1 protein appears to be less immunogenic. However,
Fournillier et al. (2001) have demonstrated that mutations
of the N-glycosylation sites in the E1 protein enhanced the
humoral immune response in mice. The results suggest that
the deglycosylation of the E1 protein made some epitopes
more accessible to the immune system.

Another study has explored the immune responses elicited
in chimpanzees by DNA immunization with a plasmid
encoding the E2 protein (Forns et al., 2000). This DNA
vaccine candidate was also shown to induce immune
responses in mice and macaques (Forns et al., 1999). The
results suggest that the DNA-based immunization with the

E2 protein may modified the course of infection and prevent
progression to chronicity.

The DNA immunization using recombinant plasmids
encoding NS3, NS4 and NS5 proteins individually or
together has demonstrated immunogenicity for mice and rats.
In mice, these nonstructural proteins produced strong cellular
immune responses and specific antibody responses (Encke
et al., 1998). In rats, the immune response to all three
nonstructural proteins increased provided GM-CSF was used
(Cho et al., 1999).

Recently, Duenas-Carrera et al. (2004) have evaluated
the capacity of a plasmid encoding three HCV structural
proteins (core protein, E1 and E2) to induce immune
response in rabbits and macaques. Their results indicate that
such an immunization is able to elicit both humoral and
cellular immunity against HCV structural antigens in animal
models different from mice.

The DNA-based vaccination may prove useful to generate
virus-specific CTL responses. Nishimura et al. (2000) have
used a plasmid expressing HCV structural proteins (core
protein, E1 and E2) under the control of the human
elongation factor 1 alpha (EL1-α) promoter. A single
injection of the plasmid was shown to induce a specific CTL
response in mice. This study indicates the potential utility
of EF-1α promoter in development of HCV vaccine.

A vaccine strategy directed to increase the Th1 cellular
immune response has considerable potential. Jiao et al.
(2003) have demonstrated that cationic liposome-mediated
DNA immunization induces strong HCV NS3-specific
immune responses and also triggers high level of nonspecific

Table 1. Current approaches to HCV vaccine development 

Vaccine approach Vaccine candidate Animal models Remarks 

DNA vaccine Structural and nonstructural protein genes Mice, rats, 
rabbits 
monkeys, 
chimpanzees 

Induce moderate humoral immune response. Induce 
strong cellular immune response. Immunogenicity can be 
increased by adjuvants. Results obtained in one animal 
species cannot be directly applied to other species. 

Recombinant 
virus vaccine 

Adenovirus, Vesicular stomatis virus, 
Herpes simplex virus, Semiliki forest 
virus, Rabies virus, Canarypox virus 
containing structural and nonstructural 
HCV protein genes 

Mice Induce moderate humoral immune response. Induce 
strong cellular immune response (Th1 type). 
Immunogenicity can be increased by administration of a 
recombinant virus expressing adjuvants such as IL-2. 

Recombinant 
bacterium vaccine 

Attenuated bacteria (Salmonella and BCG) 
containing nonstructural protein genes 

Mice Induce strong cellular immune response. Safety and 
regulatory issues connected with implementation of the 
approach may be of concern. 

HCV-LPs Recombinant baculovirus containing 
structural proteins 

Mice Induce strong humoral and cellular immune response. 
Immunogenicity can be increased by addition of 
adjuvants. Difficulty in the generation of sufficient 
amount of HCV-LPs. 

Peptide-based 
vaccine 

Peptide-containing epitopes from 
structural and nonstructural proteins 

Mice Induce strong humoral and cellular immune response. 
Synthesis of correct sequence of desired peptide in a large 
amount is a constraint. 

Plant-derived 
recombinant 
subunit vaccine 

Plant extract containing recombinant 
HVR1/CTB 

Mice Induce humoral immune response. 
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IL-12 production in mice. Further detailed studies on other
animal models are required.

It is well known that the immunogenicity of DNA
vaccines can be increased by changing the route of
immunization or by addition of an adjuvant (Inchauspe,
1999; Krieg and Davis, 2001; Ma et al., 2002; Encke,
2003). IL-23 has been shown to possess IL-12-like
biological activity. IL-23 induced long lasting Th1 and CTL
immune responses to the HCV E2 protein, which were much
stronger than the IL-12-mediated immune response (Ha et
al., 2004). These data suggest that IL-23 could be an
effective adjuvant of DNA vaccine for the induction of
durable antigen-specific T cell immunity. However, the
DNA-based immunization has some limitations, mainly the
fact that the results obtained in one animal species cannot
be simply applied to other species relevant for HCV.

5.2 Recombinant viral or bacterial vaccines

Recombinant viruses are an efficient way to deliver
heterologous DNA that can mediate high levels of protein
expression in host cells. Studies in mice have shown that a
recombinant adenovirus containing genes of structural and/
or nonstructural proteins of HCV induce both humoral and
cellular immune responses (Makimura, 1996; Brunna-Romero
et al., 1997; Arribillaga et al., 2002). Administration of a
recombinant adenovirus expressing IL-12 led to a marked
increase in cellular immune response (Lasarte et al., 1999).
Also vesicular stomatis virus expressing high levels of HCV
E1 and E2 proteins generated strong immune responses
(Buonocore et al., 2002). A recombinant Herpes simplex virus
expressing the HCV E2 glycoprotein induced high levels of
E2 antibodies (Lucas et al., 2003) in mice. There are some
other promising recombinant viruses based on Semiliki forest
virus (Brinster et al., 2002), Rabies virus (Siler et al., 2002)
and Canarypox virus (Pancholi et al., 2000; Pancholi et al.,
2003), which encode either structural or nonstructural proteins
and induce strong immune responses.

As for nonviral vaccine vehicles the attenuated
Salmonella typhimurium should be mentioned (Shata et al.,
2000; Wedemeyer et al., 2001). Oral or nasal immunization
of mice with S. typhimurium induced both mucosal and
systemic immune responses against the encoded HCV NS3
antigens. This approach deserves further investigation in
other animal models. Uno-Furuta et al. (2003) have assessed
the capacity of an attenuated tuberculosis bacillus, Calmette-
Guerin bacillus (BCG) as a vaccine vehicle to elicit HCV-
specific CTLs. The results showed a substantial reduction
of vaccinia virus titers in mice. These findings suggest BCG
as a vaccine vehicle and the necessity of its further
investigation.

Although all these approaches using viral as well as
nonviral vehicles are very promising, safety and regulatory

issues connected with their implementation may be of
concern.

5.3 HCV-like particles-based vaccines

HCV-like particles (HCV-LPs) are attractive as a
recombinant protein vaccine, because they might mimic
more closely the properties of native viruses (Baumert et
al., 1999). The HCV-LPs synthesized through a recombinant
baculovirus contain the complementary DNA (cDNA)
encoding structural HCV proteins. These HCV-LPs have
biophysical, ultrastructural and antigenic properties similar
to those of the putative virion (Baumert et al., 1999). The
mice immunized with HCV-LPs generated a strong humoral
and cellular immune response against the HCV core and E2
proteins (Baumert et al., 1999; Lechmann et al., 2001).
Moreover, adaptive transfer of lymphocytes from HCV-LPs-
immunized mice to naive mice provided protection against
a recombinant HCV-vaccinia challenge in mice and this
transferred immunity could be abrogated by either CD4 or
CD8 depletion (Murata et al., 2003).

The effects of the adjuvants ASO1B (contains
monophosphoryl lipid A and a naturally occurring saponin
QS21) and CpG10105 were evaluated in mice (Qiao et al.,
2003). The results showed that the immunogenicity of HCV-
LPs was enhanced by the adjuvants at both humoral and
cellular levels. A potential obstacle for the use of this
approach could be the difficulty in the generation of
sufficient amount of HCV-LPs.

5.4 Peptide-based vaccines

Induction of multispecific cellular immune response
directed simultaneously against multiple HCV epitopes
appears to be important for the development of effective
HCV vaccine. Peptides containing epitopes from the core,
NS4 and NS5 regions have been shown to induce strong
CTL responses in mice (Shirai et al., 1996; Hiranuma et al.,
1999). A covalent attachment of CTL peptide to T helper
peptide seems to be crucial for generating a strong CTL
response. A sequence encompassing aa 121–135 of the E1
protein was capable to induce both CD4 cells as well as
CTLs (Lopez-Diaz de Cario et al., 1999). However, this
approach has attracted only a limited interest .

5.5 Plant-derived recombinant subunit vaccines

Recently plant derived subunit vaccine against HCV has
been described (Nemchinov et al., 2000; Natilla et al., 2004).
Intranasal immunization of mice with crude plant extract
containing a recombinant tobamovirus (HVRI/CTB), which
encoded a consensus sequence from the HCV hypervariable
region 1 fused to the C-terminus of the B subunit of cholera
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toxin, elicited an antiserum containing antibodies to both CTB
and HVRI (Nemchinov et al., 2000). Recently, Natilla et al.
(2004) have reported Cucumber mosaic virus as carrier of a
HCV-derived epitope. A plant derived recombinant HCV
vaccine can potentially reduce expenses normally associated
with production and delivery of conventional vaccine.

6. Future research strategy

During the last decade, many efforts have been dedicated
to develop the HCV vaccine. However, considerable obstacles
in practical fulfilment of this task have appeared. The most
important guidelines for the future research are as follows.
1. The development of a reliable, reproducible and efficient

culture system for propagating HCV is considered to be
of highest priority. Such a system would provide further
insights into the structure of HCV and function of its
polypeptides.

2. To date, the chimpanzee model is the only animal model
that can be used to test the efficacy of HCV vaccine
candidates. Chimpanzees are not readily available, require
specific facilities and are very expensive. Therefore, a
small animal and less expensive model should be found
for studying the correlation of protective immunity and
viral clearance.

3. The mechanisms by which HCV escapes the host immune
responses and establishes a chronic infection are not well
defined. Detailed studies are needed to define viral escape
mechanisms and role of cytokines in the establishment
of chronic HCV infection.

4. To improve the immunogenicity of HCV vaccine
candidates new adjuvants, cytokines and chemokines that
would favor a strong cellular response should be
evaluated.

5. Several genotypes of HCV have been identified worldwide.
Their characterization is likely to facilitate the development
of an effective vaccine against HCV infection.

6. HCV exists in numerous quasi species in the infected
population. It is therefore desirable to develop a vaccine
that would induce strong immune responses to several
both variable and conserved regions of the virus at the
same time.

7. Conclusions

The development of a vaccine against HCV is obviously
faced with multiple challenges. At present no commercial
hepatitis C vaccine for human use is available but the results
of various experimental studies using novel approaches have
provided optimism that an effective HCV vaccine for human
use is feasible.
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