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Metabolomic profiling of blood plasma of patients with lung cancer and 
malignant tumors with metastasis in the lungs showed similar features and 
promising statistical discrimination against controls 
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Targeting metabolomic pathways is a promising strategy for cancer treatment. Alterations in the metabolomic state 
have also an epigenetic impact, making the metabolomic studies even more interesting. We explored metabolomic 
changes in the blood plasma of patients with primary and secondary lung cancer and tried to explore their origin. We also 
applied a discrimination algorithm to the data. In the study, blood samples from 132 patients with primary lung cancer, 
47 with secondary lung cancer, and 77 subjectively healthy subjects without any cancer history were used. The samples 
were measured by NMR spectroscopy. PCA and PLS-DA analyses did not distinguish between patients with primary and 
secondary lung tumors. Accordingly, no significantly changed levels of plasmatic metabolites were found between these 
groups. When comparing with healthy controls, significantly increased glucose, citrate, acetate, 3-hydroxybutyrate, and 
creatinine balanced with decreased pyruvate, lactate, alanine, tyrosine, and tryptophan were found as a common feature of 
both groups. Metabolomic analysis of blood plasma showed considerable proximity of patients with primary and secondary 
lung cancer. The changes observed can be partially explained as cancer-derived and also as changes showing ischemic 
nature. Random Forrest discrimination based on the relative concentration of metabolites in blood plasma performed very 
promising with AUC of 0.95 against controls; however noticeable parts of differencing metabolites are overlapping with 
those observed after ischemic injury in other studies. 
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Lung malignant tumors have the highest morbidity and 
mortality rates of any cancer worldwide. A promising thera-
peutic strategy lies in targeting the altered metabolomic 
pathways of cancer cells [1]. Studies using the metabolomic 
approach have shown that there are alterations in the general 
metabolism in patients with cancer reflecting both the 
common features and also the disease phenotypes. Tumor 
entity and secondary malignant tissue communicate with the 
blood, which finally affects its composition i.e., on metabo-
lomic level [2–5]. In addition, all organs are challenged with 
the altered levels of basal metabolites what can result in the 
secondary response. Blood is an important metabolic infor-
mation carrier and, due to its easy accessibility, very conve-

nient for clinical use. The blood metabolic profiling is thus 
one of the most substantial sources reflecting metabolic 
demands and conditions of the whole organism.

Besides essential biological interpretation of metabolomic 
studies, their importance is underlined by the fact that low 
molecular metabolites may serve as cancer biomarkers in 
blood plasma, serum, or urine in various cancer types [6]. 
Remarkably, the metabolic phenotyping of plasma allows 
detection of lung cancer even in an early stage. Recent 
studies by Louis et al. described the possibility to discrimi-
nate between lung cancer patients and controls [7], and also 
between lung cancer and breast cancer patients, where the 
orthogonal partial least squares discriminant analysis (oPLS-
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DA) analysis was performed with very high specificity and 
sensitivity based on binned NMR spectra of blood plasma 
[8]. These studies, however, did not determine exactly the 
particular and plasma metabolites that are of the highest 
discriminatory power. The great potential of NMR plasma 
metabolomics to be considered as a screening tool for lung 
cancer was shown also by Rocha et al. [9] who employed 
partial least squares discriminant analysis (PLS-DA) 
modeling of cpmg spectra and Monte Carlo Cross validation. 
PLS-DA analyses were able also to effectively distinguish the 
metabolic profile of serum in non-small-cell lung carcinoma 
patients with or without microwave ablation treatment from 
that of healthy controls [10]. Recently, Berker et al. published 
an extended study where NMR spectra of measured matched 
tissue and serum samples were used also for typing, staging, 
and survival estimation of early stages of lung cancer [11]. 
Despite the rapid growth of metabolomics studies, only a little 
part of them uses the receiver operator characteristics (ROC) 
curve analysis as a standard method for describing and 
accessing the performance of medical diagnostic tools [12].

Published NMR studies are predominantly focused 
on statistical description using multivariate and machine 
learning techniques rather than biological processes [7–10]. 
In our work, we focused on the metabolomic alterations 
in blood plasma in patients with primary and secondary 
lung tumors and we tried to analyze the origin of observed 
changes. It was also of our interest whether the origin of 
malignant structure findings on the lung is manifested in 
diverse plasma composition on the metabolomic level. 
Besides broadly used PLS-DA, we used also the ROC curve 
derived from Random Forest (RF) discrimination algorithm 
to attempt the differentiation between patients and control 
groups, between patients with primary and secondary 

lung cancer as well as among lung cancer subtypes. Unlike 
published studies using mainly binned NMR spectra [7–10], 
we used the relative concentration of metabolites in blood 
plasma as input variables in order to improve the informative 
value of the study.

Patients and methods

Samples. Blood specimen was sampled from patients 
on the day of planned surgery in the fasting state. Based 
on the histological finding, patients were assigned into two 
subgroups (Tables 1 and 2), patients with primary lung cancer 
(LC), and patients with secondary lung cancer i.e., metastases 
in lungs of other origins (LM). As controls, 77 subjectively 
healthy volunteers without any cancer history, age median 
55.0±6.6 years, thereof 40 females and 37 males were used. 
The blood from controls was also collected in the fasting state. 
No additional selecting clinical criteria were applied.

Blood was collected exclusively in EDTA-coated tubes, 
centrifuged at 4 °C 380×g, for 20 min. Blood plasma was 
stored at –80 °C until used. Plasma deproteination was 
carried out according to [5, 13], by adding 600 µl of methanol 
to 300 µl of plasma. Then, the mixture was shortly vortexed, 
frozen at –24 °C for 30 min, and subsequently centri-
fuged for 30 min at 14,462×g. Finally, 700 µl of supernatant 
were dried out. 100 µl of stock solution (0.30 mM TSP-d4 
(3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt) as 
a chemical shift reference, 0.15 M phosphate buffer pH 7.4, in 
deuterated water) and 500 µl of deuterated water. For NMR 
measurement, the 550 µl of the final mixture were transferred 
into a 5 mm NMR tube.

Ethics. This study was approved by the Ethics Committee 
of the Jessenius Faculty of Medicine in Martin (registered 

Table 1. Classification of patients based on the type of primary lung tumors.
Type of carcinoma patients women men mean age median IQR
All patients with carcinoma 132 44 88 65.6 67.5 10
Adenocarcinoma 55 23 32 65.96 69 11.5
Spinocellular 41 5 36 67.63 68.5 6
Neuroendocrine 34 16 18 62.24 65.5 9
Adenosquamous 2 0 2 71.5 71.5 5

Table 2. Origin of secondary tumors in lungs.
Origin of lung metastases patients women men mean age median IQR
all 47 23 24 63.09 65 12
endometrium 5 5 0 68.6 67 9
kidney 10 6 4 67.1 69 6
breast 4 4 0 58.25 60.5 17.5
esophagus and gastric 2 0 2 63 63 10
intestine 16 4 12 61.94 62.5 6.5
testicles 2 0 2 32 32 14
skin 3 2 1 71.33 73 3.5
bladder 1 0 1 75 75 N
others 4 2 2 62 65 10
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under IRB00005636 at Office for Human Research Protec-
tion, U.S. Department of Health and Human Services) 
under the number 1705/2015. Informed written consent was 
obtained from all subjects of this study.

NMR measurements. NMR spectra were acquired 
on Bruker Avance III spectrometer equipped with TCI 
cryoprobe. Initial settings were performed on an indepen-
dent sample and adopted for measurements. Before measure-
ments, the ready samples were stored in a SampleJet machine 
at ca 6 °C, for not more than 2 hours. Samples were randomly 
ordered for acquisition. Measurements were carried on at 
310 K. For all samples, we kept the half-width of the TSP-d4 
signal under 1.1 Hz. We modified standard Bruker profiling 
protocols as follows: profiling 1D NOESY with pre-satura-
tion (noesygppr1d): FID size 64k, dummy scans 4, number of 
scans 128, spectral width 20.4750 ppm; COSY with presatu-
ration (cosygpprqf): FID size 4k, dummy scans 8, number of 
scans 1, spectral width 16.0125 ppm; homonuclear J-resolved 
(jresgpprqf): FID size 8k, dummy scans 16, number of scans 
4; profiling CPMG with presaturation (cpmgpr1d, L4=126, 
d20=3 ms): FID size 64k, dummy scans 4, number of scans 
128, spectral width 20.0156 ppm. For randomly chosen 20 
samples, COSY spectra were acquired with NS=24 and 
j-resolution spectra with NS=32. All experiments were 

conducted with a relaxation delay of 4 s; all data were once 
zero filled.

Data processing. NMR spectra were solved with the help 
of metabolomic database hmbd.ca [14], chenomx software 
(free trial version), and researching in literature. The multi-
plicity of peaks were confirmed in j-resolved and cross-
peaks in COSY spectra. The metabolites identified are listed 
in Table 3. From 23 identified metabolites, 22 metabolites 
(except lysine showing strong peak overlap) were of suitable 
signals for quantitative evaluation.

We chose spectra subregions with only a single metabolite 
assigned and summed integrals of selected signals from 0.001 
ppm binned spectra. This form of data represents a relative 
concentration of metabolites in blood plasma. No normal-
ization method was applied to the data. Shapiro-Wilk and 
Kolmorogov normality tests (OriginPro 2019) were used to 
test normality. Both tests rejected the normality for about 
half of the data tested. Statistical analysis was carried on 
using the Mann-U-Whitney test (Matlab R2018b). Multivar-
iate methods, such as principal component analysis (PCA), 
partial least squares discriminant analysis (PLS-DA), and 
random forest (RF) algorithm resulting in ROC curve were 
performed using Metaboanalyst 4.0 [15], SPSS software, and 
Matlab R2018b.

Table 3. Plasma metabolites: 1H NMR chemical shifts used for identification, in bold chemical shifts used for quantification (all or 
the part of, s-singlet, d-doublet, t-triplet, q-quartet, m-multiple). 
Metabolite Peaks assigned
glucose 3.25dd, 3.40t, 3.41dd, 3.47m, 3.49m, 3.53 dd, 3.71t, 3.72m, 3.76m, 3.83m, 3.84m, 3.90dd, 

4.63d, 5.23d
lactate 1.34d, 4.15q
leucine 0.96d, 0.97d, 1.72m
isoleucine 0.94t, 1.01d, 3.67d
valine 0.99d, 1.05d, 2.28m, 3.62d
alanine 1.48d, 3.805q
acetate 1.92s
3-hydroxybutyrate 1.20d, 2.31dd, 2.39dd, 4.15m
pyruvate 2.37s
succinate 2.41s
citrate 2.55d, 2.66d
glutamine 2.11m, 2.14m, 2.44m, 2.47m, 
creatine 3.03s, 3.93s
creatinine 3.04s, 4.05s
lysine 1.45m, 1.51m, 1.73m, 1.91m, 3.03t
phenylalanine 7.33d, 7.32t, 7.43t
tyrosine 6.90d, 7.15d
tryptophan 7.19t, 7.27t, 7.31s, 7.55d, 7.74d
2-oxoisocaproate – ketoleucine 0.94d, 2.097m, 2.61d
3-methyl-2-oxovalerate – ketoisoleucine 0.89t, 1.10d
2-oxoisovalerate – ketovaline 1.12d, (3.01m)
threonine 1.33d, 3.60d, 4.26dq
proline 1.99m, 2.06m, 2.34m, 3.32m, 3.41dt, 4.14dd
lipoprotein fraction* 0.85 - 0.90 m, 1.20-1.40m, 5.26-5.35m

Note: *the composition of lipoprotein fraction was described by Liu et al. in detail [26]



NMR METABOLOMICS IN LUNG CANCER PATIENTS 855

performed with accuracy = 0.84, R2=0.49 and Q2=0.39 for 
5 components and accuracy = 0.86, R2=0.50, and Q2=0.42 
for 8 components; most important features were (after VIP 
score): lactate, lipoprotein fraction, glucose, alanine, acetate, 
and 3-hydroxybutyrate. In the second system with three 
groups, PLS-DA performed with accuracy = 0.68, R2=0.42, 
and Q2=0.32 for 5 components and accuracy = 0.75, R=0.52, 
and Q2=0.41 for 8 components; most important features 
were (after VIP score): lactate, alanine, lipoprotein fraction, 
3-hydroxybutyrate, acetate, and pyruvate.

Although this was not the primary aim of this study, we 
ran PCA and PLS-DA analyses for lung metastasis patients 
divided into subgroups by the primary origin of the tumor. 
Only groups of size n>4: endometrium, breast, intestine, 
and kidney were used (Figure 2). PLS-DA performed with 
accuracy = 0.42, R2=0.56 and Q2=0.28 for 8 components; 
the most important features were (after VIP score): glucose, 
alanine, lipoproteins, and lactate. Other metabolites were of 
low importance.

Next, we employed Random Forest discriminatory 
algorithm to obtain a more realistic estimation of the discrim-
inatory power of the system in the context of biomarker 
analysis. The main advantage of RF against PLS-DA is that 
RF is more robust to overfitting and outliers [16] and the 
used RF algorithm includes cross-validation via balanced 
subsampling. Similarly, to PCA and PLS-DA, an algorithm 
was fed by relative concentrations of metabolites in plasma 
expressed by integrals of specific NMR regions. In the case of 
highly correlating predictors, the RF algorithm may label one 
of them as unimportant. To avoid this, we ran the algorithm 
ten times. As an output from the analysis, ROC curves were 
created. ROC curve analysis is the established method for the 
evaluating specificity and sensitivity of diagnostic – discrim-
ination tests. It is created by plotting the true positive rate 
against the false-positive rate at various threshold settings. 
An important output is the parameter area under the curve 
(AUC) that represents ranking quality. The AUC of a ranking 
is 1 (the maximum of AUC value) when all samples are truly 
assigned into the groups. An AUC of 0.5 is equivalent to 
randomly classifying subjects as either positive or negative 
(the classifier is of no practical utility) [12]. Unlikely PCA 
and PLS-DA, the ROC curve is defined only for binary 
systems. The results from discriminatory analysis via RF of 
selected systems represented by AUC value and by the list of 
the most important variables (metabolites) are summarized 
in Table 4. Within the repeated RF runs, metabolites slightly 
permuted in the importance order.

Shapiro-Wilk and Kolmogorov-Smirnov tests rejected 
normality for approximately half of the data. With respect to, 
Mann-U-Whitney test was used to test significant difference 
between two groups. We additionally performed the Bonfer-
roni correction to avoid the type I error and the p-value of 
0.0023 was the cut-off value to claim statistical significance. 
Plasma metabolites: leucine, isoleucine, valine, 3-methy-
loxovalerate, 2-oxoisovalerate, glutamine, lysine, phenyl-

Results

As applicable in metabolomic studies, data were processed 
by multivariate methods such as PCA and PLS-DA analyses 
(Figure 1). As input for both analyses, relative concentrations 
of metabolites determined by NMR spectroscopy were used. 
PCA and PLS-DA analyses of the system patients with primary 
against patients with secondary tumors in lungs showed very 
strong proximity of both groups (data not shown). Then, we 
analyzed binary system: all cancer patients against controls, 
and a system consisting of three groups: patients with 
primary and secondary lung cancer and controls. In the first 
system consisting of two groups, cross-validated PLS-DA 

Figure 1. PCA (left) and PLS-DA (right) analyses: patients with malig-
nant findings in lungs against controls (above) and patients with lung 
cancer (LC), lung metastasis (LM), and controls (below).

Figure 2. PCA (left) and PLS-DA (right) analyses for patients with lung 
metastasis based on NMR metabolomic data from blood plasma.
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alanine did not show significant changes after Bonferroni 
correction. Significant results are summarized in Table 5 and 
visualized in Figure 3.

Discussion

Multivariate analyses PCA and PLS-DA, Random 
Forest. There are two main approaches when evaluating 
metabolomic data. Commonly used p-value serves rather 
to explain biology since the biomarker discovery requires a 
different analysis, evaluation, and validation. In the second 
access, data analysis is usually performed using multivariate 
statistical methods such as PLS-DA and oPLS-DA [12, 17].

Firstly, we employed PCA analysis as a method serving to 
2D visualization of multidimensional data. The visual inter-
pretation suggested rather a similarity of the metabolomic 
data among patients’ groups and controls. When dividing 
patients into subgroups LC and LM, in PCA analysis, controls 
were slightly separated from the patients (Figure 1).

Unlike PCA, PLS-DA is an analytical method including 
also the discriminatory algorithm. Very convincing results 
via PLS-DA analysis regarding high discrimination power 
between lung cancer patients and controls were obtained 
with binned NMR spectra as input variables by Louis et al. 
[7, 8]. Although the method used in general does not omit 
any part of the NMR spectrum; it is possible that it defined 
as important some bins which cannot be associated with a 
biologically meaningful feature, i.e., metabolite. In contrast 
to these works, we fed the algorithm by the particular integral 
of NMR spectra exactly selected to be corresponding to only 
one metabolite. In this way, the input variables expressed 
the relative concentration of metabolites in blood plasma. 
We used this approach with the aim to describe the system 
on ‘metabolites level’, (by biologically interpretable features) 
in order to be more understandable and usable also for 
non-NMR users. PLS-DA results suggested better, but not 
ideal discrimination between patients and controls. Having 

Table 4. Result from Random Forest discriminatory analysis applied on binary systems, algorithm fed by relative concentration of metabolites in 
plasma.

System Nr. of 
variables AUC features (rel. conc. metabolites in plasma) ordered by importance

Lung cancer/Controls 2
5

10

0.824
0.898
0.957

lactate, 3-hydroxybutyrate, creatine, glucose, citrate, acetate, lipoprotein fraction, 2-oxoisocaproate, 
succinate, pyruvate,

Lung metastasis/Controls 2
5

10

0.899
0.937
0.956

lactate, acetate, citrate, 3-hydroxybutyrate, creatinine, pyruvate, 2-oxoisocaproate, succinate, cre-
atine, glucose

All patients/Controls 2
5

10

0.86
0.899
0.938

lactate, 3-hydroxybutyrate, citrate, creatine, glucose, pyruvate, acetate, 2-oxoisocaproate, succinate, 
alanine

Lung cancer/Lung metastasis 2
5

10

0.542
0.562
0.562

all features were of very low importance

Table 5. Plasma metabolites significantly changed (p-value <0.0023 after 
Bonferroni correction) between patients with lung cancer and lung me-
tastasis of other origin against controls. Percentual change derived from 
medians. 

Lung cancer/Controls Lung metastasis/Controls
p-value change/% p-value change/%

glucose <0.0001 10 <0.01 11
lactate <0.0001 –27 <0.0001 –35
alanine <0.0001 –15 <0.0001 –15
acetate <0.0001 7 <0.0001 15
3-hydroxybutyrate <0.0001 28 <0.0001 41
pyruvate <0.05 –8 <0.001 –15
succinate <0.0001 –15 <0.0001 –18
citrate <0.0001 21 <0.0001 22
creatinine <0.0001 9 <0.0001 18
tyrosine <0.001 –10 <0.001 –11
tryptophan <0.0001 –13 <0.005 –11
2-oxoisocaproate <0.0001 20 <0.0001 21
threonine <0.001 –10 <0.005 –6
proline* <0.0001 18 <0.0005 22
lipoproteins <0.0001 –22 n.s. –
creatine <0.005 27 <0.001 21

Note: *NMR signal was slightly overlapped

divided patients into subgroups LC and LM, the partial shift 
of controls from LC and LM patients was obvious; however, 
the discrimination was also not ideal (Figure 1).

Out of curiosity, we ran PCA and PLS-DA analyses 
in patients with lung metastasis divided by cancer origin 
(Figure 2). Both of these analyses showed proximity among 
the groups based on relative concentrations of plasmatic 
metabolites via NMR. Since cancer cells have common, 
but also disease-specific metabolomic features, this finding, 
although surely suffering from low sample sizes, is noteworthy 
and will be discussed in the next section.

Probably mostly used chemometrics algorithm PLS-DA 
has some shortcomings, i.e., tendency to overfitting and 
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was, similarly to PCA and PLS-DA, fed by the relative concen-
trations of concrete metabolites in plasma as variables. Based 
on RF output, the ROC curve was created (Figure 4). Patients 
were very well discriminated from controls with an AUC of 
0.957 for lung cancer and controls, 0.956 for lung metastasis 
and controls, and 0.938 for all patients and controls, results 
obtained for 10 features. Further increase in the number 
of features did not improve the AUC values. Metabolites: 
lactate, 3-hydroxybutyrate, creatine, glucose, citrate, acetate, 
lipoprotein fraction, 2-oxoisocaproate, succinate, pyruvate, 
and alanine were classified as the most important. In the 
repeated RF runs, the metabolites slightly permuted in the 
importance order. If we liked to define metabolites of highest 
discriminatory power as biomarkers, we should be aware, as 
stated by Liu et al. [19], that it is too optimistic to define the 
features as biomarkers only based on the ROC curve without 
clinical validation. Used RF algorithm included cross-valida-
tion meaning that the algorithm picks up 2/3rds of data for 
training and the rest for testing for regression and almost 
70% of data for training and the rest for testing during classi-
fication in order to overcome training and testing at the same 
data. Naturally, this approach does not substitute clinical 
validation; however, it may lead to encouraging results.

Figure 3. Relative concentrations of plasmatic metabolites in patients with lung cancer, lung metastasis, and controls expressed in arbitrary units (a.u.); 
abbreviations: LC-lung cancer, LM-lung metastasis. For each metabolite, data were scaled to the median of controls = 1.

Figure 4. ROC curve derived from RF classification for selected systems, 
calculated always for 10 variables (details in Table 4).

associated overoptimistic results [16, 18]. Another machine 
learning algorithm that is more robust to overfitting and may 
offer a more realistic estimation of the discriminatory power 
of the system is supervised Random Forest [16]. In our study, it 
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Metabolomic changes in blood plasma in the presence 
of tumor on the lung. Lactate is one of the most discussed 
metabolites related to cancer. Lactate was identified as the 
main fuel for tumor cells, being able to diffuse from hypoxic 
areas to the oxygenated area to be converted to pyruvate. 
Pyruvate is further oxidized by pyruvate dehydrogenase 
complex and by TCA cycle enzymes providing reduced 
coenzymes for mitochondrial oxidative phosphorylation. 
The preference of oxygenated tumor cells for lactate allows 
the spare glucose to reach hypoxic tumor cells and so fuel the 
glycolysis [20]. The importance of lactate as a carbon source 
for human non-small-cell lung cancers (NSCLC) was shown 
by Faubert et al. [21]. The circulatory turnover flux of lactate 
is the highest of all metabolites [22]. In three cancer cases, the 
contribution of circulating lactate to tumor TCA intermedi-
ates exceeded that of glucose by about two-fold, consistent 
with glucose contributing to the tumor TCA cycle primarily 
through circulating lactate [22]. Hyperlactatemia with or 
without type B lactic acidosis is a rare complication of cancer, 
previously observed most often in hematological malignan-
cies [23]. Clinically, increased blood lactate is a negative 
prognostic factor in metastatic lung cancer [23]. In our 
study, where the lung cancer patients of various progression 
and severities were grouped together, lactate was observed to 
be significantly decreased in plasma of lung cancer patients 
against controls. The same result was obtained in the study 
by Louis et al. [7]. Lactate is a key metabolite of the Cori 
cycle, where lactate produced in the muscle cells, instead of 
accumulating, is taken up by the liver and converted back 
to glucose. This is closely interconnected with the Cahill 
cycle, where alanine takes away the residual amino group 
from the muscles and via bloodstream is transported into 
the liver where it is through intermediate pyruvate converted 
to glucose. The mutual conversion of lactate, pyruvate and 
alanine may explain their common decrease in plasma level, 
causing alteration in the circulation of mentioned metabo-
lites in the body.

In blood plasma of patients with the malignant struc-
ture findings in the lungs, we observed slightly, but statisti-
cally significant increased glucose level. Mild hyperglycemia 
and insulin resistance are common phenomena related 
to advanced cancer [24, 25]. At the time of altered glucose 
utilization, alternative substrates such as ketone bodies 
could support metabolic requirements. In our study, we 
observed a strong significantly increased level of 3-hydroxy-
butyrate in blood plasma in the patients’ group. This finding 
is accompanied by decreased lipoprotein fraction plasma 
level that contains about 40% of triacylglycerols [26] as the 
main substrate for the ketone bodies synthesis. In further, 
regarding TCA metabolites, we found increased levels of 
plasmatic citrate and decreased level of plasmatic succinate 
what suggests TCA cycle imbalance.

The importance of basal metabolites, as mentioned above, 
is not only to fulfill the demands on energy and intermediate 
for the growth of tumors. As it has been shown in recent 

studies, metabolomic enzyme expression has the poten-
tial to impact DNA methylation and histone acetylation in 
mammals [27]. Increased level of 3-hydroxybutyrate may 
influence cellular function via epigenomic regulation by 
influencing histone acetylation [27, 28]. As a further example, 
methylation status is sensitive to oxygen and TCA-related 
metabolism [27]. The arising knowledge about the multiple 
effects of particular metabolites makes metabolomics studies 
much more interesting and useful.

Plasmatic level of proline was observed to be increased in 
patients’ groups against controls. Proline is a key player in 
ROS signaling, and its metabolism may play a role not only 
in suppressing tumors but also in augmenting tumor growth 
what may make it a possible therapeutic target [29]. Further, 
we found an increased creatine and creatinine level in the 
blood plasma of tumor patients against controls. Elevated 
plasma creatine level suggests its suppressed uptake by 
creatine-phosphate utilizing tissues. The renal dysfunction 
cannot be ruled out as well. Patients’ groups showed also 
a statistically strong significant increase in acetate. Acetate 
may serve, besides as energy fuel or for lipid synthesis also 
as a signaling molecule for cancer cells. These and many 
other relations of acetate to cancer were reviewed in detail by 
Schug et al. [30].

Decreased plasmatic levels of tyrosine and tryptophan in 
lung cancer patients were found in our study similar to the 
study by Ren et al. [31]. Accelerated tryptophan catabolism 
has been described in several malignant diseases e.g. [32, 
33]. Interestingly, tryptophan breakdown relates to fatigue 
and impaired quality of life in patients with lung cancer [34]. 
A decrease in tryptophan suggests an enhanced cytokine-
induced degradation of tryptophan and an activated IDO 
mechanism that is a part of the malignant transformation 
process and plays a key role in suppressing the anti-tumor 
immune response in the body [35]. All observed changes are 
visualized in Figure 3.

The origin of all observed changes can be assumed but is 
not entirely clear and understood in the concept of metabo-
lism of cancer cells. From another point of view, the patients 
with primary lung cancer showed almost identical metabo-
lomic changes in plasma compared with patients with lung 
metastasis, as it seems that the cancer origin had not played 
a substantial role (Figure 1). This trend was also confirmed 
in the comparison of plasma samples from patients with 
lung metastasis of different origins by PCA and PLS-DA 
analyses that showed considerable metabolomic proximity 
(Figure 2). There were not also any significantly changed 
metabolites found between these groups. It is remarkable 
that observed metabolomic changes, in particular, increased 
glucose and decreased pyruvate and alanine, tryptophan, 
and tyrosine balanced with increased ketone bodies are very 
similar to those found in rats after ischemia [36–38] and 
in patients after myocardial infarction [39]. (Details about 
the consequence of ischemic injury on plasma metabolites 
are described in mentioned studies). It could be suggested, 
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that the patients with malignant findings on the lungs may 
suffer from hypoxia. This opinion should be supported by 
clinically relevant data, e.g., astrup, DLCO, or others. We 
do not have this data available from all patients, therefore, 
these correlations are unfortunately missing and we can 
state only a hypothesis. However, this explanation could be 
also supported by the fact that the metabolomic changes in 
patients with lung malignancies differ from those found in 
plasma in patients with primary brain tumors that are not 
generally associated with secondary metastatic lung tumors 
[5]. As another example can be used the above-mentioned 
study by Louis et al. who showed successful discrimination 
among lung cancer patients, breast cancer patients (stage I 
and II = not metastatic) via NMR metabolomics of blood 
plasma [8]. Taking together, observed metabolomic changes 
in patients with primary and secondary lung cancer are the 
superposition of changes caused by the presence of cancer 
and changes similar to those observed after ischemia, where 
the second ones appear to be dominant in the statistical 
discrimination. Here it is important to note, that metabolites 
that were of the highest discrimination power (section 3) 
cannot be connected primarily to lung cancer, as they were 
strongly overlapping with those differencing subjects after 
ischemic injury from controls [36–39].

In conclusion, NMR analysis of the blood plasma 
showed considerable metabolomic proximity of patients 
with primary and secondary lung cancer. The metabo-
lomic similarity was also observed within the group of 
secondary lung cancer patients regardless of cancer origin. 
By comparing with healthy controls, the part of observed 
changes can be explained in terms of cancer presence, and 
another part of observed changes is very similar to those 
observed after ischemic injury. Random forest performed 
the discrimination of both groups from controls almost 
ideally with an AUC above 0.95 when relative concentra-
tions of metabolites in the blood plasma were used as input 
variables. Regarding the metabolites evaluated, we would 
conclude that malignant findings on the lungs caused 
metabolomic changes in blood plasma that were not corre-
lated with the origin of cancer cells. The changes in plasmatic 
metabolites levels in patients with malignant findings on the 
lungs showed features similar to those observed in relation 
to ischemia.
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