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Weighted gene correlation network analysis identifies the critical long 
non-coding RNAs participate in  the progression of osteosarcoma
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Abstract. This study aimed to identify more biomarkers associated with osteosarcoma progression 
via lncRNA-mRNA co-expression network. Dataset GSE99671 was downloaded from GEO database. 
The mRNAs and lncRNAs that were differentially expressed between tumor and normal samples 
were screened out. Functional enrichment analysis of differentially expressed mRNAs was carried 
out, followed by weighted gene correlation network analysis (WGCNA). Based on the lncRNAs and 
mRNAs, a lncRNA-mRNA co-expression network was constructed. Total 703 mRNAs and 7 lncRNAs 
were differentially expressed between tumor and normal tissues. The mRNAs were significantly en-
riched in functions associated with inflammatory response as well as autoimmune thyroid disease 
and ribosome pathways. WGCNA revealed that ME2 module had a high correlation with tumor, 
and ST3GAL4, UCK2, PSAT1 etc. had higher connectivity degrees in this module. lncRNA-mRNA 
co-expression network showed that 12 mRNAs, such as PEMT, COL10A1 and GSTA1, were syn-
ergistically expressed with lncRNA TTTY14. Inflammatory response and ribosome synthesis may 
play important role in osteosarcoma progression. lncRNA TTTY14 may affect the development 
of osteosarcoma by cooperative expression with PEMT, COL10A1, GSTA1, etc. ST3GAL4, UCK2, 
PSAT1 as well as TTTY14 may serve as key biomarkers in osteosarcoma.
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Introduction

Osteosarcoma is a primary malignant bone tumor that is 
characterized by mesenchymal derived spindle cells deposit-
ing immature osteoid matrix (Campanacci 2013). About 56% 
of osteosarcomas arise in the long bones of the lower limb, 
with the upper limb (10%) and pelvis (9%) being the next 

most affected sites (Whelan et al. 2012). This tumor most 
commonly influences children, adolescents and young adults 
(Isakoff et al. 2015). Patients with osteosarcoma most often 
complain about swelling and pain (Picci 2007). Osteosarcoma 
is an aggressive tumor, and approximately 80% to 90% of 
patients have detectable metastases at presentation (Luetke et 
al. 2014). These patients have poor prognosis with long-term 
survival rate of only 10–30% (Meyers 2009). However, the 
exact pathogenesis of osteosarcoma is not yet determined. 
Identification of new candidate molecules is crucial for 
improving the clinical outcomes of patients with this tumor.

Recently, high-throughput sequencing technologies have 
been widely used in osteosarcoma studies (Siddiqui et al. 
2006; Yang et al. 2014). With this method, many genes were 
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found to be differentially expressed between osteosarcoma 
sample and normal bone, such as GJA1, COL1A2, COL5A2, 
MMP14, TGFβ and RUNX2 (Wu et al. 2014). Ho et al. (2017) 
performed whole transcriptome analysis of osteosarcoma 
and normal bone samples, and identified 5365 differentially 
expressed genes between osteosarcoma and normal bone 
tissues, including ABCA10, BTNL9, COL11A1, and MMP14. 
Additionally, via functional enrichment analysis, they found 
that extracellular matrix degradation may be an important 
mechanism of osteosarcoma progression. They deposited 
the dataset in GEO with accession number of GSE99671. 
However, they only analyzed the mRNA data whereas the 
long noncoding RNA (lncRNA) data generated by whole 
transcriptome sequencing were not analyzed. lncRNAs are 
a group of RNA transcripts of over 200 nucleotides in length 
with no or little protein-coding capacity (Wang and Chang 
2011). Recent studies have revealed that lncRNAs could act 
as tumor suppressors or oncogenes to play important roles 
in carcinogenesis (Khandelwal et al. 2015; Cui et al. 2016). 
Importantly, lncRNAs can regulate gene expression through 
diverse mechanisms including lncRNA-mRNA interaction 
(Ernst and Morton 2013). The lncRNAs involved in the de-
velopment of osteosarcoma are still warranted investigation.

In recent years, vast RNA-seq data were generated because 
of the rapid development on the sequencing technology. The 
exponential increase of these data has stimulated the devel-
opment of an ever-increasing number of bioinformatics tools 
(Canzoneri et al. 2019). Considerable papers re-analyzed 
the public available datasets and investigated the molecular 
mechanism of disease at the molecular level (Shen et al. 2019; 
Zhang et al. 2019; Sang et al. 2020; Zhou et al. 2020). These 
discoveries have showed great significance in revealing the 
molecular mechanism of disease pathogenesis and remark-
ably improved the early diagnosis and prognosis of disease. 
Thus, in this study, we downloaded this dataset from GEO 
database to reanalyze the dataset of GSE99671. By rean-
notation of the genes, the mRNAs and lncRNAs that were 
differentially expressed between tumor and normal samples 
were screened out. Based on the lncRNAs and mRNAs, we 
constructed the lncRNA-mRNA co-expression network to 
explore their regulatory relations, which may help to under-
stand the potential mechanisms of this tumor.

Methods

Data acquisition and lncRNA reannotation 

The dataset GSE99671 (GPL20148) was downloaded from 
the GEO database, which was obtained from the whole tran-
scriptome sequencing of 18 pairs of tumor and normal bone 
tissue cells samples. According to the gtf gene annotation file 
provided by GENCODE database (Harrow et al. 2012) (Re-

lease 26, grch38.p10), the gene with annotation information 
of “protein coding” was retained as mRNA, and the gene with 
annotation information of “lncRNA” was retained as lncRNA.

Differential expression analysis

The data matrix was normalized using betaqn method in R. 
Based on the normalized dataset, we used limma package 
(Ritchie et al. 2015) (version 3.10.3) to analyze the differ-
ences between tumor and normal samples. The p values of 
all the genes were subjected to multiple test adjustment with 
Benjamini and Hochberg method, obtaining the adjusted 
p value (adj.p.value). The genes with adj.p.value < 0.05 and 
|log fold change (FC)| > 1 were considered as differentially 
expressed genes.

Functional and pathway enrichment analyses of differentially 
expressed mRNAs

The enrichment analysis tool DAVID (Huang da et al. 
2009) (version 6.7, https://david-d.ncifcrf.gov/) was used 
to analyze the functional annotations of differentially 
expressed mRNAs, and the results were visualized using 
GOplot (Walter et al. 2015). Additionally, based on KEGG 
database (Kanehisa et al. 2000), KEGG pathway analysis 
was conducted using gene set enrichment analysis (GSEA, 
version 3.0) (Damian et al. 2004). The enrichment results 
with adj.p.value < 0.05 were screened as significant results. 
Normalized enrichment score (NES) that reflects the en-
richment of the pathway was used to identify the activated 
pathways (NES > 0) and suppressed pathways (NES < 0).

Weighted gene correlation network analysis (WGCNA)

WGCNA is a systematic biological method to describe the 
gene correlation patterns among different samples, which can 
be used to identify gene sets with highly coordinated varia-
tion and identify candidate biomarker genes according to the 
endogeneity of gene sets and the correlation between gene 
sets and clinical phenotypes. Here, we used the R package of 
WGCNA (version 1.61) to calculate the functional set of vari-
ous weighted association analysis, construct the co-expression 
network, identify genes and gene clusters, and calculate the 
topological characteristics. Briefly, the expression correla-
tion between two genes was calculated, then the adjacency 
function was defined, and finally the module was divided. In 
addition, we calculated the correlation between gene module 
and clinical phenotype, and identified the modules related to 
traits. In the process of network construction, the correlation 
attribute corType was set as Pearson’s correlation coefficient, 
and the minimum number of module genes was set as 30. For 
the WGCNA gene co-expression network, edges (gene pairs) 
with weight value more than 0.05 were selected.
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lncRNA-mRNA co-expression network

For differentially expressed lncRNAs and differentially 
expressed mRNAs, Pearson’s correlation coefficients be-
tween them were calculated using the corr.test method 
of R package psych (Jason 2013) (parameter ci = F, adjust 
= “BH”). The Benjamini and Hochberg method was used 
for multiple test adjustment. The gene pairs with |r| ≥ 0.6 
and adj.p.value < 0.05 were screened. Cytoscape software 
(version 3.7.0) was used to construct the co-expression 
network.

Results

Differential expression analysis

According to GENCODE annotation results, GSE99671 
contained 23,099 genes, including 17,180 mRNAs and 104 
lncRNAs. After analysis, there were 710 differentially ex-
pressed genes (241 upregulated and 469 down-regulated) 
(Fig. 1A). Among these genes, there were 181 upregulated 
mRNAs, 2 upregulated lncRNAs, 378 downregulated mRNAs 
and 5 downregulated lncRNAs. The top10 up- and down-
regulated genes are shown in Figure 1B. The differentially 
expressed lncRNAs included TTTY22, DKFZP434K028, 
DSCR9, RNU11, FAM138E, TERC and TTTY14.

GO enrichment analysis

GO enrichment analysis of the differentially expressed 
mRNAs showed that a total of 6 biological process terms, 
15  cellular component terms and 8 molecular function 

terms were significantly enriched (adj.p.value < 0.05). The 
top 5 biological process terms, cellular component terms and 
molecular function terms according to adj.p.value sorting are 
shown in Figure 2. In terms of the biological process terms, 
oxygen transport (n = 8, adj.p.value = 2.10×10−4), defense 
response to bacterium (n  =  9, adj.p.value = 2.86×10−4), 
inflammatory response (n = 29, adj.p.value = 0.00576), re-
sponse to lipopolysaccharide (n = 17, adj.p.value = 0.0149), 
chronic inflammatory response (n = 5, adj.p.value = 0.0359), 
and defense response to fungus (n = 7, adj.p.value = 0.0395) 
were significantly enriched. In terms of cellular component, 
the expressed proteins were mainly located on extracellular 
region (n  =116, adj.p.value = 4.56×10−17), extracellular 
space (n =100, adj.p.value = 1.93×10−15), plasma membrane 
(n =176, adj.p.value = 6.28×10−6), hemoglobin complex (n = 
8, adj.p.value = 1.54×10−6), etc., indicating that these genes 
play an important role in the communication and interaction 
between cells. From the perspective of molecular function, 
the differentially expressed mRNAs mainly possess oxygen 
transporter activity (n = 8, adj.p.value = 3.05×10−5), oxygen 
binding (n =10, adj.p.value = 2.18×10−3), heparin binding 
(n = 17, adj.p.value = 0.00348), and were related to the ac-
tivities of peroxidase (n = 6, adj.p.value = 0.0450) and serine 
endopeptidase (n =19, adj.p.value = 0.0481).

Pathway enrichment analysis

According to the pathway enrichment analysis by GSEA, 
7 significantly enriched pathways were identified, including 
3 activated pathways (NES > 0) and 4 suppressed pathways 
(NES < 0) (Fig. 3A). KEGG ribosome had the maximum NES 
among the activated pathways (Fig. 3B). KEGG autoimmune 
thyroid disease had the minimum NES among the sup-

Figure 1. A. Volcano plot of differentially expressed genes. Thresholds were set as |log2(FC)| > 1 and p value < 0.05. Red represents 
upregulated gene and green represents downregulated gene. B. Heatmap of top10 up- and downregulated genes (in ascending order 
according to p value).
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pressed pathways (Fig. 3C). Abnormalities in this pathway 
suggested that osteosarcoma had an impact on the thyroid 
immune system, leading to a decline in immune function. 
Additionally, cytosolic DNA sensing pathway and adipocy-
tokine signaling pathway were also significantly suppressed, 
indicating that cellular interaction and immune response 
were abnormal, which may be correlated with tumor pro-
liferation and metastasis.

WGCNA

The 710 differentially expressed genes were performed WGC-
NA, and 532 genes were reserved based on weighted > 0.05 

and minimum module size of 30 genes for further analysis. 
The results showed that these genes were clustered into three 
modules, named ME1 (155 genes), ME2 (137 genes) and ME3 
(71 genes), and the other 169 genes were not classified into 
any module (denoted as ME0). It can be seen from Figure 
4A that genes belonging to different modules were located at 
different branches in the hierarchical clustering tree, and the 
clustering results showed obvious modularity. The expression 
of genes belonging to the same module was highly correlated, 
and the hierarchical clustering heatmap presented an obvious 
block boarded diagonal form (Fig. 4B). 

It can be seen from the topological structure of the WGC-
NA network that genes belonging to the same module were 

Figure 2. Results of GO enrichment analysis. A. The differential expression (z-score), significance (Benjamini) and the number of cor-
responding genes (circle size) for the top 5 biological process, cellular component and molecular function terms. B. For the top 8 GO 
terms selected, the phylogenetic tree was constructed by clustering the genes according to their occurrence in the term.

A
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obviously clustered into clusters, and the connectivity degree 
of gene within the module was much higher than that between 
the modules. Besides, the genes among different modules also 
had partial functional relationships (Fig. 4C). Additionally, 
there were a  large number of highly connected genes (hub 
genes) in the ME1 module. In the ME2 module, the genes 
with top 10 connectivity degrees were ST3 beta-galactoside 
alpha-2,3-sialyltransferase  4 (ST3GAL4), uridine-cytidine 
kinase 2 (UCK2), macrophage migration inhibitory factor 
(MIF), phosphoserine aminotransferase 1 (PSAT1), MLLT11 
transcription factor 7 cofactor (MLLT11), homeobox D13 
(HOXD13), mitochondrial ribosomal protein L36 (MRPL36), 
LOC84856, visinin like 1 (VSNL1) and glypican 1 (GPC1). 

For the gene modules ME1, ME2 and ME3, the correla-
tion between them and tumor was calculated and the false 
discovery rate method was used for multiple test correction. 
As shown in Table 1, the correlation between ME2 and tu-
mor was as high as 0.78. The genes in ME1 and ME2 were 
negatively associated with tumor progression (correlation 
= −0.54, p = 0.00127 for ME1 and correlation = −0.40, p = 
0.0166 for ME3). The genes with top 5 connectivity degrees in 
ME1 were glycophorin A (GYPA), acyl-CoA synthetase mem-

ber 6 (ASCL6), Rh associated glycoprotein (RHAG), schlafen 
family member 14 (SLFN14) and myeloperoxidase (MPO). 
Those in ME3 were perilipin 1 (PLIN1), thyroid hormone 
responsive (THRSP), alcohol dehydrogenase 1B (ADH1B), 
glycerol-3-phosphate dehydrogenase 1 (GPD1) and PLIN4. 
The scatter plot and regression analysis results of gene-module 
correlation and gene-tumor correlation also indicated that 
this module was closely related to tumor (Fig. 4D).

lncRNA-mRNA co-expression network

For the 7 differentially expressed lncRNAs and 559 differ-
entially expressed mRNAs, we calculated their correlation 

Figure 3. Enrichment results 
of GSEA pathway. A. The 
joyplot of the upregulated 
pathway. B. The upregulated 
pathway of KEGG ribosome. 
C. The downregulated path-
way of KEGG autoimmune 
thyroid diseases.

Table 1. The correlation between modules ME1, ME2 and ME3 
and tumor

Group Correlation adj.p.value (FDR)
ME1 vs. tumor −0.5420891 1.27×10−3

ME2 vs. tumor 0.7788899 6.63×10−8

ME3 vs. tumor −0.3966235 1.66×10−2

adj.p.value, adjusted p value; FDR, false discovery rate.
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Figure 4. Results of WGCNA 
analysis. A. Gene hierarchical 
clustering tree. The genes were 
clustered and labeled accord-
ing to their expression values 
in each sample. B. Hierarchical 
clustering heatmap. Hierarchi-
cal clustering was performed 
for the genes in rows and 
columns. The color in the heat-
map indicated the correlation 
degree between the expression 
values of the two genes: the 
darker the color, the higher 
the degree of co-expression of 
the two genes. C. Gene module 
and co-expression network. 
The edge weight of 0.05 was 
used as the threshold value for 
screening, and points of differ-
ent colors indicated that genes 
belonged to different modules. 
D. Gene-module correlation 
and gene-tumor correlation. 
X-axis represents the degree of 
correlation between genes and 
this module in the ME2 mod-
ule, and Y-axis represents the 
degree of correlation between 
genes and tumor. 

Figure 5. Gene co-expres-
sion network. A. IncRNA-
mRNA co-expression net-
work. B.  Subnetworks that 
contains lncRNAs.

coefficient between each other. The gene pairs with |r| ≥ 0.6 
and adj.p.value < 0.05 were screened. The constructed co-
expression network included 504 nodes (500 mRNAs and 4 
lncRNAs) and 7026 edges (Fig. 5A). Gene pairs containing 
lncRNA were extracted from the co-expression network and 
obtained the subnetwork, as shown in Figure 5B. In this sub-

network, there were 12 mRNAs (phosphatidylethanolamine 
N-methyltransferase (PEMT), collagen type X alpha 1chain 
(COL10A1), glutathione S-transferase alpha 1 (GSTA1), etc.) 
that were synergistically expressed with TTTY14. GO en-
richment analysis of the 12 mRNAs showed that these genes 
were enriched in functions related to cell proliferation (p = 

A

C

B

D
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0.0034), cell projection (p = 0.052), sulfur metabolism (p = 
0.082) and extracellular region (p = 0.092).

Discussion

In this study, 703 differentially expressed mRNAs and 7 dif-
ferentially expressed lncRNAs were identified between tumor 
and normal tissues. The differentially expressed mRNAs were 
significantly enriched in functions associated with inflam-
matory response and ribosome pathway. WGCNA revealed 
that ME2 module had a high correlation with tumor, and ST-
3GAL4, UCK2, PSAT1 etc. had higher connectivity degrees in 
this module. lncRNA-mRNA co-expression network showed 
that 12 mRNAs, such as PEMT, COL10A1 and GSTA1, were 
synergistically expressed with lncRNA TTTY14.

GO enrichment analysis of the differentially expressed 
mRNAs showed that a  total of 6 biological process terms, 
15 cellular component terms and 8 molecular function 
terms were significantly enriched. The biological process 
terms included inflammatory response, oxygen transport, 
and defense response to bacterium, lipopolysaccharide, and 
fungus. Chronic inflammation is emerging as a hallmark of 
cancers, and many tumors present characteristics of chronic 
inflammation or arise prolonged inflammation throughout 
their progression (Hanahan and Weinberg 2011; Balkwill 
and Mantovani 2012). Inflammatory microenvironment 
can promote tumor development via altering responses 
to chemotherapeutic agents, promoting metastasis and 
angiogenesis, and subverting adaptive immune responses 
(Mantovani et al. 2008). During chemotherapy of cancer, 
addition of anti-inflammatory drugs is demonstrated to be 
an effective treatment to increase the survival of patients 
(Gotwals et al. 2017). In this study, the differentially expressed 
mRNAs, such as MIF, C-X-C motif chemokine receptor 
1 (CXCR1), C-X-C motif chemokine ligand 12 (CXCL12) 
and TNF receptor superfamily member 4 (TNFRSF4) were 
significantly enriched in inflammatory response associated 
functions. This suggested the important role of inflammation 
and inflammation biomarkers in osteosarcoma. In terms 
of cellular component, the expressed proteins were mainly 
located on extracellular region, extracellular space, plasma 
membrane, and hemoglobin complex, indicating that these 
genes involving cell-to-cell communication and interaction 
were dysregulated during osteosarcoma progression. Besides, 
the molecular function of dysregulated mRNAs was related 
to activities of peroxidase and serine endopeptidase as well as 
binding to oxygen or heparin. The oxygen levels of cancer cells 
are critical for tumor cell metabolism and cancer progres-
sion. Hypoxia exists in most solid tumors due to inadequate 
oxygen delivery of the abnormal vasculature (Vaupel et al. 
2007). Oxygen transport agents have also been developed to 
reverse tumor hypoxia (Graham et al. 2018). The differentially 

expressed mRNAs could participate in osteosarcoma progres-
sion by regulating oxygen and heparin transport.

Ribosome is an oldest molecular machine in extant life, 
which is responsible for the translation of information in 
mRNAs into functional proteins (Noller 2012). Importantly, 
the hyperactivation of ribosome biogenesis, which could 
be initiated by the loss of tumor suppressor genes or the 
oncogenes, play a key role in the initiation and progression 
of cancer (Orsolic et al. 2016). Recent study has suggested 
that the drugs that inhibit ribosome biogenesis may pro-
vide a feasible approach for cancer treatment (Bruno et al. 
2017). In this study, GSEA showed that ribosome had the 
maximum NES among the upregulated pathways, and was 
enriched by genes such as mitochondrial ribosomal protein 
L12 (MRPL12), MRPL36 and ribosomal protein L10 like 
(RPL10L). The upregulation of this pathway indicated that 
ribosome synthesis activity was significantly increased, 
which may accelerate protein synthesis to promote cell 
proliferation in osteosarcoma.

WGCNA revealed that there was a high correlation be-
tween ME2 and tumor, and ST3GAL4, UCK2, PSAT1 etc. 
had higher connectivity degrees in this module. ST3GAL4 
encodes for β-galactosidase α-2,3-sialyltransferase 4, which 
is involved in the biosynthesis of tumor antigens sLe(x) and 
sulfo-sLe(x). The expression level of ST3GAL4 is altered in 
various human cancers (Roa-de La Cruz et al. 2018). UCK2 
encodes the uridine-cytidine kinase, upregulation of which 
is common in some types of cancer tissues (van Kuilenburg 
and Meinsma 2016; Malami et al. 2017). Thus, UCK2 has 
been regarded as a  treatment target and a  biomarker for 
cancer prognosis. PSAT1 is an enzyme catalyzing serine 
biosynthesis (Baek et al. 2003). It has been suggested to be 
associated with tumor stage in colon cancer (Friederichs et 
al. 2005). Depletion of PSAT1 has been reported to suppress 
the proliferation of breast cancer cells (Possemato et al. 2011). 

The genes with top 5 connectivity degrees in ME1 were 
GYPA, ASCL6, RHAG, SLFN14 and MPO. Those in ME3 
were PLIN1, THRSP, ADH1B, GPD1 and PLIN4. ASCLs 
are necessary for phospholipid remodeling, fatty acid deg-
radation and production of long acyl-CoA esters (Soupene 
and Kuipers 2008). SLFN14 belongs to the SLFN family of 
proteins, which were demonstrated to exert anti-melanoma 
effects of interferon α and involve in the regulation of cell 
invasion (Katsoulidis et al. 2010). MPO is an endogenous 
metabolic/oxidative lysosomal enzyme which plays and 
important role in carcinogenesis (Klebanoff 1999). Poly-
morphism of MPO is associated with cancer risk (Yang et 
al. 2017). PLIN1 and PLN4 are members of the PAT protein 
family that play distinct roles in regulating both triglyceride 
storage and lipolysis in adipocytes. PLIN1 was also reported 
to of prognostic significance in human breast cancer and 
might be a  potentially new gene therapy target (Zhou et 
al. 2016). THRSP is a  thyroid-hormone-inducible and 
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carbohydrate-inducible and protein, functions to activate 
genes involved in fatty-acid synthesis enzymes (Zhang et al. 
2011). Evidence suggested it plays a role in tumorigenesis by 
regulating lipogenic enzymes (Kinlaw et al. 2006). Alcohol 
consumption is a major risk factor for cancer development. 
ADH1B polymorphism was significantly associated with 
decreased overall cancer risk (Polimanti and Gelernter 
2018; Tan and Ning 2019). GPD1 was reported to enhance 
the anticancer effect of metformin by through synergistic 
inhibition of mitochondrial function (Xie et al. 2020). Taken 
together, we speculated that these genes may sever as key 
biomarkers in osteosarcoma.

Presently, the co-expression model that integrates lncR-
NAs and protein-coding genes are widely used to investigate 
the functions of lncRNAs in biological processes and cancers 
(Guo et al. 2012). The present study also constructed such 
a co-expression network. The result showed that 12 mRNAs, 
such as PEMT, COL10A1 and GSTA1, were synergistically 
expressed with lncRNA TTTY14. A study reported that this 
TTTY14 is a prognostic biomarker of gastric cancer (Miao 
et al. 2017). Besides, it is closely related to the progression of 
various types of cancers, like lung cancer, colorectal cancer, 
and oropharyngeal squamous cell carcinoma (Boscolo-Rizzo 
et al. 2017). However, the function of this lncRNA is widely 
unknown in osteosarcoma. Interestingly, PEMT, COL10A1 
and GSTA1 have been demonstrated to be implicated in can-
cer development (Li et al. 2014; Matic et al. 2016; Huang et 
al. 2018). Further, GO enrichment analysis showed that these 
genes were associated with functions of cell proliferation, 
cell projection, sulfur metabolism and extracellular region, 
which further indicated that lncRNA TTTY14 may regulate 
these functions in osteosarcoma tumor cells, affecting the 
proliferation and intercellular interactions of tumor cells by 
interacting with PEMT, COL10A1 and GSTA1. 

There are inevitably limitations in this study. Though the 
reliability of WGCNA has been validated by multiple stud-
ies, the lncRNA-mRNA interactions are still needed to be 
validated in in vitro and in vivo studies. Further researches are 
warranted to perform to investigate the interaction between 
lncRNA TTTY14 and its co-expressed mRNAs. 

Conclusion

In conclusion, we identified 7 crucial lncRNAs and 703 mR-
NAs participated in osteosarcoma progression by involving 
in inflammatory response and ribosome synthesis. WGCNA 
demonstrated that lncRNA TTTY14 may affect the prolifera-
tion and intercellular interactions of tumor cells in osteo-
sarcoma by cooperative expression with PEMT, COL10A1, 
GSTA1, etc. ST3GAL4, UCK2, PSAT1 as well as TTTY14 may 
serve as key biomarkers in osteosarcoma. Further animal or 
clinical experiments are needed to verify our findings.
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