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Abstract. Nonlinear dynamics is nowadays widely employed in the study of biological phenomena. 
In such context, taking into account that abnormal heart rhythms display chaotic behaviours, in our 
opinion, the specific attractor dynamics can constitute a method for evaluating various cardiac afflic-
tions. By using mathematical procedures specific to nonlinear dynamics we devise a new method for 
evaluating atrial fibrillations. Using data from ECG signals, we construct strange attractors correspond-
ing to the phase space, specific to the analyzed signals. We show that their dynamics reflect abnormal 
heart rhythms. The skewness and kurtosis values are in accordance with pulse rate distributions from 
histograms of the analyzed signals. The Lyapunov exponent has positive values, close to zero for nor-
mal heart rhythm and with values over one order of magnitude higher in the case of fibrillation crises, 
highlighting a chaotic behavior for cardiac muscle dynamics. All the employed statistical parameters 
were calculated for a total of 5 cases (ECG signals) and statistical correlations were made using Python 
programming language. The presented results show that by applying nonlinear dynamics methods for 
analyzing the heart electrical activity we can obtain valuable information regarding fibrillation crises. 
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Introduction

Almost 60 years ago, Noble developed a  first cardiac cell 
model based on modified Hodgkin-Huxley equations de-
scribing the long-lasting action and pace-maker potential 

of the Purkinje fibers of the heart (Noble 1960). Since then, 
several nonlinear models of electrophysiological dynamics 
were developed with increasing complexity and specificity 
(a review of these models can be found in (Fink et al. 2011; 
de Godoy 2016; Nayak et al. 2018; Vagos et al. 2018)). These 
models suggested the use of nonlinear method to investigate 
the electrical behavior of the heart. In their pioneering works, 
Guevara et al. (1981), Ritzenberg et al. (1984) and Glass and 
Mackey (1988) introduced nonlinear approaches to heart 
rhythm analysis and provided evidence of nonlinear behavior 
in the electrocardiogram (ECG). Methods borrowed from 
the theory of chaos control were successfully applied for 
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the termination of the repolarization alternans to prevent 
alternans-induced ventricular tachycardia of fibrillation 
(Christini et al. 2001a, 2001b), termination of ventricular 
tachycardia (Ripplinger et al. 2006) and control of electrical 
turbulence in the heart (Luther et al. 2011).

The heart rate dynamics is one of the most investigated 
physiological phenomena. A  lot of mathematical meth-
ods were proposed and applied to heart-rate time series 
for evaluating the heart-rate variability: power spectrum, 
autocorrelation function, capacity dimension, correlation 
dimension, Lyapunov exponents, Hurst exponent, recon-
structed phase-space analysis, detrended fluctuation analysis, 
bifurcation analysis, recurrence plot, approximate entropy, 
sample entropy, Kolmogorov-Sinai entropy etc. An extensive 
description of these methods and how they were applied 
can be found in (Acharia et al. 2007; Krogh-Madsen and 
Christini 2012; Nayak et al. 2018; Henriques et al. 2020). The 
Task Force of the European Society of Cardiology and the 
North American Society of Pacing Electrophysiology (1996) 
suggested standards for the quantification of heart rate vari-
ability, including indices for time and frequency domains.

The nonlinear dynamics investigation of the electrocar-
diogram time series can offer important information also for 
other physiological processes than those specific to cardiol-
ogy. Thus, experimental results revealed that the heartbeat 
rate signal present a low-dimensional chaotic state during an 
epileptic seizure, while before and after the seizure event it 
presents a complex, aperiodic behavior (Su et al. 2008). Also, 
Young and Benton (2015) associated heart rate complexity 
with ratings of mood, focused attention reaction times, 
inhibition, and decision time, concluding that nonlinear 
rather than linear methods of summarizing the heart rate 
times series offers a novel way of relating brain functioning 
and behavior.

Current basic methods for evaluating atrial fibrillation 
(AFIB) are resting ECG for diagnosis, and ECG Holter 
monitoring over 24 hours for cases in which the resting 
ECG is not conclusive but there is a high suspicion of atrial 
fibrillation or cases in which fibrillation can be seen on the 
resting ECG but it cannot be determined if this is permanent 
or appears only in paroxysm (Camm et al. 2009; Iaizzo 2015). 
Also, an ECG Holter can establish the minimum and maxi-
mum ventricular frequency in the course of 24 hours, and if 
other heart rhythm disorders can be found for the patient in 
question (atrial flutter, ventricular extrasystoles etc.). If the 
ECG Holter recordings are again inconclusive, but the patient 
suffers from palpitations and a neurotic affliction is out of 
the question, another device can be this time subcutaneously 
implanted – an ILR (Implantable Loop Recorder) which al-
lows for heart rhythm monitoring for as long as three years 
and from a distance, even by using smartphone applications. 
A  high risk of AFIB can be supposed if premature atrial 
complexes can be identified on the resting or Holter ECG 

recordings (Sawhney et al. 2009). A final method involves 
the supervised triggering of AFIB by subjecting the patient to 
an exercise stress test (treadmill test), especially for patients 
with physical effort palpitations (Walraven 2010).

Although the nonlinear dynamics and complex system 
theory provided important information on many aspects 
cardiology, the translation of therapy predictions based 
on nonlinear systems analysis into clinical practice is still 
reduced (Krogh-Madsen and Christini 2012). The existing 
methods must be extended, and new methods must be pro-
posed to improve the performance of clinical applications.

In this paper we devise a new method for evaluating atrial 
fibrillations, by using mathematical procedures specific to 
nonlinear dynamics (strange attractors, skewness, kurtosis, 
histograms, Lyapunov exponent etc.). When compared to 
the above presented methods for evaluating AFIB, it is our 
opinion that this method could potentially estimate AFIB 
risk with a higher accuracy, being less time consuming then 
a Holter ECG, with a lower health risk than an exercise stress 
test, and incomparable cheaper than an ILR. 

Methods

The analyzed electrocardiograms were downloaded from the 
PhysioNet database (PhysioNet). This allows all researchers 
to access a  free collection of physiological signals (Phys-
ioBank), recorded from a  wide range of patients, as well 
as specialized software for viewing and analyzing them. It 
is supported by the National Institute of General Medical 
Science (NIGMS) and the National Institute of Biomedical 
Imaging and Bioengineering (NIBIB), and free access is 
made in accordance with ODC Public Domain Dedication 
and License v1.0. Existing resources are made available to 
stimulate current research in the domain of studying com-
plex biomedical and physiological signals.

The analyzed signal has the following traits:
•	 10-hours	recording	time
•	 sampling	time	of	4	ms,	sampling	rate	of	250	recordings/s
•	 a	total	of	9	205	760	points
•	 amplitude	between	−0.6	mV	and	0.9	mV

These signals have been analyzed using statistical and 
mathematical nonlinear procedures. In this regard, we 
operated with median, variance, skewness, kurtosis, and 
the largest Lyapunov exponent (Arce 2004; Nayfeh and Bal-
achandran 2004). The employed procedures are presented in 
Supplementary Material A. Moreover, we made correlations 
between these previous mentioned parameters for a total of 
5 analyzed cases (ECG recordings). The detailed methods 
are presented in Supplementary Material B.

The statistical analyses were performed using Origin 
Pro, version 9.6.5.169. Shapiro-Wilk test (Shapiro and Wilk 
1965) was used to check the normality of the distribution of 
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measured data. When normality was rejected (as expected 
in the cases where the skewness is different from zero), two 
alternative data distributions were tested, namely log-normal 
and gamma, using the Anderson-Darling test (Anderson and 
Darling 1952). If the Anderson-Darling test rejects both dis-
tributions, according with the extensive analysis performed 
by Kula et al. (2020), the median is more appropriate to be 
considered in data with unknown distribution to charac-
terize the central tendency of data (real mean values). The 
variability of the data is described by the interquartile range 
(IQR) Q1–Q3, which determine the 50% confidence interval 
around the median.

Results

In Figure 1 the graphical representations of ECG frag-
ments (5 s duration) corresponding to pre-crisis, first AFIB 

(AFIB 1), atrial flutter (AFL), second AFIB (AFIB 2) and 
post-crisis, respectively, are shown for the analyzed ECG’s 
presented in Methods. 

Let us mention that AFIB represents an abnormal heart 
rhythm, characterized by rapid and irregular beats. Parox-
ysmal AFIB is a form of tachycardia, manifesting in the case 
in which the ventricular electric activity is disorganized and 
very rapid. The ventricles have very rapid contractions, which 
makes them inefficient (Iaizzo 2015). In this way, a “pulse 
deficit” can occur, a discrepancy between the central and 
peripheral pulses, the latter being lower. The atrial flutter 
(AFL) is an abnormal heart rhythm, which begins in the 
ventricular chambers (Sawhney 2009). When it first appears, 
it is often associated with a high cardiac frequency (over 100 
beats/minute), being classified as a type of supraventricular 
tachycardia.

For the case shown in Figure 1, we observe that in pre-
crisis and post-crisis the pulse is normal. In the first AFIB, 

Figure 1. ECG fragments corresponding 
to periods of pre-crisis (A), AFIB 1 (B), 
AFL (C), AFIB 2 (D), and post-crisis (E). 
AFIB, atrial fibrillation; AFL, atrial flutter.

A

C

B

D

E



380 Zala et al.

heart rate increases slowly, then it shows a rapid increase 
in AFL, slowly decreasing afterwards in the second AFIB. 

In the following, the results obtained by applying the men-
tioned nonlinear mathematical procedures are presented.

The Fourier spectra shown above reveals to us the fol-
lowing: i) during pre-crisis (especially when compared to 
post-crisis), the signal shows a detectable noise, meaning 
that heart beats start to slowly become irregular, anticipat-
ing a crisis; ii) the graphs for AFIB crisis 1 and AFIB crisis 2 
display the chaotic behaviour of the heart (heart rate) dur-
ing these crisis episodes. In atrial flutter, the heart’s upper 
chambers (atria) beat too quickly. This causes the heart to 
beat in a fast, but usually regular, rhythm. This is confirmed 
by the specific Fourier spectrum. In post-crisis, the noise 
starts to decrease, thus showing a return to a relative normal 
and regular heartbeat (Fig. 2). 

Figure 3 shows the systems dynamics attractors in the 
phase space reconstructed trough the delay time method, 
determined using the auto-correlation function.

We must highlight the clear difference between the geom-
etry of attractors from Figure 3, corresponding to the two 
atrial crises (AFIB 1 and 2), and also the differences between 
pre-crisis and post-crisis. This suggests that a defibrillator 
was used to restore normal heart rhythm. 

The analysis of the 1/R-R interval, corresponding to a car-
diac cycle, highlights these three crises, two atrial fibrillations 
and one flutter fibrillations – see Figure 4. For further details 
see Supplementary Material A.

It can be seen that the first AFIB lasts for about 2 min, 
the atrial flutter crisis is about 8 min, and the second AFIB 
is much longer, lasting for about 30 min. In AFIB 1 the 
pulse varies from 60 bpm to 110–120 bpm. AFL shows 
a  higher (about 120 bpm and over) but more constant 
pulse. AFIB 2 is the most severe crisis episode, with rapid 
pulse variations between normal values and higher values, 
120–150 bpm. After this episode, the pulse stabilizes in 
post-crisis, most probably due to defibrillation, as we have 
mentioned before.

Figure 2. Fourier spectra (FFT) for ampli-
tudes of signals from Fig. 1. a.u., arbitrary 
units.
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Figure 3. Systems dynamics attractors 
in the reconstructed phase space cor-
responding to signals from Fig. 1.

The Histogram analysis of signals from Figure 1 is pre-
sented in Figure 5.

The Shapiro-Wilk test excluded the normal distribution 
for all five cases described in Figure 5. Consequently, log-
normal and gamma distributions were tested (also shown in 
Fig. 5). Anderson-Darling test rejected both distributions for 
all cases. According with the extensive analysis performed 
by Kula et al. (2020), the median is more appropriate to be 
considered in data with unknown distribution to characterize 
the central tendency of data (real mean values).

The statistical analysis of signals is summarized in Table 1.
Figure 6 shows the boxplots corresponding to the five 

cases, which allow to visually comparing the scatter of 

the 1/R-R interval, numerically described in the second 
column of Table 1 (Herzig et al. 2017; Caldwell and Cheu-
vront 2018).

The skewness and kurtosis values are in accordance with 
pulse rate distributions from histograms in Figure 5 – for 
further details see Supplementary Material A. The Lyapu-
nov exponent has positive values, close to zero for normal 
heart rhythm, and with values over one order of magnitude 
higher in the case of fibrillation crises, highlighting a chaotic 
behavior for cardiac. 

Histogram analysis of signals from Figure 1, presented 
in Figure 5, shows that, in the beginning, during the pre-
crisis period, the pulse is stable around 60 bpm. It tends 
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Figure 4. Pulse time variation (1/R-R 
interval) during fibrillation crises. For 
abbreviations, see Fig. 1.

Figure 5. Histograms corresponding 
to periods of pre-crisis (A), AFIB 1 
(B), AFL (C), AFIB 2 (D), and post-
crisis (E) (1/R-R intervals) and fitting 
of the data with log-normal (black 
line) and gamma (blue line) distribu-
tions. Boxplots showing the scatter 
of 1/R-R interval for the five cases 
(pre-crisis, AFIB 1, AFL, AFIB 2 and 
post-crisis, respectively) (F). The box 
outline corresponds to IQR, while 
the horizontal solid line marks the 
position of the median. For abbrevia-
tions, see Fig. 1. (See online version 
for color figure.)
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Table 1. Statistical values associated with heart rate variations (1/R-R interval)

Signal 1/R-R interval median (bpm) with the  
interquartile range Q1–Q3 (P25–P75)

Variance from 
median Skewness Kurtosis Largest Lyapunov  

exponent
Pre-crisis 56.3909 (55.5556–57.4713) 16.9199 4.4938 37.6779 0.013981
AFIB 1 53.3807 (51.5464–104.1667) 965.6498 0.7814 −1.098 0.211145
AFL 115.3846 (112.7941–117.8846) 25.7844 −0.0359 0.462 0.082811
AFIB 2 76.9231 (66.9643–94.9367) 413.4116 0.7047 0.0456 0.138646
Post-crisis 56.6037 (56.1798–57.2519) 22.9663 8.2509 82.8455 0.014529

AFIB, atrial fibrillation; AFL, atrial flutter.

Figure 6. Mixture of 2:1, 3:1, 4:1 and 5:1 conduction ratios during 
the atrial flutter.

to increase during the first atrial fibrillation crisis, with 
a maximum of around 110 bpm. During flutter fibrillation, 
the pulse has values between 100–130 bpm. The histogram 
corresponding to the second atrial fibrillation has an ap-
proximately Gaussian distribution, with a  maximum at 
60–80 bpm. During post-crisis the pulse stabilizes, reach-
ing 60 bpm. 

We must also highlight the fact that, in the case of atrial 
flutter, there is a pattern of alternating 2:1, 3:1, 4:1 and 5:1 
conduction ratio, as can be observed in Figure 7.

Since aberrant conduction may be sustained in AFL, 
due to the linking phenomenon, the pattern may mimic 
ventricular tachycardia. In atrial flutter the atrial electrical 
activity is far less chaotic than in atrial fibrillation, so that 
assessment of A-V conduction is less difficult. Nevertheless, 
it is impossible to determine exactly which out of the atrial 
impulses has been conducted, due to the extremely fast atrial 
rate: the conducted impulse, indeed, is not always the one 
that immediately precedes the QRS complex. In the absence 
of drugs, atrial flutter is usually associated with 2:1 (or, less 
frequently, 4:1) conduction ratio, being the odd ratios (3:1, 
5:1) far rarer (Oreto et al. 1991). Therefore, we can suppose 
that at the start of AFL specific drugs have been administered, 
such as anti-arrhythmic medications. These drugs are used 
to chemically convert atrial flutter to normal sinus rhythm, 
reduce the frequency and duration of atrial flutter episodes, 
and prevent future episodes. They are often given to prevent 
return of atrial flutter after cardioversion.

Discussions

As it was shown above, in this paper we employed math-
ematical procedures specific to nonlinear dynamics (in the 
form of strange attractors, skewness, kurtosis, histograms, 
and Lyapunov exponent), aiming to devise a new method 
for evaluating atrial fibrillations. By using data from ECG 
signals, we constructed strange attractors corresponding 
to the phase space, specific to the analysed signals. Fur-
thermore, it is shown that their dynamics reflect abnormal 
heart rhythms.

Summarization of the main results of our study 

a) skewness and kurtosis values are in accordance with pulse 
rate distributions from the histograms of the analyzed 
ECG signals;

b) the Lyapunov exponent has positive values, close to zero 
for normal heart rhythm, and with values over one order 
of magnitude higher in the case of fibrillation crises, high-
lighting a chaotic behavior for cardiac muscle dynamics;

c) in the case of atrial flutter, there is a pattern of alternating 
2:1, 3:1, 4:1 and 5:1 conduction ratio;

d) the abnormal heart rhythms can be analyzed through 
strange attractors dynamics in the reconstructed phase 
space. It results that to each stage of a  crisis a  specific 
strange attractor can be associated;

e) it is difficult to establish threshold values for the significant 
parameters to detect atrial flutter or fibrillation since the 
transitions from different regimes (as for example normal 
heart rhythm to atrial fibrillation, or atrial fibrillation to 
atrial flutter) are not continuous but sudden. After the 
transition, the significant parameters suddenly increase/
decrease with one order of magnitude or more (see, for 
example the variance, skewness, kurtosis or Lyapunov 
exponent).
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Validation of our method

In Supplementary Material B we have selected another 4 ECG 
signals from the PhysioBank database and calculated the same 
statistical parameters as in the case presented above. For sta-
tistically correlating the results we have used Google Colab®.

In Table 2 we present the statistical values associated 
with heart rate variations (1/R-R interval) for the 5 analyzed 
cases. The first (uppermost) values are the ones which we 
thoroughly analyze in the paper.

The statistical analysis of all 5 signals (by using a Python 
code) reveals the following:
a) strong and very strong correlations can be seen for the 

pre-crisis and post-crisis stages;
b) fewer strong correlations can be established in the AFIB 

1, AFL, and AFIB 2 stages. This could possibly be caused 
by the fact that in these stages, the signals have a chaotic 
component also. In such context, further developments 
of our analysis should also take into account chaotic 
behaviors (different types of noise).

The novelty of our method

To the best of our knowledge, no other works have employed 
all the statistical parameters used in the present paper, for 
analysing cardiac normal and pathological states. Moreover, 
we could not find any conclusive data, form a  nonlinear 
dynamics statistical analysis point of view; on the specific 
pathology we approached: fibrillation with atrial flutter. 

Limitations of our method

We must also mention the fact that the main limitation 
of our proposed model is that this analysis should be ex-
tended to a relative high number of ECG signals, in order 
to prove consistency. This is mainly due to the fact that, 
although we are discussing the same pathology, patients’ 
physiologies vary greatly. Although, as it can be seen from 
Supplementary Material B, the initial results are promising, 
and they can be considered as a starting point for further 
developments.

Table 2. Statistical values associated with heart rate variations (1/R-R interval) for the 5 analysed cases

Signal 1/R−R interval  
median (bpm)

Variance from 
median Skewness Kurtosis Largest Lyapunov 

exponent
Pre-crisis 56.3909 16.919 4.4938 37.6779 0.013981

57.0675 17.104 4.5522 38.0171 0.014176
55.4508 17.238 4.5066 37.1504 0.013827
65.4882 17.492 4.6241 38.2430 0.014519
63.6287 17.318 4.5612 34.4752 0.014415

AFIB 1 53.3807 965.6498 0.7814 −1.098 0.211145
52.7852 894.5035 0.7829 −1.114 0.215325
58.9641 984.3088 0.7766 −1.142 0.219243
75.5347 963.1045 0.7829 −1.092 0.216212
62.3488 972.4561 0.7663 −1.090 0.199779

AFL 115.3846 25.7844 −0.0359 0.462 0.082811
122.4571 25.4338 −0.0357 0.4586 0.076186
131.5822 26.0951 −0.0371 0.4719 0.081154
118.9274 24.9041 −0.0364 0.4578 0.084715
129.6638 25.2975 −0.0362 0.4631 0.083804

AFIB 2 76.9231 413.4116 0.7047 0.0456 0.138646
75.8267 422.1173 0.7131 0.0421 0.127831
83.9285 419.7553 0.7216 0.0486 0.117860
90.5721 420.4899 0.7194 0.0457 0.138368
81.2834 436.9258 0.7309 0.0487 0.115384

Post-crisis 56.6037 22.9663 8.2509 82.8455 0.014529
59.8244 22.9155 8.3416 82.9449 0.014791
62.3971 23.8193 8.5396 80.4595 0.013367
55.9364 24.1952 8.6676 78.9468 0.012832
60.1687 23.2470 8.4667 81.3855 0.014120

The first (uppermost) values are the ones which we thoroughly analyse in the paper.
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Conclusions

The presented results show that by applying nonlinear dy-
namics methods for analyzing the heart electrical activity we 
can obtain valuable information regarding fibrillation crises. 
Our method could be used for developing new models for 
medical diagnosis and evolution tracking of heart diseases. 
To this end, we would like to continue our research by ana-
lyzing ventricular fibrillations patterns. Taking into account 
the multi-fractality property of biological structures, a theo-
retical model based on harmonic mapping on multi-fractal 
manifolds could prove useful in correlating our results – for 
further details see (Agop et al. 2008; Colotin et al. 2009; 
Bujoreanu et al. 2017; Tesloianu et al. 2017).
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Section A

I. Direct analysis of signals. Fourier spectrum

A signal represents a time recording of a state variable. Sig-
nals can be periodic or non-periodic, stationary or non-sta-
tionary. A periodic signal is the one that, after a time period 
T, identically repeats itself, being described by a relation like:
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Section A 
 
I. Direct analysis of signals. Fourier spectrum 
A signal represents a time recording of a state variable. Signals can be periodic or non-periodic, stationary or 
non-stationary. A periodic signal is the one that, after a time period T, identically repeats itself, being 
described by a relation like: 
 

( ) ( )x t x t kT= +        (A1) 
 

where k is an integer number. In the opposite case, the signal is non-periodic, of a quasi-periodic, chaotic or 
transitory type. The easiest to identify are transitory signals, because they generally show a short time 
evolution, due to their rapid dampening. 

One of the most important aspects of physiological signals is their oscillatory traits. In this regard, the 
Fourier analysis is a method of extracting from signal information about its oscillating structure. In the case 
of a discrete system, the discrete Fourier transform (DFT) is used. A special type of DFT is the fast Fourier 
transform (FFT), which actually is the most efficient algorithm if we take into account the calculus speed. 
The FFT representation as a function of frequency is called a Fourier spectrum. In Figure SA1, we show 
some typical representations of experimental Fourier spectra, corresponding to harmonic, non-linear, quasi-
periodic and chaotic signals. 

 
II. Statistical analysis of signals 
Statistics can provide important information about the nature of the recorded signal. The statistical methods 
are applied depending on the signal type, after its direct analysis.  

The average value of a data set D, with N recordings, is defined as: 
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The median is the value separating the higher half from the lower half of a data set. 
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to harmonic, non-linear, quasi-periodic and chaotic signals.

II. Statistical analysis of signals

Statistics can provide important information about the 
nature of the recorded signal. The statistical methods are 
applied depending on the signal type, after its direct analysis. 

The average value of a data set D, with N recordings, is 
defined as:

1 
 

DOI: 10.4149/gpb_2021016 
 

S u p p l e m e n t a r y  M a t e r i a l 
 
Evaluating atrial fibrillations through strange attractors dynamics 
 
Andrei Zala1, Dan Dimitriu2, Maricel Agop3,4, Dan N. Tesloianu5, Maria L. Cobzeanu6, Bogdan M. 
Cobzeanu7, Marcela C. Rusu3 and Vlad Ghizdovat8 
 

1 Electrical Engineering Department, “Gheorghe Asachi” Technical University, Iasi, Romania 
2 Faculty of Physics, “Alexandru Ioan Cuza” University, Iasi, Romania 
3 Physics Department, “Gheorghe Asachi” Technical University, Iasi, Romania 
4 Academy of Romanian Scientists, Bucuresti, Romania 
5 Cardiology Clinic, „Sf. Spiridon” Clinical Emergency Hospital Iasi, “Grigore T. Popa” University of 
Medicine and Pharmacy, Iasi, Romania 
6 „Sf. Spiridon” Clinical Emergency Hospital Iasi, “Grigore T. Popa” University of Medicine and 
Pharmacy, Romania 
7 Clinical Recovery Hospital Iasi, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi, Romania 
8 Biophysics and Medical Physics Department, Faculty of Medicine, “Grigore T. Popa” University of 
Medicine and Pharmacy, Iasi, Romania 
 
Section A 
 
I. Direct analysis of signals. Fourier spectrum 
A signal represents a time recording of a state variable. Signals can be periodic or non-periodic, stationary or 
non-stationary. A periodic signal is the one that, after a time period T, identically repeats itself, being 
described by a relation like: 
 

( ) ( )x t x t kT= +        (A1) 
 

where k is an integer number. In the opposite case, the signal is non-periodic, of a quasi-periodic, chaotic or 
transitory type. The easiest to identify are transitory signals, because they generally show a short time 
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Fourier analysis is a method of extracting from signal information about its oscillating structure. In the case 
of a discrete system, the discrete Fourier transform (DFT) is used. A special type of DFT is the fast Fourier 
transform (FFT), which actually is the most efficient algorithm if we take into account the calculus speed. 
The FFT representation as a function of frequency is called a Fourier spectrum. In Figure SA1, we show 
some typical representations of experimental Fourier spectra, corresponding to harmonic, non-linear, quasi-
periodic and chaotic signals. 
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Statistics can provide important information about the nature of the recorded signal. The statistical methods 
are applied depending on the signal type, after its direct analysis.  
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The median is the value separating the higher half from 
the lower half of a data set.

The standard deviation is a  statistical quantity used for 
evaluating the spread of individual values around the average of 
values. A low standard deviation shows that the recorded values 
are close to their average. For a data set D, with N recordings and 
MD the average, the standard deviation S can be calculated as:
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The standard deviation from the median can be calculated with a formula analogous with Eq. A3: 
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Variance is used in descriptive statistics, statistical interference, hypotheses testing, Monte Carlo 
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Variance from the median is defined as the square of the standard deviation from the median: 
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In signal analysis, it can be harder to work with signals corresponding to chaotic or nonlinear dynamics, 

because the characteristic parameters are difficult to establish. In these cases, results interpretation is greatly 
affected by noise. The type of noise cannot always be determined, and that is why significant progress has 
been made when a statistical method for separating noise types has been found. Thus, we can use a normal 
Gaussian distribution and then compare it with the signal of interest. There are two quantities which can be 
employed for this: skewness and kurtosis.  

Skewness is a measure of asymmetry with respect to the normal probability distribution and can be 
written as: 
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It can have either negative values, which means it leans towards the right side of the Gaussian 

distribution, or positive values, meaning that it leans towards the left side of the Gaussian distribution – see 
Figure SA2. 

Kurtosis is a measure of the amplitude with respect to the normal probability distribution and it can be 
calculated as: 

 

 (A3)

The standard deviation from the median can be calculated 
with a formula analogous with Eq. A3:

2 
 

The standard deviation is a statistical quantity used for evaluating the spread of individual values around 
the average of values. A low standard deviation shows that the recorded values are close to their average. 
For a data set D, with N recordings and MD the average, the standard deviation S can be calculated as: 

 

a
( ) 2

1

N

D
i

D i M
S

N
=

  −
=


    (A3) 

 
The standard deviation from the median can be calculated with a formula analogous with Eq. A3: 
 

( ) 2

1

N

i
D i Median

SDM
N

=

  −
=


    (A4) 

 
Variance is used in descriptive statistics, statistical interference, hypotheses testing, Monte Carlo 

sampling etc. It is defined as the square of the standard deviation: 
 

( ) 2

2 1

N

D
i

D i M
Var S

N
=

  −
= =


     (A5) 

 
Variance from the median is defined as the square of the standard deviation from the median: 
 

( ) 2

2 1

N

i
D i Median

VarM SDM
N

=

  −
= =


   (A6) 

 
In signal analysis, it can be harder to work with signals corresponding to chaotic or nonlinear dynamics, 

because the characteristic parameters are difficult to establish. In these cases, results interpretation is greatly 
affected by noise. The type of noise cannot always be determined, and that is why significant progress has 
been made when a statistical method for separating noise types has been found. Thus, we can use a normal 
Gaussian distribution and then compare it with the signal of interest. There are two quantities which can be 
employed for this: skewness and kurtosis.  

Skewness is a measure of asymmetry with respect to the normal probability distribution and can be 
written as: 

 

( )

( )

3

1
1 3

22

1

1

1
1

N

D
i

N

D
i

D i M
N

D i M
N

 =

=

  

       

−
=

−
−




    (A7) 

 
It can have either negative values, which means it leans towards the right side of the Gaussian 

distribution, or positive values, meaning that it leans towards the left side of the Gaussian distribution – see 
Figure SA2. 

Kurtosis is a measure of the amplitude with respect to the normal probability distribution and it can be 
calculated as: 

 

 (A4)

Variance is used in descriptive statistics, statistical inter-
ference, hypotheses testing, Monte Carlo sampling etc. It is 
defined as the square of the standard deviation:

2 
 

The standard deviation is a statistical quantity used for evaluating the spread of individual values around 
the average of values. A low standard deviation shows that the recorded values are close to their average. 
For a data set D, with N recordings and MD the average, the standard deviation S can be calculated as: 

 

a
( ) 2

1

N

D
i

D i M
S

N
=

  −
=


    (A3) 

 
The standard deviation from the median can be calculated with a formula analogous with Eq. A3: 
 

( ) 2

1

N

i
D i Median

SDM
N

=

  −
=


    (A4) 

 
Variance is used in descriptive statistics, statistical interference, hypotheses testing, Monte Carlo 

sampling etc. It is defined as the square of the standard deviation: 
 

( ) 2

2 1

N

D
i

D i M
Var S

N
=

  −
= =


     (A5) 

 
Variance from the median is defined as the square of the standard deviation from the median: 
 

( ) 2

2 1

N

i
D i Median

VarM SDM
N

=

  −
= =


   (A6) 

 
In signal analysis, it can be harder to work with signals corresponding to chaotic or nonlinear dynamics, 

because the characteristic parameters are difficult to establish. In these cases, results interpretation is greatly 
affected by noise. The type of noise cannot always be determined, and that is why significant progress has 
been made when a statistical method for separating noise types has been found. Thus, we can use a normal 
Gaussian distribution and then compare it with the signal of interest. There are two quantities which can be 
employed for this: skewness and kurtosis.  

Skewness is a measure of asymmetry with respect to the normal probability distribution and can be 
written as: 

 

( )

( )

3

1
1 3

22

1

1

1
1

N

D
i

N

D
i

D i M
N

D i M
N

 =

=

  

       

−
=

−
−




    (A7) 

 
It can have either negative values, which means it leans towards the right side of the Gaussian 

distribution, or positive values, meaning that it leans towards the left side of the Gaussian distribution – see 
Figure SA2. 

Kurtosis is a measure of the amplitude with respect to the normal probability distribution and it can be 
calculated as: 

 

 (A5)



2 Zala et al.

Variance from the median is defined as the square of the 
standard deviation from the median:

2 
 

The standard deviation is a statistical quantity used for evaluating the spread of individual values around 
the average of values. A low standard deviation shows that the recorded values are close to their average. 
For a data set D, with N recordings and MD the average, the standard deviation S can be calculated as: 

 

a
( ) 2

1

N

D
i

D i M
S

N
=

  −
=


    (A3) 

 
The standard deviation from the median can be calculated with a formula analogous with Eq. A3: 
 

( ) 2

1

N

i
D i Median

SDM
N

=

  −
=


    (A4) 

 
Variance is used in descriptive statistics, statistical interference, hypotheses testing, Monte Carlo 

sampling etc. It is defined as the square of the standard deviation: 
 

( ) 2

2 1

N

D
i

D i M
Var S

N
=

  −
= =


     (A5) 

 
Variance from the median is defined as the square of the standard deviation from the median: 
 

( ) 2

2 1

N

i
D i Median

VarM SDM
N

=

  −
= =


   (A6) 

 
In signal analysis, it can be harder to work with signals corresponding to chaotic or nonlinear dynamics, 

because the characteristic parameters are difficult to establish. In these cases, results interpretation is greatly 
affected by noise. The type of noise cannot always be determined, and that is why significant progress has 
been made when a statistical method for separating noise types has been found. Thus, we can use a normal 
Gaussian distribution and then compare it with the signal of interest. There are two quantities which can be 
employed for this: skewness and kurtosis.  

Skewness is a measure of asymmetry with respect to the normal probability distribution and can be 
written as: 

 

( )

( )

3

1
1 3

22

1

1

1
1

N

D
i

N

D
i

D i M
N

D i M
N

 =

=

  

       

−
=

−
−




    (A7) 

 
It can have either negative values, which means it leans towards the right side of the Gaussian 

distribution, or positive values, meaning that it leans towards the left side of the Gaussian distribution – see 
Figure SA2. 

Kurtosis is a measure of the amplitude with respect to the normal probability distribution and it can be 
calculated as: 

 

 (A6)

In signal analysis, it can be harder to work with signals 
corresponding to chaotic or nonlinear dynamics, because the 
characteristic parameters are difficult to establish. In these 
cases, results interpretation is greatly affected by noise. The 
type of noise cannot always be determined, and that is why 
significant progress has been made when a statistical method 
for separating noise types has been found. Thus, we can use 
a normal Gaussian distribution and then compare it with 
the signal of interest. There are two quantities which can be 
employed for this: skewness and kurtosis. 

Skewness is a measure of asymmetry with respect to the 
normal probability distribution and can be written as:

2 
 

The standard deviation is a statistical quantity used for evaluating the spread of individual values around 
the average of values. A low standard deviation shows that the recorded values are close to their average. 
For a data set D, with N recordings and MD the average, the standard deviation S can be calculated as: 

 

a
( ) 2

1

N

D
i

D i M
S

N
=

  −
=


    (A3) 

 
The standard deviation from the median can be calculated with a formula analogous with Eq. A3: 
 

( ) 2

1

N

i
D i Median

SDM
N

=

  −
=


    (A4) 

 
Variance is used in descriptive statistics, statistical interference, hypotheses testing, Monte Carlo 

sampling etc. It is defined as the square of the standard deviation: 
 

( ) 2

2 1

N

D
i

D i M
Var S

N
=

  −
= =


     (A5) 

 
Variance from the median is defined as the square of the standard deviation from the median: 
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In signal analysis, it can be harder to work with signals corresponding to chaotic or nonlinear dynamics, 

because the characteristic parameters are difficult to establish. In these cases, results interpretation is greatly 
affected by noise. The type of noise cannot always be determined, and that is why significant progress has 
been made when a statistical method for separating noise types has been found. Thus, we can use a normal 
Gaussian distribution and then compare it with the signal of interest. There are two quantities which can be 
employed for this: skewness and kurtosis.  

Skewness is a measure of asymmetry with respect to the normal probability distribution and can be 
written as: 
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It can have either negative values, which means it leans towards the right side of the Gaussian 

distribution, or positive values, meaning that it leans towards the left side of the Gaussian distribution – see 
Figure SA2. 

Kurtosis is a measure of the amplitude with respect to the normal probability distribution and it can be 
calculated as: 
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The kurtosis value of a normal distribution is 3. Distributions for which kurtosis is higher than 3 are 

called leptokurtic and have nearer extreme values, the graphic being “taller” than in the case of a normal 
Gaussian distribution. When kurtosis has values lower than 3, the distributions are called platykurtic and 
have the property that they are asymptotically closing to zero much harder than a normal distribution, so that 
their extremes are farther away, and the graphic is “shorter” – see Figure SA3. 

The histogram is a graphic method used for synthetizing continuously or discrete recorded data, measured 
on a certain time interval. It pictures the major characteristics of signal’s data distribution. A histogram 
divides the possible signal’s values domain in classes or groups. In Figure SA4 we give some examples of 
histograms corresponding to typical distributions (Arce 2004): 

i. normal distribution (Fig. SA3a) – it is described by a bell-shaped curve (Gauss curve); its maximum 
frequency is in the center; 

ii. bimodal distribution (Fig. SA3b) – it shows two maximums and indicates that the data comes from 
multiple simultaneous processes; 

iii. truncated distribution (Fig. SA3c) – can be characterized by a steep decrease at one end, indicating a 
possible prior sorting; 

iv. ragged plateau distribution (Fig. SA3d) – it has the aspect of alternating ridges, indicating a possible 
measurement error; 

v. skewed distribution (Fig. SA4e) – it looks like an asymmetric curve, with values tending to concentrate at 
one end. 
The histograph is a graphic formed by connecting segments from the upper parts of histogram’s 

rectangles (Figure SA5). A histograph smoothens abrupt changes that can appear in a histogram. 
 
III. Signal analysis using nonlinear dynamics methods 
Nonlinear dynamics proposes a vast array of methods for signal analysis. Selecting one is done taking into 
account the signal specifics and the information one wants to obtain. We will mention only the methods 
employed in this work. 

The Lyapunov exponents associated to a phase space trajectory of a dynamic system are a measure of the 
average expansion or contraction rate of trajectories around it, i.e. trajectories that arise from very close 
initial conditions (Arce 2004). These exponents are asymptotic quantities, locally defined as follows. Let us 
consider x(t) the trajectory in the phase space of a dynamic system, which starts from an initial condition 
very close to x0: xʹ(t = 0) = x0. We define the distance between the two trajectories as y(t) = |x(t) − xʹ(t)|. 
Considering that this distance varies exponentially with time (this hypothesis must be verified for each case 
in particular): 
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The exponent, which appears in this relation, λ is called the Lyapunov exponent. If the phase space is n-

dimensional (there are n independent quantities describing the state of the system), then we can define a 
Lyapunov exponent for each dimension, therefore n Lyapunov coefficients exist, which, together, form the 
Lyapunov spectrum (Nayfeh and Balachandran 2004). If the Lyapunov exponent is positive, it means that 
there is a high divergence of initial trajectories from neighboring initial conditions, this being characteristic 
to chaotic dynamic systems. We usually don’t need to calculate all the Lyapunov exponents, because there is 
a fast algorithm for calculating the highest Lyapunov exponent. If this is positive, the system is chaotic; if it 
is negative, it means that all the other Lyapunov exponents are negative; therefore the system is not chaotic.  

The phase space for a system dynamic is usually higher than 3, so that its graphical representation is 
impossible. This type of spaces can only be visualized by using projection on subspaces of 3 dimension. 
Eckman, Kamphorst, and Ruelle developed a method for visualizing the recurrence of state xi, in a phase 
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give some examples of histograms corresponding to typical 
distributions (Arce 2004):
i. normal distribution (Fig. SA3a) – it is described by a bell-

shaped curve (Gauss curve); its maximum frequency is 
in the center;

ii. bimodal distribution (Fig. SA3b) – it shows two maxi-
mums and indicates that the data comes from multiple 
simultaneous processes;

iii. truncated distribution (Fig. SA3c) – can be characterized 
by a steep decrease at one end, indicating a possible prior 
sorting;

iv. ragged plateau distribution (Fig. SA3d) – it has the aspect 
of alternating ridges, indicating a possible measurement 
error;

v. skewed distribution (Fig. SA4e) – it looks like an asymmetric 
curve, with values tending to concentrate at one end.
The histograph is a graphic formed by connecting seg-

ments from the upper parts of histogram’s rectangles (Figure 
SA5). A histograph smoothens abrupt changes that can ap-
pear in a histogram.

III. Signal analysis using nonlinear dynamics methods

Nonlinear dynamics proposes a vast array of methods for 
signal analysis. Selecting one is done taking into account 
the signal specifics and the information one wants to obtain. 
We will mention only the methods employed in this work.

The Lyapunov exponents associated to a  phase space 
trajectory of a dynamic system are a measure of the aver-
age expansion or contraction rate of trajectories around it, 
i.e. trajectories that arise from very close initial conditions 
(Arce 2004). These exponents are asymptotic quantities, lo-
cally defined as follows. Let us consider x(t) the trajectory in 
the phase space of a dynamic system, which starts from an 
initial condition very close to x0: x'(t = 0) = x0. We define the 
distance between the two trajectories as y(t) = |x(t) − x'(t)|. 
Considering that this distance varies exponentially with time 
(this hypothesis must be verified for each case in particular):
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Lyapunov exponent for each dimension, therefore n Lyapunov coefficients exist, which, together, form the 
Lyapunov spectrum (Nayfeh and Balachandran 2004). If the Lyapunov exponent is positive, it means that 
there is a high divergence of initial trajectories from neighboring initial conditions, this being characteristic 
to chaotic dynamic systems. We usually don’t need to calculate all the Lyapunov exponents, because there is 
a fast algorithm for calculating the highest Lyapunov exponent. If this is positive, the system is chaotic; if it 
is negative, it means that all the other Lyapunov exponents are negative; therefore the system is not chaotic.  
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The exponent, which appears in this relation, λ is called the 
Lyapunov exponent. If the phase space is n-dimensional (there 
are n independent quantities describing the state of the system), 

Figure SA2.

Figure SA3. Figure SA4.
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then we can define a Lyapunov exponent for each dimension, 
therefore n Lyapunov coefficients exist, which, together, form 
the Lyapunov spectrum (Nayfeh and Balachandran 2004). If 
the Lyapunov exponent is positive, it means that there is a high 
divergence of initial trajectories from neighboring initial con-
ditions, this being characteristic to chaotic dynamic systems. 
We usually don’t need to calculate all the Lyapunov exponents, 
because there is a fast algorithm for calculating the highest 
Lyapunov exponent. If this is positive, the system is chaotic; if 
it is negative, it means that all the other Lyapunov exponents 
are negative; therefore the system is not chaotic. 

The phase space for a system dynamic is usually higher 
than 3, so that its graphical representation is impossible. This 
type of spaces can only be visualized by using projection on 
subspaces of 3 dimension. Eckman, Kamphorst, and Ruelle 
developed a method for visualizing the recurrence of state xi, 
in a phase space (Eckmann et al. 1987). Their method allows 
investigating the system’s trajectory in a m-dimensional space 
by representing its two-dimensional recurrences. The recur-
rence of a state corresponding to the moment tt at a different 
time tj can be graphically presented by a two-dimensional 
square matrix, in which the dark colored points represent 

the recurrence. This is called a recurrence graphic, and it can 
be defined by the following relation:
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where N is the number of xi states considered, ε is a threshold distance, and Θ is the Heaviside step function 
(Arce 2004). The recurrence graphic shows both large scale (topology) and reduced scale (texture) 
characteristics. Topology offers a global impression, which can be characterized as homogenous, period, 
drift, or disrupted. Textures form the base of the recurrence graphic qualitative analysis. Aflori and Dimitriu 
(2006) devised a summative table for a qualitative interpretation of recurrence graphics – see Table SA1.  

In Figure SA6, recurrence maps are drawn, corresponding to “white” noise (random signal), harmonic 
oscillations (perfect sinusoidal), Brownian motion, and to a healthy patient’s ECG (Perc 2005).  

For the quantitative estimation of the structural degree of the recurrence map, the spatial-temporal 
entropy is calculated, measuring both the spatial and temporal structural degrees. It compares the global 
distribution of colors along the whole recurrence map with the distribution of colors along each diagonal of 
the map (Aflori and Dimitriu 2006). The result is normed and presented in the form of a maximum value 
percentage, corresponding to a random signal. A 100% spatial-temporal entropy indicates the absence of any 
structure (uniform color distribution), while a value of 0% for the same entropy means a perfect 
structuralizing (distinct model in the map, total predictability) (Aflori and Dimitriu 2006). 

In most experimental situations it is very hard to establish the independent coordinates that describe a 
systems’ dynamics, necessary for building the phase space. For this reason, several alternative methods for 
constructing such a space have been developed, the most well-known one being the delay time method. 

Experimentally, most often a single system variable is measured: 
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where τs is the sampling time of the instrument used for measuring the s variable. A series of paper 

written at the end of the 20th century suggested that the measurement of a single signal could be sufficient to 
“reconstruct” a phase space in which the system’s dynamics is equivalent with the one from the original 
phase space. Packard et al. (1980) demonstrated this equivalency through numerical simulations, while 
Takens (1981) demonstrated it with mathematical rigor. As a consequence of this equivalence, the attractor 
from the reconstructed phase space has the same invariants (like the Lyapunov exponents) as the original 
one.  

In order to reconstruct the independent coordinates of the phase space, Packard and co. proposed using 
the signal’s derivatives (Packard et al. 1980). In this way, the derivates can be approximated with the finite 
differences: 
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From the above-written formulas it can be observed that, at each new differentiation, new information 

already contained in the measured signal is added, but at time moments delayed with a multiple of the delay 
time. This observation lead Packard et al. (1980), Takens (1981), and Ruelle (1989) to the conclusion that 
there is no need for derivatives in order to compose a coordinates system that describes the structure of 
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where N is the number of xi states considered, ε is a threshold 
distance, and Θ is the Heaviside step function (Arce 2004). 
The recurrence graphic shows both large scale (topology) 
and reduced scale (texture) characteristics. Topology offers 
a global impression, which can be characterized as homog-
enous, period, drift, or disrupted. Textures form the base 
of the recurrence graphic qualitative analysis. Aflori and 
Dimitriu (2006) devised a summative table for a qualitative 
interpretation of recurrence graphics – see Table SA1. 

In Figure SA6, recurrence maps are drawn, correspond-
ing to “white” noise (random signal), harmonic oscillations 
(perfect sinusoidal), Brownian motion, and to a  healthy 
patient’s ECG (Perc 2005). 

For the quantitative estimation of the structural degree 
of the recurrence map, the spatial-temporal entropy is cal-
culated, measuring both the spatial and temporal structural 
degrees. It compares the global distribution of colors along the 
whole recurrence map with the distribution of colors along 
each diagonal of the map (Aflori and Dimitriu 2006). The 
result is normed and presented in the form of a maximum 
value percentage, corresponding to a random signal. A 100% 
spatial-temporal entropy indicates the absence of any struc-
ture (uniform color distribution), while a value of 0% for the 
same entropy means a perfect structuralizing (distinct model 
in the map, total predictability) (Aflori and Dimitriu 2006).

In most experimental situations it is very hard to establish 
the independent coordinates that describe a systems’ dynamics, 
necessary for building the phase space. For this reason, several 
alternative methods for constructing such a space have been de-
veloped, the most well-known one being the delay time method.

Figure SA5.

Table SA1. Qualitative interpretation of recurrence graphics

Observations Interpretation
Homogeneity The process is stationary
Upper left and lower right decoloring The process is not stationary, it contains a trend or a drift
Disruption (white bands) The process is not stationary; some states are rare or far from normal; transitions occurred
Periodic patterns Cyclicalities in the process; the temporal distance between period patterns corresponds to the period
Isolated singular points Strong fluctuation in the process; if an isolated singular point appears, the process could be random
Diagonal lines (parallel with the 
main diagonal)

States evolutions is similar at different times; the process can be a deterministic one; if the diagonal 
lines appear between isolated singular points, the process could be chaotic; if, in addition, the 
diagonal lines are periodic, the system contains unstable periodic orbits

Diagonal lines (perpendicular on the 
main diagonal)

States evolution is similar at different time intervals but with inverse time; sometimes this indicates 
an insufficient immersed

Vertical or horizontal lines/clusters Some states do not change or they change very slowly in time



5Atrial fibrillations through strange attractors

Experimentally, most often a  single system variable is 
measured:
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where τs is the sampling time of the instrument used for 
measuring the s variable. A series of paper written at the 
end of the 20th century suggested that the measurement of 
a single signal could be sufficient to “reconstruct” a phase 
space in which the system’s dynamics is equivalent with the 
one from the original phase space. Packard et al. (1980) dem-
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The space constructed with the yn vectors is called the reconstructed phase space. According to Takens 

(1981) and Mané (1981), the geometrical structure for the dynamics of the systems for which the variable s 
has been measured can be observed in the reconstructed d-dimensional Euclidian space, if d ≥ 2da + 1, 
where da is the attractor’s dimension. In 1991, Sauer et al. (1991) had shown that it is sufficient for d ≥ 2da. 
The parameter τ is called the delay time, and the integer d is called the immersion dimension. 

The immersion dimension must be large enough so that no intersection of orbits reconstructed with 
themselves (false intersections) should appear. There are several ways for determining this dimension; the 
most often used one being the systems’ invariants saturations and the false nearest neighbors method 
(Nayfeh and Balachandran 2004).  

In theory, the delay time can be arbitrary chosen if we have infinity of data, not altered by noise. As this 
is improbable in practice, the value of the delay time must be chosen with care. If this value is too low, the 
trajectories in the reconstructed phase space will clutter towards the main diagonal, due to the fact that the 
delayed coordinates are excessively correlated. On the other hand, if the chosen value is too high, an 
artificial decorrelation can appear, and the delayed coordinates become uncorrelated. The most often used 
methods for determining the delay time are the autocorrelation function, the average mutual information, 
and the generalized correlations integral methods (Nayfeh and Balachandran 2004). 
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The space constructed with the yn vectors is called the 
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no intersection of orbits reconstructed with themselves 
(false intersections) should appear. There are several ways 
for determining this dimension; the most often used one be-
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neighbors method (Nayfeh and Balachandran 2004). 

In theory, the delay time can be arbitrary chosen if we have 
infinity of data, not altered by noise. As this is improbable in 
practice, the value of the delay time must be chosen with care. 
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phase space will clutter towards the main diagonal, due to the 
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uncorrelated. The most often used methods for determining 
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mutual information, and the generalized correlations integral 
methods (Nayfeh and Balachandran 2004).
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Section B

In this supplementary material we have selected another 4 
ECG signals from the PhysioBank database and calculated 
the same statistical parameters as in the case presented in 
the main body of this paper.

For statistically correlating the results we have used 
Google Colab®.

Colaboratory, or “Colab” for short, allows you to write 
and execute Python in the browser, with zero configuration 
required, free access to GPUs, and also easy sharing.

In the following we want to present the program input 
and output for all 5 analyzed ECG signals.
i) Output data for the 5 analyzed signals – pre-crisis.

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(‘pre-crisis.csv’)

df.info()

OUT

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 5 entries, 0 to 4
Data columns (total 6 columns):
 # Column Non-Null Count Dtype 
--- ------ -------------- ----- 
0 R-R interval median 5 non-null float64
1 Variance 5 non-null float64
2 Geometric standard deviation 5 non-null float64
3 Skewness 5 non-null float64
4 Kurtosis 5 non-null float64
5 Largest Lyapunov exponent 5 non-null float64

dtypes: float64(6)
memory usage: 368.0 bytes

df.describe()
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https://doi.org/10.1103/PhysRevLett.45.712
https://doi.org/10.1088/0143-0807/26/5/008
https://doi.org/10.1017/CBO9780511608773
https://doi.org/10.1007/BF01053745
https://doi.org/10.1007/BFb0091924
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OUT

1/R-R interval 
median Variance Geometric  

standard deviation Skewness Kurtosis Largest Lyapunov 
exponent

count 5.000000 5.00000 5.000000 5.00000 5.000000 5.000000
mean 58.986060 23.21976 1.089440 8.45328 81.316440 0.013928
std 2.679212 0.49851 0.033421 0.16355 1.684059 0.000815
min 55.936400 22.73340 1.054500 8.25090 78.946800 0.012832
25% 56.603700 22.87100 1.068400 8.34160 80.459500 0.013367
50% 59.824400 23.00600 1.076600 8.46670 81.385500 0.014120
75% 60.168700 23.60260 1.112200 8.53960 82.845500 0.014529
max 62.397100 23.88580 1.135500 8.66760 82.944900 0.014791

corr_matrix = df.corr()
plt.figure(figsize=(20,15))
sns.heatmap(corr_matrix, annot=True)
plt.show()

OUT

ii) Output data for the 5 analyzed signals – AFIB 1.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(‘afib1.csv’)

df.info()

OUT

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 5 entries, 0 to 4

Data columns (total 6 columns):
 # Column Non-Null Count Dtype 
--- ------ -------------- ----- 
0 R-R interval median 5 non-null float64
1 Variance 5 non-null float64
2 Geometric standard deviation 5 non-null float64
3 Skewness 5 non-null float64
4 Kurtosis 5 non-null float64
5 Largest Lyapunov exponent 5 non-null float64

dtypes: float64(6)
memory usage: 368.0 bytes

df.describe()
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OUT

1/R-R interval  
median Variance Geometric  

standard deviation Skewness Kurtosis Largest Lyapunov 
exponent

count 5.000000 5.000000 5.000000 5.000000 5.000000 5.000000
mean 60.602700 712.231360 1.471800 0.778020 -1.107200 0.212341
std 9.246203 5.563042 0.041145 0.007043 0.021615 0.007595
min 52.785200 705.713800 1.430900 0.766300 -1.142000 0.199779
25% 53.380700 707.124900 1.439400 0.776600 -1.114000 0.211145
50% 58.964100 714.337600 1.462400 0.781400 -1.098000 0.215325
75% 62.348800 715.331200 1.496700 0.782900 -1.092000 0.216212
max 75.534700 718.649300 1.529600 0.782900 -1.090000 0.219243

corr_matrix = df.corr()
plt.figure(figsize=(20,15))
sns.heatmap(corr_matrix, annot=True)
plt.show()

OUT

iii) Output data for the 5 analyzed signals – AFL. Data columns (total 6 columns):
 # Column Non-Null Count Dtype 
--- ------ -------------- ----- 
0 R-R interval median 5 non-null float64
1 Variance 5 non-null float64
2 Geometric standard deviation 5 non-null float64
3 Skewness 5 non-null float64
4 Kurtosis 5 non-null float64
5 Largest Lyapunov exponent 5 non-null float64

dtypes: float64(6)
memory usage: 368.0 bytes

df.describe()

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(‘afl.csv’)

df.info()

OUT

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 5 entries, 0 to 4
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OUT

1/R-R interval 
median Variance Geometric  

standard deviation Skewness Kurtosis Largest Lyapunov 
exponent

count 5.00000 5.000000 5.000000 5.000000 5.000000 5.000000
mean 123.60302 18.232860 1.230100 -0.036260 0.462680 0.081734
std 6.91226 0.389249 0.013911 0.000541 0.005615 0.003371
min 115.38460 17.865100 1.210500 -0.037100 0.457800 0.076186
25% 118.92740 17.991100 1.222600 -0.036400 0.458600 0.081154
50% 122.45710 18.012600 1.234700 -0.036200 0.462000 0.082811
75% 129.66380 18.548800 1.235900 -0.035900 0.463100 0.083804
max 131.58220 18.746700 1.246800 -0.035700 0.471900 0.084715

corr_matrix = df.corr()
plt.figure(figsize=(20,15))
sns.heatmap(corr_matrix, annot=True)
plt.show()

OUT

iv) Output data for the 5 analyzed signals – AFIB 2.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(‘afib2.csv’)

df.info()

OUT

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 5 entries, 0 to 4

Data columns (total 6 columns):
 # Column Non-Null Count Dtype 
--- ------ -------------- ----- 
0 R-R interval median 5 non-null float64
1 Variance 5 non-null float64
2 Geometric standard deviation 5 non-null float64
3 Skewness 5 non-null float64
4 Kurtosis 5 non-null float64
5 Largest Lyapunov exponent 5 non-null float64

dtypes: float64(6)
memory usage: 368.0 bytes

df.describe()
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OUT

R-R interval  
median Variance Geometric  

standard deviation Skewness Kurtosis Largest Lyapunov 
exponent

count 5.00000 5.000000 5.000000 5.000000 5.000000 5.000000
mean 81.70676 399.133560 1.275680 0.717940 0.046140 0.127618
std 5.94071 9.456367 0.021265 0.009775 0.002712 0.010979
min 75.82670 388.067400 1.247200 0.704700 0.042100 0.115384
25% 76.92310 391.197000 1.266200 0.713100 0.045600 0.117860
50% 81.28340 400.976900 1.275600 0.719400 0.045700 0.127831
75% 83.92850 404.425200 1.285100 0.721600 0.048600 0.138368
max 90.57210 411.001300 1.304300 0.730900 0.048700 0.138646

corr_matrix = df.corr()
plt.figure(figsize=(20,15))
sns.heatmap(corr_matrix, annot=True)
plt.show()

OUT

v) Output data for the 5 analyzed signals – post-crisis.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read_csv(‘post-crisis.csv’)

df.info()

OUT

<class ‘pandas.core.frame.DataFrame’>
RangeIndex: 5 entries, 0 to 4

Data columns (total 6 columns):
 # Column Non-Null Count Dtype 
--- ------ -------------- ----- 
0 R-R interval median 5 non-null float64
1 Variance 5 non-null float64
2 Geometric standard deviation 5 non-null float64
3 Skewness 5 non-null float64
4 Kurtosis 5 non-null float64
5 Largest Lyapunov exponent 5 non-null float64

dtypes: float64(6)
memory usage: 368.0 bytes

df.describe()
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OUT

R-R interval  
median Variance Geometric  

standard deviation Skewness Kurtosis Largest Lyapunov 
exponent

count 5.000000 5.00000 5.000000 5.00000 5.000000 5.000000
mean 58.986060 23.21976 1.089440 8.45328 81.316440 0.013928
std 2.679212 0.49851 0.033421 0.16355 1.684059 0.000815
min 55.936400 22.73340 1.054500 8.25090 78.946800 0.012832
25% 56.603700 22.87100 1.068400 8.34160 80.459500 0.013367
50% 59.824400 23.00600 1.076600 8.46670 81.385500 0.014120
75% 60.168700 23.60260 1.112200 8.53960 82.845500 0.014529
max 62.397100 23.88580 1.135500 8.66760 82.944900 0.014791

corr_matrix = df.corr()
plt.figure(figsize=(20,15))
sns.heatmap(corr_matrix, annot=True)
plt.show()

OUT

As it can be seen from the above-presented data, strong 
(>0.75) or very strong (>0.9) correlations have been found 
for:
i) Pre-crisis: 

Largest Lyapunov exponent – 1/R-R interval median 
correlation: 0.95

Largest Lyapunov exponent – Skewness correlation: 0.91
Skewness – 1/R-R interval median correlation: 0.88
Skewness – Variance correlation: 0.81
Variance – 1/R-R interval median correlation: 0.76

ii) AFIB1:
 Largest Lyapunov exponent – Skewness correlation: 0.78
 Kurtosis – Variance correlation correlation: 0.76

 Skewness – Geometric standard deviation correlation: -0.72
iii) AFL:

Kurtosis – Skewness: -0.79
iv) AFIB2:

Largest Lyapunov exponent – Variance correlation: -0.93
 Largest Lyapunov exponent – Geometric standard devia-

tion correlation: -0.74
Largest Lyapunov exponent – Skewness correlation: -0.76
Geometric standard deviation – Variance correlation: 0.93

v) Post-crisis:
Largest Lyapunov exponent – Variance correlation: -0.99

 Largest Lyapunov exponent – Geometric standard devia-
tion correlation: -1
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 Largest Lyapunov exponent – Skewness correlation: -0.94
 Largest Lyapunov exponent – Kurtosis correlation: 0.99
 Kurtosis – Variance correlation: -0.97
 Kurtosis – Geometric standard deviation correlation: 

-0.97

 Kurtosis – Skewness correlation: -0.97
 Skewness – Variance correlation: 0.91
 Skewness – Geometric standard deviation correlation: 

0.91
 Geometric standard deviation correlation – Variance: 1


