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The aim of this study was to build a prediction model for epidermal growth factor receptor (EGFR) mutations in lung 
adenocarcinoma. A retrospective analysis was performed on 88 patients with lung adenocarcinoma. All patients underwent 
an 18F-FDG PET/CT scan and genetic testing of EGFR before the treatment. In the training set, the radiomic features and 
clinical factors were screened out, and model-1 based on CT radiomic features, model-2 based on PET radiomic features, 
model-3 based on clinical factors, and model-4 based on radiomic features combined with clinical factors were established, 
respectively. The performance of the prediction model was assessed by area under the receiver operating characteristic 
(ROC) curve (AUC). The DeLong test was used to compare the performance of the models to screen out the optimal model, 
and then built the nomogram of the optimal model. The effect and clinical utility of the nomogram was verified in the 
validation cohort. In our analysis, model-4 was superior to the other prediction models in identifying EGFR mutations. 
The AUC was 0.864 (95% CI: 0.777-0.950), with a sensitivity of 0.714 and a specificity of 0.784. The nomogram of model-4 
was established. In the validation cohort, the concordance index (C-index) value of the calibration curve of the nomogram 
model was 0.778 (95%CI: 0.585–0.970), and the nomogram had a good clinical utility. We demonstrated that the model 
based on 18F-FDG PET/CT radiomic features combined with clinical factors could predict EGFR mutations in lung adeno-
carcinoma, which was expected to be an important supplement to molecular diagnosis. 
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Lung cancer is the malignant tumor with the highest 
incidence and mortality worldwide [1, 2]. Lung adenocarci-
noma accounts for 40% of all lung cancer cases and is the 
most common type of pathological pattern of lung cancer 
[3–5]. Nearly 50% of Asians with adenocarcinoma carries 
epidermal growth factor receptor (EGFR) mutations [6, 7]. 
Fortunately, tyrosine kinase inhibitor (TKI) is superior to 
chemotherapy in progression-free survival and the objective 
response rate for lung cancer patients with EGFR mutations 
[8]. However, TKI is less effective in EGFR wild-type lung 
cancer, and cisplatin-based chemotherapy has a better effect 
on patients with EGFR wild-type [9, 10]. In clinical practice, 
the identification of EGFR gene status before treatment is 
crucial for therapeutic decision-making in lung adenocar-
cinoma [11]. At present, the diagnosis of EGFR mutations 
relies on molecular diagnostic of tissues or cells, whereas 
tumor tissues or cells are usually difficult to obtain, especially 
in patients who are in poor health or refuse invasive tests, 

yet tumor heterogeneity is an inevitable problem in molec-
ular testing [12, 13]. Indeed, liquid biopsy via plasma 
EGFR mutation tests using cell-free circulating tumor DNA 
(ctDNA) has been identified currently in Europe as an alter-
native for EGFR mutation detection when a biopsy of tumor 
lesions cannot be performed [14], but the detection ability of 
plasma ctDNA gene mutations is affected by tumor burden. 
The false-negative rate of patients with a small tumor burden 
will increase significantly [15]. At the same time, the accumu-
lation of somatic mutations in aging cells will also affect the 
detection effect of ctDNA [15]. Thus, we need a non-invasive 
and more convenient method to distinguish between EGFR 
mutation and EGFR wild-type.

Radiomics is defined as a discipline that extracts high-
throughput imaging feature data from medical images, 
converts the extracted data into a high-dimensional data 
space that can be mined by automatic or semi-automatic 
algorithms, and uses statistics or artificial intelligence 
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technology to analyze and interpret these data in depth 
[16–19]. As prediction models based on radiomic features 
have shown promise in predicting tumor genotype, research 
interest in radiomics has been intensively studied [13, 
20–24]. Previous studies have indicated that CT radiomic 
features can display spatial structure information in lesions 
that may be induced by EGFR mutations [25, 26]. There-
fore, CT radiomic features can be used as a non-invasive and 
convenient method to predict EGFR mutations in patients 
with adenocarcinoma [25, 26]. Also, the EGFR signaling 
pathway plays an essential role in maintaining the aerobic 
glycolysis of tumor cells, and TKI can reverse the Warburg 
effect (tumor cells mainly rely on glycolysis to generate 
energy to maintain their rapid proliferation even in the 
presence of sufficient oxygen) of lung cancer cells [27, 28], 
which may lead to metabolic heterogeneity between tumor 
lesions with EGFR mutations and lesions with wild-type 
EGFR. Recently, although several reports have pointed 
out that the radiomic features of 18F-Fluorodeoxyglucose 
(FDG) positron emission tomography/computed tomog-
raphy (PET/CT) can reflect the metabolic heterogeneity of 
tumors and provide additional information for predicting 
EGFR gene status, there has been little research in this area 
[13, 20–24]. In addition, some clinical factors have been also 
considered to be risk factors for EGFR mutations, including 
females, never-smokers, and Asians with adenocarcinoma 
histology [29]. These clinical factors can provide guidance for 
TKI treatment to some extent when the results of molecular 
diagnosis are not available. For the above reasons, this study 
established four alternative models based on CT radiomic 
features, PET radiomic features, clinical factors, and PET/
CT radiomic features combined with clinical factors, respec-
tively, to find a prediction model that can make up for the 
deficiency of EGFR molecular detection by comparing each 
model’s performance in predicting EGFR mutations of lung 
adenocarcinoma.

Patients and methods

Patient selection. This retrospective investigation 
followed the Declaration of Helsinki and was conducted with 
the approval of the First Affiliated Hospital of Harbin Medical 
University Institutional Ethics Committee, and the informed 
consent was waived because of the study’s non-interven-
tional nature. We retrospectively analyzed 120 lung cancer 
patients diagnosed and treated in our hospital from January 
2014 to January 2019. Patients were selected according to 
the inclusion and exclusion criteria, resulting in a total of 88 
patients included in this study. The inclusion criteria were 
as follows: 1) all patients were pathologically diagnosed as 
lung adenocarcinoma; 2) patients underwent 18F-FDG PET/
CT scanning and EGFR gene mutation detection before 
receiving antitumor therapy; 3) other malignant tumors or 
manifestations were absent; and 4) clinical data including 
sex, age, smoking history, tumor locations, carcinoembryonic 

antigen (CEA) levels, and clinical stages were complete. The 
exclusion criteria were as follows: 1) the boundary between 
the primary lesion and surrounding tissue was unclear; 2) 
pure ground-glass pulmonary nodule without FDG uptake; 
and 3) the size of the primary tumor lesion was not enough 
for texture analysis (the LIFEx software only calculates the 
texture features of lesions with the number of voxels ≥ 64).

Then the 88 enrolled patients were divided into two 
independent cohorts: 65 patients diagnosed between January 
2014 and December 2017 constituted the training cohorts, 
and 23 patients diagnosed between January 2018 and January 
2019 constituted the validation cohorts.

EGFR gene mutation detection. Cancer tissue samples 
were obtained via surgery or puncture. Lung cancer tissues 
were fixed in 10% neutral formalin solution, embedded 
in paraffin, and sectioned. Samples DNA extraction and 
EGFR mutations detection were performed according to 
the reagent instructions. The kits were provided by Amoy 
Diagnostics Co., Ltd., China. The amplification refractory 
mutation system (ARMS) polymerase chain reaction (PCR) 
method was applied for EGFR gene mutation detection. All 
PCR analyses were performed on the Stratagene M×3000P 
Real-Time PCR system (Agilent Technologies). Seven EGFR 
mutation sites were detected, including exon 19 deletion 
mutations, L858R point mutations, T790M mutations, exon 
20 insertion mutations, G719X mutations, S7681 mutations, 
and L861Q mutations. If any mutation at the above sites was 
detected, the lesion was classified as EGFR mutation, whereas 
others as EGFR wild-type.

Patients imaging. All patients were required to fast for 6–8 
hours, and the venous blood glucose levels were controlled 
to be less than 8.0 mmol/l before intravenous injection of 
3.7–7.4 MBq/kg of 18F-FDG. The 18F-FDG isotope (radio-
chemical purity >95%) was manufactured by a medical cyclo-
tron (HM-12, Sumitomo Heavy Industries Ltd., Japan). The 
PET/CT scanning was accomplished with a 16-slice Gemini 
GXL PET/CT scanner (Philips Medical System) at 60±5 min 
18F-FDG injection. Prior to the PET acquisition, a low-dose 
CT scan (tube voltage: 120 kV, tube current: 50 mAs, slice 
thickness: 5.0 mm, pitch: 1.0) was acquired for the purpose 
of attenuation correction. PET images were acquired with 
1.5 min of acquisition time per bed position and a total of 
6–7 PET bed positions. The scan range was from the head 
to the mid-thigh according to the agency standard clinical 
protocols. After automatic random-correction and automatic 
scattering-correction, the line of response (LOR) reconstruc-
tion algorithm was used to reconstruct the image without 
post-reconstruction filtering.

Extraction of PET and CT radiomic features. One radiol-
ogist with 4 years of experience in chest imaging diagnosis 
used the LIFEx software (version6.00, http://www.lifexsoft.
org) to semi-automatically segment the region of interest 
(ROI) on the patient PET images in the training set with a 
threshold of 40% maximum standard uptake value (SUVmax) 
[30], and then simultaneously extracted the radiomic features 
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of PET and CT. Another radiologist with 10 years of experi-
ence independently completed the same procedure to extract 
the radiomic features of PET and CT. For PET and CT images, 
the default value of software was used for spatial resampling 
(PET: 4.0 mm × 4.0 mm × 4.0 mm and CT: 1.171875 mm × 
1.171875 mm × 5.0 mm), intensity discretization (PET: 64.0 
bin and CT: 400.0 bin) and intensity rescaling bounds (PET: 
0.0–20.0 and CT: –1000.0–3000.0 Hounsfield unit). Ninety-
two radiomic features were extracted, including conven-
tional PET/CT indices, histogram features, shape features, 
grey-level co-occurrence matrix (GLCM), neighborhood 
grey-level different matrix (NGLDM), grey-level run-length 
matrix (GLRLM), grey-level zone-length matrix (GLZLM) 
(the mathematic formulas can be found on the website: 
http://www.lifexsoft.org).

Model establishment. In order to eliminate subjec-
tive differences in ROI segmentation by inter-observer and 
ensure the repeatability of radiomic features, after z-score 
standardization of 45 CT radiomic features and 47 PET 
radiomic features extracted by the two experienced radiolo-
gists, inter-observer intraclass correlation efficiency (ICC) 
>0.75 was used to filter features with excellent repeatability. 
Therefore, these radiomic features with ICC ≤0.75 were 
eliminated, and 43 CT texture features and 47 PET texture 
features were preserved.

Then, a least absolute shrinkage and selection operator 
(LASSO) algorithm was applied to further filter 43 CT 
radiomic features to simplify the model and reduce the 
risk of overfitting. The complexity of the LASSO regres-
sion model is controlled by the parameter λ (the larger the 
value of λ, the more coefficients of features are compressed 
to zero and deleted). The optimal λ value of 0.103 was chosen 
according to 10-fold cross-validation. Six CT radiomic 
features with nonzero coefficients were selected, including 
SHAPE_Sphericity, GLRLM_Short-run emphasis (SRE), 
GLRLM_Short-run high grey-level emphasis (SRHGE), 
NGLDM_Coarseness, NGLDM_Busyness, GLZLM_Short-
zone emphasis (SZE). According to the features weighted 
by the LASSO coefficients, the CT radiomic signature score 
(CT.radscore) was calculated by the following formula: 
CT.radscore = –0.283 + 0.061 × SHAPE_Sphericity – 
0.361 × GLRLM_SRE – 0.473 × GLRLM_SRHGE + 0.186 × 
NGLDM_Coarseness – 0.005 × NGLDM_Busyness – 0.176 × 
GLZLM_SZE. Finally, the Logistic Regression (LR) model 
(model-1) was established using CT.radscore data.

In the same way, LASSO with 10-fold cross-validation 
was applied to further filter 47 PET radiomic features. 
The optimal λ value was calculated to be 0.080. Six PET 
radiomic features with nonzero coefficients were obtained, 
including minimum standard uptake value (SUVmin), 
SHAPE_Sphericity, SHAPE_Compacity, GLCM_Energy, 
GLCM_Correlation, and GLZLM_Long-zone low grey-
level emphasis (LZLGE). The PET radiomic signature score 
(PET.radscore) was calculated according to the following 
formula: PET.radscore = –0.341 – 0.711 × SUVmin + 0.137 

× SHAPE_Sphericity + 0.212 × SHAPE_Compacity – 0.222 
× GLCM_Energy – 0.477 × GLCM_Correlation – 0.077 × 
GLZLM_LZLGE. The LR model (model-2) was established 
using PET.radscore data.

The clinical data including sex, age, smoking history, 
tumor locations, CEA levels, and clinical stages were 
analyzed. Categorical variables were compared using the 
χ2 test or Fisher’s exact test, and continuous variables were 
analyzed by the independent samples t-test. All clinical 
factors were analyzed. Significant differences were observed 
in the distribution of sex (p=0.004) and smoking history 
(p<0.001) between the EGFR mutations group and the wild-
type group; i.e., the EGFR mutations were more common in 
females and patients with no smoking history, whereas the 
EGFR wild-type was opposite, which has a higher incidence 
in males and patients with a history of smoking. Therefore, 
these clinical factors that are significantly different from 
EGFR mutations and wild-type were put into the LR model to 
establish model-3. Model-4 was established by CT.radscore, 
PET.radscore, and clinical factors.

Receiver operating characteristic (ROC) curve analysis 
was employed to evaluate the performance of the model in 
the training set. The DeLong test was used to compare the 
discrimination performance of all constructed models to 
select the best model. Subsequently, we drew a nomogram 
of the optimal model to show the predictive effect more 
intuitively.

Model validation and evaluation. A radiologist with 3 
years of experience in chest imaging diagnosis processed 
image data of patients in the validation set, and extracted 
PET and CT radiomic features using the LIFEx software. 
Next, the nomogram was used to predict the validation set 
data. The concordance index (C-index) value, sensitivity, 
specificity, and accuracy were used to evaluate the prediction 
performance of the nomogram model. The calibration curves 
and Hosmer-Lemeshow test was used to evaluate the calibra-
tion of the nomogram model. In addition, the decision curve 
analysis (DCA) was used to assess the net benefit of the 
nomogram.

Statistical analysis. Data analysis was performed using 
SPSS software version 25.0 (SPSS, Chicago, IL, USA) and R 
language (version 3.6.3). The R package “glmnet” was used 
to perform LASSO regression and LR model; the R package 
“pROC” was used for ROC analysis; the R package “rms” 
was used to perform nomogram model; the R package 
“riskRegression” was used to draw calibration curve, and 
the R package “ResourceSelection” was used to perform the 
Hosmer-Lemeshow test. DCA curve was performed using 
“rmda” package. A p-value <0.05 was considered statistically 
significant.

Results

Patient characteristics. In this study, 88 patients with lung 
adenocarcinoma were registered, and their clinical data such 
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models was statistically significant. Significant differences 
were observed in the AUC between model-4 and the other 
three (model-4 vs. model-1: p=0.021; model-4 vs. model-2: 
p=0.013; model-4 vs. model-3: p=0.049). Comparing 
model-1, model-2, and model-3 in pairs, the DeLong test 
revealed that the AUC values of the three prediction models 
were not significantly different. The comparison results of 
each prediction model are summarized in Table 2.

Validation of nomogram and evaluation of clinical 
utility. Considering that model-4, which combined radiomic 
features with clinical factors demonstrates the best predic-
tive ability, we established a nomogram of model-4 to facili-
tate the visualization of the nomogram results of the predic-
tion outcome and the proportion of each factor, as shown in 
Figure 2. The nomogram was used to predict 23 patients in 
the validation set, and the C-index value was 0.778 (95%CI: 
0.585–0.970), with a sensitivity of 0.556, a specificity of 
0.857, and an accuracy of 0.739, indicating that the model 
has moderate discriminability and prediction accuracy. The 
model calibration curve is shown in Figure 3. The Hosmer-
Lemeshow test can reflect the difference between the model 
predicted value and the actual value, and the result showed 
that the difference was not statistically significant (χ2=6.685, 
p=0.154), which proved that the model had a good calibra-
tion. Moreover, we used the DCA curve to verify the net 
benefit of the nomogram model in predicting the EGFR 
mutations and observed that the nomogram model is benefi-
cial for patients with a wide range of risk thresholds. The 
DCA curves of the nomogram are displayed in Figure 4.

as sex, age, smoking history, tumor locations, CEA levels, and 
clinical stages were analyzed. The complete characteristics of 
the training cohort and validation cohort are described in 
Table 1.

Performance of the models. In this study, we constructed 
four models in the training cohort based on different factors. 
The AUC values ranged from 0.715 to 0.864 in four models 
(orders 1–4). All the prediction models showed a good 
predictive performance. The ROC curves and parameters 
of all the models in the training group are presented in 
Figures 1A–1D.

In terms of area under the curve, model-4 showed 
relatively high accuracy (AUC = 0.864), model-3 was slightly 
better than model-1 and model-2, and model-1 had the 
lowest accuracy (AUC = 0.715). The DeLong test was used 
for pairwise comparison of four prediction models to assess 
whether the difference in AUC between the prediction 

Table 1. Patient characteristics.

Characteristics
Training

p-value
Validation

p-value
Mutant EGFR Wild-type EGFR Mutant EGFR Wild-type EGFR

Sex 0.004 0.018
Male 8 (28.6%) 24 (64.9%) 4 (44.4%) 13 (92.9%)
Female 20 (71.4%) 13 (35.1%) 5 (55.6%) 1 (7.1%)

Age (mean±SD) 61.29±11.77 61.46±11.58 0.953 68.44±10.58 65.71±13.05 0.605
Smoking history <0.001 0.077

Smoker 1 (3.6%) 16 (43.2%) 3 (33.3%) 11 (78.6%)
Never 27 (96.4%) 21 (56.8%) 6 (66.7%) 3 (21.4%)

Location 0.605 0.120
Right upper lobe 7 (25.0%) 10 (27.8%) 2 (22.2%) 6 (42.9%)
Right middle lobe 1 (3.6%) 5 (13.9%) 1 (11.1%) 0 (0.0%)
Right lower lobe 8 (28.6%) 11 (30.6%) 2 (22.2%) 6 (42.9%)
Left upper lobe 7 (25.0%) 5 (13.9%) 4 (44.4%) 1 (7.1%)
Left lower lobe 3 (10.7%) 6 (16.2%) 0 (0.0%) 1 (7.1%)
Overlapping lesion 2 (7.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

CEA level 0.362 0.102
≥5.0 ng/ml 19 (67.9%) 21 (56.8%) 3 (33.3%) 10 (71.4%)
<5.0 ng/ml 9 (32.1%) 16 (43.2%) 6 (66.7%) 4 (28.6%)

Stage 0.271 0.657
I–II 5 (17.9%) 11 (29.7%) 5 (55.6%) 10 (71.4%)
III–IV 23 (82.1%) 26 (70.3%) 4 (44.4%) 4 (28.6%)

EGFR, epidermal growth factor receptor; SD, standard deviation; CEA, carcinoembryonic antigen

Table 2. DeLong test within different models.

Prediction model-A Prediction model-B p-value
model-4 model-1 0.021 
model-4 model-2 0.013
model-4 model-3 0.049
model-1 model-2 0.895
model-1 model-3 0.458 
model-2 model-3 0.476 
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Figure 1. The ROC curves of the prediction models. The blue area represents the 95% confidence interval, and the cross-marked point represents the 
best threshold point. A–D) Represent model-1, model-2, model-3, and model-4, respectively. Abbreviations: ROC-receiver operating characteristic

Figure 2. Nomogram model for predicting EGFR mutations. EGFR: epidermal growth factor receptor.
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Discussion

It is well known that the assessment of the EGFR gene 
mutation status is conducive for selecting favorable thera-
peutic schemes and predicting the efficacy of EGFR-TKI in 
patients with lung adenocarcinoma [31, 32]. However, the 
heterogeneity and the aggressiveness of molecular diagnosis 
may influence the assessment of EGFR mutations [12, 13]. 
Although EGFR gene mutation status can be aided by liquid 
biopsy in clinical practice, when the tumor is small, there 
may not be enough DNA in the liquid to reduce the accuracy 

of the test [33]. Radiogenomics is a branch of radiomics, 
whose purpose is concerned with the relationship between 
quantitative texture features and genomics [34, 35]. With 
the increasing evidence of the correlation between texture 
features and EGFR gene status in lung cancer patients, 
radiomics based on 18F-FDG PET/CT is expected to play an 
important supplemental role in the precision treatment of 
lung cancer [13, 20–24].

The backbone of radiomics is the development of clinical 
models to predict patient outcomes, thereby facilitating 
better clinical management of patients. In previous reports, 
most researchers used CT texture features to establish EGFR 
mutations prediction models, but the evidence for predicting 
EGFR mutations using PET radiomic features was insuffi-
cient [13, 20–24]. Yip et al. first explored the value of 18F-FDG 
PET radiomic features in predicting EGFR mutations in 
non-small cell lung cancer (NSCLC) and found that PET 
radiomic features can reflect the differences in tumor 
metabolic phenotypes caused by EGFR mutations [20]. The 
results of our study further confirmed this point of view. The 
AUC value of model-2 established by PET radiomic features 
in the experiment was 0.727. However, in terms of the results, 
the model using PET radiomic features alone is not very satis-
factory. In another report, Koyasu et al. analyzed the PET/
CT images of 138 non-small cell lung patients from public 
databases. They used Bayesian optimization to select the 
optimal combination of seven PET and CT radiomic features 
and then established an eXtreme Gradient Boosting (XGB) 
model to predict EGFR mutations, with an AUC of 0.659 [24]. 
The study by Nair et al. was similar to the report of Koyasu et 
al. PET and CT radiomic features were used in the study of 
Nair et al. to establish a complex LR model capable of distin-
guishing EGFR mutant and wild-type, with an AUC of 0.870, 
a sensitivity of 0.760, a specificity of 0.660, and an accuracy of 
0.710 [22]. Additionally, Jiang et al. retrospectively analyzed 
80 patients with non-small cell lung cancer, and the results 
showed that combining semantic characteristics in PET/
CT texture features could improve the effect of the model in 
predicting EGFR mutations, with an increase of AUC value 
by 12% [21]. However, whether the difference is statistically 
significant has not been further tested. Another problem is 
that although semantic characteristics are more accessible in 
clinical practice, they are more influenced by observers.

Compared with previous studies, a major advantage of our 
study is that clinical information such as sex and smoking 
history was introduced into the model. These clinical factors 
that can be obtained through medical history are more objec-
tive and appear to avoid the instability caused by semantic 
characteristics. Moreover, there is considerable evidence that 
these clinical factors contribute to the prediction of EGFR 
mutations [29]. To confirm the value of clinical factors, we 
used clinical factors to construct model-3 in our study. In the 
data of the training set, the AUC value of model-3 was 0.782, 
which was slightly better than the prediction performance 
of the model established by using PET radiomic features 

Figure 3. Calibration curves of the nomogram model in the validation 
set. The y-axis represents the actual incidence of EGFR mutations. The 
x-axis represents the predicted probability of the EGFR mutations. The 
solid diagonal gray line represents the ideal model, which means the pre-
dicted probability is completely consistent with the actual incidence and 
the solid blue line represents the nomogram model calibration curve. 
Abbreviations: EGFR-epidermal growth factor receptor

Figure 4. DCA curve of nomogram model in the validation set. The Y-
axis and the X-axis represent the net benefit and risk threshold respec-
tively. The red line indicates the nomogram model, the grey oblique line 
indicates the hypothesis that all patients were with EGFR mutations, 
the horizontal black line represents the hypothesis that all patients were 
EGFR wild-type. Abbreviations: DCA-decision curve analysis; EGFR-
epidermal growth factor receptor
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alone or CT radiomic features alone. Furthermore, when 
comparing the models, it was found that model-1 based on 
CT radiomic features had the worst effect. In our analysis, 
the reason for this result might be that the ROI segmentation 
was based on PET images, which might have an impact on 
the value of CT radiomic features in the process of feature 
extraction from matching CT images.

Our results showed that model-4 established by combining 
PET/CT texture features with clinical factors is superior to the 
other models in the prediction of EGFR mutations, and the 
difference between model-4 and the other models is statisti-
cally significant. This result is consistent with the two previous 
studies [13, 23]. Li et al. analyzed the PET/CT radiomic 
features of 115 patients with non-small cell lung cancer. 
The AUC value increased from 0.805 to 0.822 after adding 
clinical factors to the model [13]. Zhang et al. established the 
LR model using PET/CT radiomic features of 248 patients 
with lung adenocarcinoma, and then combined clinical 
factors to establish a new model. The prediction perfor-
mance of the new model was better than that of the model 
based only on radiomic features [23]. Besides, according to 
the PET/CT radiomic features and two clinical risk factors 
(sex and smoking), we created a nomogram that can visually 
predict the risk of EGFR mutations. Subsequently, we further 
evaluated the nomogram in a validation cohort of 23 patients 
with lung adenocarcinoma. The C-index value of the model 
was 0.778 (95% CI: 0.585–0.970), with an accuracy of 0.739, 
indicating that the model had moderate discriminability and 
prediction accuracy. And the results of the calibration curve 
and Hosmer-Lemeshow test showed that the predicted result 
of the model accorded well with the actual situation, which 
proved that the model had a good calibration. Since the AUC 
value only focuses on the accuracy of the model’s prediction 
[36], the DCA curve, by comprehensively weighing the pros 
and cons of the prediction model, also measures the clinical 
utility of a model [37]. Thus, the DCA curves of predic-
tion models were drawn. Based on the obtained results, 
the nomogram we established has good clinical utility. It 
is very important to note that clinical factors and radiomic 
features are complementary rather than antithetical, which 
can provide different information for the detection of EGFR 
mutations in lung adenocarcinoma cancer. Introducing 
different factors into the established model can provide a 
more accurate model for clinical practice.

There were some limitations of this study. Firstly, our 
model was based on a single-central sample and lack of an 
independent cohort for external validation of the stability 
of the model, which affects the generalization ability of the 
model to a certain extent. Secondly, due to our small sample 
size, the prediction models were established by the LR model, 
which is often used in small sample size because of its ability 
to their resistivity to overfitting. It is doubtless that the use 
of a large sample size is conducive to the construction of a 
more accurate prediction model. Thirdly, due to the limita-
tion of the reconstruction technique, the image blurs caused 

by respiratory motion may affect the quantification of PET 
radiomic features. The effect of respiratory movement on the 
texture features of lung tumors varies with the location of 
the lesions. For instance, the effect is the least in the upper 
lobe and more significant in the lower lobe [17]. However, 
a previous report indicated that although the presence or 
absence of respiratory gating affects the value of texture 
features, this effect does not interfere with the prognostic 
value of texture features [38]. As far as we are concerned, 
eliminating as many interference factors as possible is benefi-
cial for the development of an accurate model. In a report by 
Orlhac et al., we note that the ComBat method, originally 
developed for addressing the problem of a batch effect in 
genomics, can coordinate the influence of different acquisi-
tion and reconstruction conditions on texture features [39]. 
Finally, in the process of tumor lesion segmentation, ROI 
was obtained from PET images. When the same ROI was 
applied to CT images, some external tumor tissues might be 
segmented along with the tumor, which may adversely affect 
the predictive effect of the model.

In summary, the EGFR prediction model established by 
18F-FDG PET/CT radiomic features in combination with 
clinical factors could identify the EGFR mutations. The 
model we established had good discriminability, prediction 
accuracy, calibration, and net benefit. The result showed 
that 18F-FDG PET/CT radiomics was expected to become 
an important supplement to gene detection and provide a 
new biomarker for guiding TKI-targeted therapy in patients 
with lung adenocarcinoma. It is worth noting that some 
recent reports on dynamic changes of texture features and 
18F-fluorothymidine(FLT)-PET texture features provide 
some new ideas for the study of radiomics [40, 41]. Of course, 
a large sample size and multi-center study can accelerate the 
early realization of clinical application of models based on 
radiomic features.
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