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Abstract. Alzheimer’s disease (AD) is an age-related neurodegenerative disease characterized by 
progressive memory decline, histopathological lesions such as amyloid β plaques and neurofibril-
lary tangles, and neuroinflammation driven by glial cells. Microglia, the innate immune cells of the 
brain, dynamically survey their environment for signs of infection and cell damage. Although our 
understanding of microglia and their modes of activation has expanded in recent years, their role 
in AD is still not completely understood. Broad range of microglia phenotypes, from neuroinflam-
matory to neuroprotective, found in neurodegenerative diseases make their role difficult to discern. 
In this review, we summarize activities of microglia in healthy and AD brains and their possible role 
during immunotherapy targeted against pathological tau proteins. 
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Introduction

Alzheimer’s disease (AD) is the most prevalent type of de-
mentia with proteinopathy being the key pathogenic trigger. 
Two main pathological hallmarks of AD are the accumula-
tion of extracellular amyloid β plaques (Aβ) and intracellular 

neurofibrillary tangles (NFTs) (Prince et al. 2015). Numerous 
studies point out the significant contribution of neuroinflam-
mation in AD pathology. Analysis of AD brains revealed the 
presence of activated microglia and neuroinflammation in 
the brain tissues affected by neurodegeneration (Sheffield 
et al. 2000; Gebicke-Haerter 2001; Ishizawa and Dickson 
2001; Gerhard et al. 2006; Cosenza-Nashat et al. 2009; 
Keren-Shaul et al. 2017). Microglia are the innate immune 
cells of the central nervous system (CNS) that help maintain 
homeostasis of the brain, promote learning and memory, 
and respond to various pathogenic stimuli in different 
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brain areas throughout the lifespan (Colonna and Butovsky 
2017; Lenz and Nelson 2018). The role of microglia in the 
AD neuropathology is not fully understood. It is assumed 
that their activation might be beneficial at the beginning of 
the disease, but it seems to turn rather detrimental in later 
stages (Jay et al. 2015, 2017; Jiang et al. 2016; Bemiller et al. 
2017; Leyns et al. 2017). Microglia mediate  a  phagocytic 
clearance of pathologic protein aggregates from the brain 
(Luo et al. 2015; Rivera-Escalera et al. 2019), while chronic 
activation of microglia shifts their phenotype towards more 
pro-inflammatory, which together with gradual deteriora-
tion of phagocytic activity promote neuroinflammation and 
neurotoxicity (Keren-Shaul et al. 2017). 

For decades, the amyloid hypothesis has dominated re-
search on AD. Amyloid hypothesis is based on the principle 
of serial causality, where the primary pathogenic trigger is 
the accumulated Aβ that initiates and drives subsequent 
tau hyperphosphorylation, as well as other clinical and 
histopathological features of AD (Hardy and Higgins 1992). 
Since the formulation of amyloid cascade hypothesis over 
30 years ago, number of alternative hypotheses emerged. 
Tau hypothesis postulates that aberrant accumulation of 
hyperphosphorylated tau aggregates precedes Aβ pathology 
(Braak and Braak 1997; Braak and Del Tredici 2011) and that 
the development and localisation of tau pathology closely 
correlate with other measures of neurodegenerative disease 
progression including neuronal dysfunction and death, 
synaptic loss, and cognitive decline (Arriagada et al. 1992; 
Giannakopoulos et al. 2003; Small and Duff 2008; Polydoro 
et al. 2009). In addition, tau pathology progresses along in-
terconnected neuroanatomical pathways in a disease-specific 
pattern (Braak and Braak 1995; Braak et al. 2011). Both 
hypotheses are not mutually exclusive, as common upstream 
drivers, such as GSK3β (glycogen synthase kinase 3β), a key 
enzyme in tau phosphorylation and APP (β-amyloid pre-
cursor protein) metabolism, may cause parallel elevation 
in Aβ and tau hyperphosphorylation through independent 
mechanisms (Phiel et al. 2003; Liu et al. 2006).

The role of microglia in the central nervous system 
under normal and pathological conditions

Healthy brain microglia

Origin and functions

As was shown in mice, microglia arise from extra-em-
bryonic yolk sac myeloid progenitors in early embryonic 
development (embryonic day 7.5), as opposed to other 
tissue-resident macrophages that are derived from fetal 
hematopoietic stem cells (Alliot et al. 1999; Ginhoux et al. 
2010; Sheng et al. 2015). In humans, the microglial popula-

tion density ranges from 0.5% to 16.6% of the total cells in 
the brain (Mittelbronn et al. 2001). Microglial progenitors 
enter the CNS before blood-brain barrier is formed and their 
population is primarily maintained through self-renewal of 
CNS-resident microglia (Ajami et al. 2007). However, small 
degree of renewal is achieved through infiltrating bone 
marrow-derived monocytes, especially under pathological 
conditions (Varvel et al. 2016). This self-sustaining feature 
of microglia makes them particularly sensitive to local dis-
turbances. Primary function of microglia is to survey their 
microenvironment, scavenge cell debris and damaged brain 
cells, eliminate dysfunctional or less active synapses (synap-
tic pruning), modulate synaptic transmission by paracrine 
signaling, and to provide trophic support for neurons (Wes 
et al. 2016). Disrupted synaptic pruning negatively affects 
learning processes, and eventually may contribute to the 
synaptic loss observed in AD (Chung et al. 2015). Increas-
ing body of evidence suggests that microglia derived from 
different CNS compartments display distinct functions and 
phenotypes (Olah et al. 2018, 2020; Swanson et al. 2020). We 
have shown that neonatal murine microglia derived from 
brain cortex exhibit more anti-inflammatory phenotype and 
promote neurogenesis, while spinal cord-derived microglia 
are prone to be more pro-inflammatory in nature (Murgoci 
et al. 2020). As microglia are mitotically-active cells, Reu and 
colleagues analysed microglial turnover in the human brain. 
Microglia were shown to renew at  a  relatively slow pace, 
with an estimated median rate of 28% per year and have an 
average life span of 4.2 years (Reu et al. 2017). 

Microglia phenotypes

Classical dogma of both resident macrophages and micro-
glia is that they display two main phenotypes, “activated” 
(or M1) phenotype and “resting” (or M2) phenotype. M1 
phenotype is also known as a pro-inflammatory state, in 
which secretion of cytokines interleukin-1β (IL1β), inter-
leukin-6 (IL6), interleukin-12 (IL12), interleukin-18 (IL18), 
tumour necrosis factor-α (TNFα) dominates. On the other 
hand, M2 state is characterized by elevated phagocytic 
activity without production of toxic nitric oxide (NO) 
and by the expression of anti-inflammatory cytokines 
interleukin-4 (IL4), interleukin-10 (IL10), interleukin-13 
(IL13) and transforming growth factor-β (TGFβ) (Goerdt 
and Orfanos 1999; Mantovani et al. 2002; Koenigsknecht-
Talboo and Landreth 2005; Zelcer et al. 2007). We now 
understand, that microglial phenotypes are far more 
heterogenic and overlapping than originally thought, and 
that “resting” microglia are in fact motile and constantly 
surveying their environment, thus helping maintain brain 
homeostasis (Wes et al. 2016). Dynamic change of microglia 
polarization depends on multiple factors and accumulating 
evidence point at the role of mitochondria in this transi-
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tion (Ferger et al. 2010; Pozzo et al. 2019; Ren et al. 2020). 
Ferger et al. (2010) for example reported that some aspects 
of alternative M2 microglial activation induced by IL4 de-
pend on functional mitochondria. Because this alternative 
activation is implicated in dampening of inflammation, 
mitochondrial dysfunction in microglia might contribute 
to the detrimental effects of neuroinflammation on neu-
rodegeneration. Additionally, mitochondrial translocator 
protein (TSPO), located on the outer mitochondrial mem-
brane, has been thought to have a homeostatic function 
in neuroinflammatory conditions. To counteract the pro-
inflammatory state of microglia, activated TSPO reduces 
production of reactive oxygen species (ROS) and stimulates 
neurosteroidogenesis (Pozzo et al. 2019). Upon aging, mi-
croglia typically exhibit a change in morphology including 
thickening, de-ramification and hypertrophy of the cell 
body. In addition to morphological changes, increased 
expression of surface markers CD11b, CD68, CD11c and 
F4/80 was reported in the mouse brains (Hart et al. 2012). 
Age-related morphological changes in murine microglia 
are in accordance with those in human microglia. It was 
shown that microglial processes shorten with age, exhibit 
less branching and reduced arborized area (Davies et al. 
2017). Moreover, Keren-Shaul and colleagues described and 
characterized a new type of microglia in the brain cortex 
with the aid of single-cell RNA-sequencing, called disease 
associated microglia – DAM (Keren-Shaul et al. 2017) (see 
next chapter for more details). 

Antibody effector function

Microglia express Fc gamma receptors (FcγR) I, IIb, III and 
IV which are involved in the internalisation of antigen-anti-
body immune complexes destined for intracellular degrada-
tion. The constant region (Fc) of immunoglobulin G (IgG) 
antibody protruding from the immune complexes is recog-
nized by surface FcγR, leading to their internalization by 
microglia. FcγR clustering on the cell surface is required for 
the phosphorylation of cytoplasmic motifs on the receptor. 
Mice express three classes of activating IgG receptors Fcgr1, 
Fcgr3 and Fcgr4. Binding of antibodies to activating FcγR 
results in phosphorylation of immunoreceptor tyrosine 
activating motifs (ITAMs) and down-stream activation 
pathways activating the cell. Low-affinity inhibitory recep-
tors FcγR IIb contain immunoreceptor tyrosine inhibitory 
motifs (ITIM) in their intracellular domain. Phospho-
rylation of ITIM results in initiating inhibitory signalling 
pathways (Fuller et al. 2014). With increasing age, murine 
microglia exhibit elevated expression of Fcgr1 (Hart et al. 
2012). Microglia also express toll-like receptors (TLR), 
pattern recognition receptors (PRR) and scavenger recep-
tor A (SRA) which mediate phagocytosis of non-antibody 
bound ligands (Olson and Miller 2004; Zhang et al. 2014). 

Microglia in Alzheimer’s disease

Microglia actively help maintain brain homeostasis and 
functions in the prodromal or early stages of AD. However, 
under conditions of chronic neuroinflammation, influenced 
by numerous environmental and/or genetic factors, the 
pathogenesis of AD may start to develop. Main cell types 
involved in neuroinflammatory processes in brain are mi-
croglia and astrocytes, but capillary endothelial cells and 
infiltrating blood cell can also contribute to neuroinflam-
mation, especially when the blood brain barrier functions 
are compromised (Montagne et al. 2015; Varvel et al. 2016). 
Activated microglia have been shown to colocalize with 
deposits of NFTs and Aβ plaques in human brains (Cras et 
al. 1991; Overmyer et al. 1999; Sheffield et al. 2000; Keren-
Shaul et al. 2017). Although microglia are more activated in 
later stages of tangle formation, their phagocytic activity is 
getting compromised (Bolos et al. 2016).

Primed microglia and immune memory

In an ageing brain, microglia are prone to become hypersen-
sitive to repeated exposure to inflammatory stimuli, a phe-
nomenon known as “priming”. This means that primed 
microglia have  a  lower threshold for activation and can 
become harmful upon further stimulation. Microglial 
priming was first described in the brains of mice with prion 
disease, as diseased mice showed an elevated microglial 
inflammatory response after systemic administration of 
lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid 
(poly I:C) (Cunningham et al. 2005). Microglial priming 
is generally considered maladaptive and detrimental. Mo-
lecular pathways involved in the mechanism of microglial 
priming remain only partially elucidated. Up-regulation 
of Il1b, Mhc2 gene expression and reduction of Cx3cr1-
Cx3cl1 signalling cascade was previously reported (Field 
et al. 2010; Holtman et al. 2015b). Priming of microglia 
may be a consequence of cellular aging and environmental 
factors inducing e.g. ischaemia, traumatic brain injury 
(Leng and Edison 2021), or chronic low-grade systemic 
inflammation, as can be seen in atherosclerosis, type  2 
diabetes mellitus, obesity, high fat diet (Casserly and Topol 
2004; Balakrishnan et al. 2005; Donath and Shoelson 2011; 
Drake et al. 2011; Butler et al. 2020). Interestingly, emerging 
evidence points toward epigenetic regulation of inflamma-
tory pathways implicated in microglial priming. Matt et al. 
(2016) found that expression of DNA methylating enzymes 
is decreased in aged murine microglia, and that decreased 
methylation in the promotor region of Il1b gene results in 
increased intracellular production of IL1. In another study, 
specific inhibition of histone deacetylases 1 and 2 resulted 
in reduced LPS-mediated expression of cytokines in BV2 
murine microglia (Durham et al. 2017). Several investigators 
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propose that microglial priming is a form of innate immune 
memory, as it exhibits similarities with trained immunity 
of peripheral macrophages. After the activating stimulus of 
microglia subdues, a long-lasting epigenetic memory of the 
stimuli may remain in the form of histone post-translational 
modification, specifically by H3K4me1 marks located at 
defined latent enhancer sites in the microglial genome. Upon 
re-encounter of the stimuli, these latent enhancers may play 
role in the augmented inflammatory response (Haley et al. 
2019; Neher and Cunningham 2019).

Disease-associated microglia (DAM)

DAM are recently identified subset of microglia found at sites 
of neurodegeneration. During the onset of neurodegenera-
tive disease, microglia evolve to DAM through a two-step 
mechanism, (i) TREM2-independent and (ii) TREM2-
dependent. This transition is associated with significant 
changes in gene expression. The first step in DAM activation, 
TREM2-independent, is associated with down-regulation 
of several important microglia homeostatic genes, includ-
ing those for purinergic receptors P2ry12/P2ry13, Cx3cr1, 
Tmem119 and up-regulation of ApoE, TREM2 adaptor Ty-
robp, and B2m gene expression. The second phase of DAM 
activation, TREM2-dependent, involves up-regulation of 
multiple genes such as Cst7, Ctsd, Lpl, and Trem2, which are 
involved predominately in lysosomal/phagocytic pathways, 
endocytosis, lipid metabolism. These results support the 
observation that deficiency in TREM2 in the late stage of 
AD in a mouse model exacerbated disease, led to microglial 
dysfunction and apoptosis (Keren-Shaul et al. 2017). Other 
research groups similarly reported microglial subpopula-
tion with disease-specific expression profile (Holtman et al. 
2015a; Krasemann et al. 2017; Kang et al. 2018). A precise 
identification of molecular mediators that trigger the DAM 
phenotype might offer interesting and plausible approach 
for future neuroprotective therapies.

TREM2

The TREM2 gene (triggering receptor expressed in myeloid 
cells 2) encodes a single-pass transmembrane receptor ex-
pressed by microglia, that induces phagocytosis, promotes 
survival and modulates inflammatory signalling pathways 
(Ulland and Colonna 2018). TREM2 was shown to act 
as a microglial sensor that recognises anionic and zwitteri-
onic lipids exposed on the cell surface of neurons damaged 
by Aβ pathology (Wang et al. 2015). TREM2 is consid-
ered as a high-risk genetic factor for AD. The rs75932628 
(R47H) polymorphism of TREM2 was associated with up to 
three-fold increased risk of nonfamilial AD (Jonsson et al. 
2013). Homozygous loss-of-function mutations in TREM2 
cause a severe, rare form of dementia with bone cystic le-

sions known as Nasu-Hakola disease (Bianchin et al. 2004). 
Based on their findings, Gratuze and colleagues proposed 
that the role of TREM2 depended on Aβ pathology and the 
stage of the disease (Gratuze et al. 2020). At early phases of 
the disease, the R47H variant reduces microgliosis around 
senile plaques, thereby increasing their number, and also 
promotes tau propagation. However, in advanced stages of 
the disease, when tau pathology is prominent, this variant 
attenuates tau-dependent synapse loss by reducing micro-
glial phagocytosis.

Mitochondrial dysfunction

Mitochondrial dysfunction is critically involved in AD 
pathology. AD-associated chronic exposure to patho-
genic stimuli directly alters metabolic processes in the 
brain (Brooks et al. 2007; Kapogiannis and Mattson 2011; 
Mastroeni et al. 2017; Croteau et al. 2018). Large body of 
evidence suggests that pathological forms of tau negatively 
affect mitochondria, including (i) mitochondrial transport 
(Schulz et al. 2012; Shahpasand et al. 2012), (ii) morphology 
(DuBoff et al. 2012; Amadoro et al. 2014), and (iii) bioener-
getics (David et al. 2005; Rhein et al. 2009; Quintanilla et al. 
2014). Studies on transgenic mice with P301L mutant tau 
revealed, that complex I of mitochondrial respiratory chain is 
especially sensitive to abnormal tau (David et al. 2005; Rhein 
et al. 2009), and reversely, mitochondrial stress per se was 
shown to promote hyperphosphorylation of tau in a mouse 
model of oxidative stress that lacks superoxide dismutase 2 
(SOD2) (Melov et al. 2007). Optimal calcium concentration 
in mitochondria is inevitable for normal function. Xie et al. 
(2017) showed that reduction of excessive calcium uptake 
by mitochondria prevented apoptosis of Aβ-treated BV2 
microglia-like cells and primary mouse microglia. Some 
authors suggest that modulating microglial metabolism 
might be an interesting new approach for treating AD. In 
this regard, Baik and colleagues observed that acute exposure 
to Aβ triggers metabolic reprogramming of microglia from 
oxidative phosphorylation to glycolysis, which is mTOR-
dependent. However, chronic exposure to Aβ, represented 
by a mouse model of AD (5XFAD mice), was associated with 
metabolic defect, which were restored by IFNγ treatment 
(Baik et al. 2019). Additional studies are needed to elucidate 
the role of tau pathology in mitochondrial metabolic (dys)
functions in microglia.

Senescence

With increasing age, microglia undergo replicative senes-
cence, and are subjected to changes in telomere length, 
proliferation rate and morphology (Flanary and Streit 2004; 
Miller and Streit 2007). Bussian and colleagues investigated 
the role of senescent glial cells in the onset and progression 
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of tauopathy. To test this, authors used animal model of 
tauopathy, PS19 transgenic mice overexpressing mutant 
human tau in neurons. These mice accumulated senescent 
microglia and astrocytes, as indicated by the expression of 
markers of senescence, such as p16, p19, p21, Pai1 and Casp8. 
Clearance of these senescent cells via transgenic approach 
(INK-ATTAC mice) or pharmacological intervention (seno-
lytic agent ABT263) prevented gliosis, hyperphosphorylation 
of both soluble and insoluble tau and cortical/hippocampal 
neurodegeneration (Bussian et al. 2018). This approach 
might provide a new therapeutic challenge for the treatment 
of tauopathies.

Neuroinflammation

Mediators

Neuroinflammation is defined as an activation of the resi-
dent immune cells of brain in reaction to injury, disease or 
infection, with an aim of rapid localization and elimination 
of pathogen. Typical mediators of neuroinflammatory re-
sponses in brain are pro-inflammatory cytokines (e.g. IL1β, 
IL6, TNFα), chemokines (e.g. CCL2, CCL5, CXCL1), small 
molecule messengers (e.g. nitric oxide-NO, prostaglandins) 
and ROS. Most of these inflammatory signals are being 
propagated via activated microglia, to a lesser extent by as-
trocytes (Norden et al. 2016). Whether neuroinflammation 
is a cause, a contributor, or a consequence of tau pathology 
is subject to extensive debate. Accumulating evidence points 
towards chronic neuroinflammation as a crucial factor im-
plicated in the pathogenesis of neurodegenerative diseases 
(Heneka et al. 2015).

Mechanisms of action

Mechanistically, we and others proved that misfolded 
truncated tau aggregates are potent inducers of neuroin-
flammation (Kovac et al. 2011; Morales et al. 2013). We 
have demonstrated that primary rat microglia increased 
production of NO and cytokines IL1β, IL6 and TNFα upon 
exposure to misfolded truncated tau through up-regulated 
gene expression of MAP-kinases (Jnk, Erk1, p38b) and tran-
scription factors Ap1, Nfkb (Kovac et al. 2011). Similarly, 
Morales and colleagues (Morales et al. 2013) observed that 
aggregated tau oligomers and fibrils induced morphologi-
cal changes and generation of pro-inflammatory IL6 and 
NO in rat microglia. Hippocampal synapse loss and robust 
microglial activation preceded the formation of NFTs in 
P301S transgenic mice overexpressing mutant human 
tau, thereby linking early microgliosis to the progression 
of tauopathy (Yoshiyama et al. 2007). On the other hand, 
activated microglia were shown to further exacerbate tau 

pathology, thus forming a vicious cycle. Production of pro-
inflammatory cytokines, such as IL1, by activated microglia 
leads to an increase in tau phosphorylation and cytotoxic-
ity in neurons via the p38 MAP kinase pathway (Sheng 
et al. 2001; Li et al. 2003). Similar results were obtained 
after cocultivation of hippocampal neurons with activated 
astrocytes which led to an increase of NO production and 
consequently hyperphosphorylation of tau (Quintanilla 
et al. 2004). Another pro-inflammatory cytokine IL6 was 
found to promote CDK5 activity, one of the major kinases 
phosphorylating tau, via a MAPK-p38 dependent pathway 
(Saez et al. 2004).

Evidence from human brain

Post mortem analyses of brain tissue in humans suffering 
from various forms of tauopathies, such as AD, frontotem-
poral dementia and corticobasal degeneration revealed the 
presence of activated microglia in brain tissues affected by 
neurodegeneration (Gebicke-Haerter 2001; Ishizawa and 
Dickson 2001; Gerhard et al. 2006). Several studies used in 
vivo PET imaging to investigate neuroinflammation in pa-
tients with dementia. Most used PET ligands were targeting 
TSPO, a marker of activated microglia (Cosenza-Nashat et 
al. 2009). Study by Cagnin et al. (2001), revealed that corti-
cal areas with high TSPO tracer binding demonstrated the 
highest rate of atrophy and glucose hypometabolism over 
12–24 months follow-up period. Statistically significant 
differences in inflammation between control and dementia 
patients were reported and associated with severity of de-
mentia, as indicated by cognitive tests scores. Regions such 
as the frontal, temporal, parietal, cingulate cortices and 
hippocampus demonstrated highest correlation of inflam-
mation with cognitive deficits (Versijpt et al. 2003; Edison 
et al. 2008; Yokokura et al. 2011).

These findings prove a connection between neuroinflam-
mation and processes responsible for neurodegeneration 
and indicate that long-term activation of immune cells of 
the CNS can play a pathogenic role in AD and other types 
of tauopathies. 

Tau clearance mechanisms 

Microglia have been shown to be able to internalise tau 
protein aggregates both in vitro and in vivo (Luo et al. 2015; 
Bolos et al. 2016). Surprisingly, it was shown that peripheral 
macrophages can phagocytose and degrade tau oligomers 
after LPS stimulation more rapidly than either rat primary 
microglia or immortalized BV2 microglial cell line (Majerova 
et al. 2014). Once tau is internalised, its fate is to either 
undergo degradation via (i) ubiquitin-proteasome system 
(UPS) or (ii) autophagy-lysosomal pathway. 
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Ubiquitin-proteasome system

Under physiological conditions, tau can be degraded by 
the 20S proteasome in an ubiquitin-independent manner 
(Grune et al. 2010). Exposure to irreversible proteasome 
inhibitor lactacystin blocked tau degradation in human 
neuroblastoma cell line SH-SY5Y (David et al. 2002). How-
ever, an ubiquitin-dependent pathway of tau degradation 
has also been described. In general, misfolded proteins must 
be refolded by molecular chaperones (e.g. HSC70, HSP70, 
HSP90) or targeted for degradation by the UPS to prevent 
aggregation and cytotoxicity. Hsc70-interacting protein 
(CHIP) acts as an ubiquitin protein ligase facilitating ubiqui-
tination and degradation of abnomal, hyperphosphorylated 
tau. Sahara et al. investigated, whether the lack of CHIP 
may be involved in NFT formation. In human AD brains, 
the protein expression of CHIP was up-regulated, but the 
amount of PHF-tau (paired helical filament-tau) inversely 
correlated with the CHIP protein level, suggesting that 
increases in CHIP may protect against NFT formation in 
the early stages of AD (Sahara et al. 2005). A reduction in 
proteasome peptidase activities has been reported in the 
short-interval post mortem brains of AD patients (Keller 
et al. 2000; Lopez Salon et al. 2000). Incubation of isolated 
proteasomes with PHFs derived from AD brains resulted 
in a marked reduction in the proteasomal activity (Keck 
et al. 2003).

Autophagy-lysosomal pathway

Autophagy significantly contributes to tau protein degra-
dation. Treatment of rat hippocampal slice cultures with 
chloroquine,  a  lysosomal inhibitor, led to an accumula-
tion of intracellular phosphorylated tau (Bendiske and 
Bahr 2003). One group has demonstrated, that transfected 
MEF cell line deficient in ATG5 (autophagy protein) and 
expressing mutant P301L tau, had significantly attenuated 
response to starvation-induced autophagy of tau inclusions 
(Wong et al. 2008). Autophagy receptor proteins such as p62 
(Ramesh Babu et al. 2008), NDP52 (Jo et al. 2014), NBR1 
(D’Agostino et al. 2011), optineurin (Xu et al. 2019) have 
been implicated to facilitate tau clearance. Methylene blue 
has also been shown to be a potent inducer of autophagy. 
In vivo application of methylene blue to JNPL3 mice with 
tauopathy resulted in reduction of phosphorylated tau and 
insoluble fraction of tau in hippocampus (Congdon et al. 
2012). Microglia are not the only brain cells capable of 
phagocytosis, astrocytes also exert a low degree of phagocytic 
activity. In a study by Martini-Stoica et al. (2018), enhanced 
expression and activity of transcription factor EB (TFEB) 
was found in both human brains affected with dementia and 
transgenic PS19 tauopathy mice. TFEB is a master regulator 
of lysosomal biogenesis and autophagy. In response to tau 

pathology, astroglial overexpression of TFEB in mice resulted 
in reduced tau spreading in vivo.

The role of microglia in tau immunotherapy

Immunotherapy comprises two approaches, active or pas-
sive. In active immunotherapy,  a  pathogenic antigen is 
being administered which stimulates the adaptive immune 
system to elicit a long-lasting immune response. Activated 
B-lymphocytes undergo the maturation process and pro-
duce antibodies with high affinity to the injected antigen. 
The long-lasting immune response is ensured by generating 
memory B- and T-cells. In passive immunization, a specific 
antibody targeted at a pathogen is being directly adminis-
tered, without inducing any adaptive immune responses. 
Passive immunization offers  a  transient form of acquired 
immunity which can bypass the concerns arising from ac-
tive immunization, if patients cannot develop their own 
antibodies. It reduces the risk of permanent immunological 
adverse effects given by short half-life of the administered 
antibodies, but also offers the possibility of quantitative 
modulation of the therapy and for highly specific targeting 
epitope (Congdon and Sigurdsson 2018).

To date, Aβ immunotherapies for the treatment of AD 
have been largely unsuccessful, indicating that treatment 
may need to be administered earlier in the course of neuro-
degenerative disease, even before cognitive symptoms start 
to appear. Recent approval of Biogen’s anti-amyloid antibody 
Aduhelm (formerly known as aducanumab) by FDA (The 
United States Food and Drug Administration), although 
heavily criticised within scientific community for the lack 
of significant evidence, will inevitably revive the interest in 
immunotherapy against misfolded proteins in AD (https://
www.alzforum.org/news/series/fallout-continues-after-
aducanumab-approval). 

Although it is believed that patients at earlier stages of AD 
might still benefit from this approach, tau immunotherapies 
might offer a better solution since tau pathology is tightly 
associated with clinical symptoms and disease progression 
(Congdon and Sigurdsson 2018). Majority of antibodies that 
are currently being developed in clinical research as anti-tau 
immunotherapeutics have an IgG4 isotype, which results 
in limited effector function due to weak binding of IgG4 
to FcγRs (for details see Table 1). This approach eliminates 
potential unfavourable effect of microglia activation but at 
the same time desirable tau clearing properties. In summary, 
tau-targeting vaccines recognize different tau species and 
have been suggested to act through various mechanisms: 
by preventing tau aggregation and cell-to-cell spreading 
(Theunis et al. 2013; Albayram et al. 2017; Courade et al. 
2018; Novak et al. 2018; Albert et al. 2019; Weisova et al. 
2019), by facilitating tau uptake by microglia (Zilkova et al. 
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2020) and endo-lysosomal degradation of tau in microglia 
(Andersson et al. 2019) or proteasomal degradation of tau 
seeds in neurons (McEwan et al. 2017). 

Antibody-mediated tau clearance might alleviate tau 
pathology

Compelling body of evidence suggest that microglia engulf 
and degrade tau aggregates more efficiently in a complex 
with anti-tau antibody, which is an important underlying 
mechanism of action for the tau-targeted immunotherapy 
research. Various in vitro studies demonstrated how anti-tau 
antibodies significantly potentiate uptake and degradation 

of pathological tau via an Fc-dependent manner in BV2 
microglia-like cells (Funk et al. 2015), primary mouse mi-
croglia (Luo et al. 2015; Andersson et al. 2019) or primary 
human microglia (Zilkova et al. 2020). Fc effector function 
is essential for the antibody-enhanced internalization and 
degradation of tau by microglia (Fig. 1). Tau-targeted im-
munotherapies with effector function may effectively sup-
press tau pathology by inducing tau clearance mechanisms. 
Selected vaccines, AADvac1 and Lu AF87908, which are 
being tested in human clinical trials for treatment of AD, have 
been reported to have this effector function in preclinical 
research. On the other hand, the rationale for vaccines RO 
7105705 and ABBV-8E12 with reduced effector function is 

Figure 1. Mechanism of action of anti-tau therapeutic antibody: (1) tau-tau interaction inhibition, (2) tau spreading inhibition, (3) 
promotion of tau phagocytosis by microglia.
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to avoid potentially harmful microglial activation (Novak 
et al. 2018). Further details of ongoing clinical trials of tau-
targeting immunotherapies are described in Table 1.

AADvac1

AADvac1 is one of the only two active anti-tau vaccines 
that have been in clinical development to date. The aim 
of AADvac1 active immunization is to induce antibodies 
that block the spread of tau pathology by immobilizing 
“tauons” and opsonizing them for removal by the immune 
system, specifically by microglia (Kontsekova et al. 2014a, 
2014b; Novak et al. 2017). Selection of mouse monoclonal 
antibody DC8E8 preceded AADVac1 vaccine development. 
Preclinical research has demonstrated that DC8E8 antibody 
is not internalized by neurons, but it effectively blocked 
neuronal uptake of pathological tau seeds, which is an im-
portant mechanism to prevent spreading of tau pathology 
(Weisova et al. 2019). DC8E8 and its humanized version 
AX004, promoted phagocytosis of oligomerized truncated 
tau151-391/4R by human primary microglia isolated from 
post-mortem brains with dementia via Fcγ-dependent 
mechanisms, whereas antibody-tau complexes did not ex-
acerbate pro-inflammatory activity of post-mortem isolated 
human microglia from AD and non-AD brains (Zilkova et 
al. 2020). Moreover, successfully completed phase 1 and 2 
of AADvac1 clinical trials confirmed safety and effectivity 
of tau immunotherapy with AADvac1 vaccine in subjects 
with early/mild AD (see Table 1 for further details) and 
showed promising results by improving the biomarkers of 
neurodegeneration and tau pathology (Novak et al. 2021).

Lu AF87908

Andersson and colleagues demonstrated that FcγR binding is 
necessary for IgG1 antibody-mediated internalization of patho-
logical insoluble tau by primary mouse microglia (Andersson et 
al. 2019). Consequent clearance of tau was prevented by phar-
macological inhibition of lysosomal acidification (chloroquine/
bafilomycin A1). Inhibition of ubiquitin-proteasomal degrada-
tion seemed not to abolish the clearance of antibody-bound tau 
in microglia. This pS396-tau binding antibody reduced seeding 
of human tau derived from AD brain in vitro in mouse corti-
cal neurons and in vivo in transgenic rTg4510 mouse model 
(Rosenqvist et al. 2018), indicating that it neutralizes seed-prone 
pathological tau. Humanized version of pS396-tau antibody, Lu 
AF 87908, is being currently investigated in phase 1 clinical trial 
for safety and tolerability profile (Table 1).

RO 7105705

RO 7105705 is a passive vaccine containing anti-tau IgG4 
humanized antibody that targets extracellular tau (eTau) on N
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the N-terminus on all six human tau isoforms, regardless 
of its monomeric/oligomeric or phosphorylation status. In 
preclinical research, effectorless antibody directed against the 
phospho-tau epitope effectively prevented accumulation of 
tau in neuronal culture without inducing microglial activa-
tion and pro-inflammatory cytokine release (Lee et al. 2016). 
RO 7105705 vaccine is currently in the phase 2b trial testing 
in moderate AD, first phase 2 study did not meet primary 
endpoint in subjects with prodromal to mild AD (Table 1).

Tilavonemab/C2N 8E12/ABBV-8E12

8E12 is a humanized IgG4 antibody with an aim to target 
aggregated, pathological eTau’s epitope aa25-30 on N-ter-
minus. This antibody acts in extracellular space and blocks 
pathological tau cell-to-cell spreading in vitro (Kfoury et al. 
2012). Furthermore, preclinical research in transgenic P301S 
mice expressing human mutant tau demonstrated that 8E12 
reduces microglial activation, neurofibrillary pathology, 
brain atrophy and deficits in the conditioned fear response 
(Yanamandra et al. 2013; Yanamandra et al. 2015). Effects 
of 8E12 immunotherapy are currently being investigated 
in phase 2 clinical trial in people with early AD (Table 1).

Summary and conclusion

Based on the observations from ongoing tau immuno-
therapies, all anti-tau therapeutic antibodies are aimed 
to bind abnormal tau proteins, eliminate their toxic func-
tions, prevent their neuronal internalization and/or block 
intercellular spreading of pathogenic aggregated tau. These 
antibody properties are independent of the effector func-
tion of the antibody. Assuming that an effective therapeutic 
antibody should eliminate pathological tau proteins from 
the diseased brain, the effector function of such antibody 
becomes desirable. Our preclinical data with therapeutic 
anti-tau antibody AX004 indicate that IgG1 antibodies 
(with effector function) are more effective in facilitating 
the uptake of extracellular abnormal tau by adult human 
microglia than the IgG4 isotype (Zilkova et al. 2020). 
Moreover, no safety signals have been observed throughout 
the course of the AADvac1 phase 1 and phase 2 clinical 
trials, although AADvac1 vaccination generated predomi-
nantly IgG1 antibody response in AD patients (Novak et al. 
2018). Our data suggest that IgG1 isotype is better suited 
for therapeutic development. 

Microglia are considered the key players in the pathogen-
esis of AD and other tauopathies and their activation might 
be both beneficial and detrimental for the surrounding cells. 
Microglia displayed only modest phagocytic capacity for 
pathologic extracellular tau oligomers and this can be further 
affected by aging and tau pathology progression. Current re-

sults from tau immunotherapy show that phagocytic potential 
of microglia can be accelerated by assistance of therapeutic 
anti-tau antibodies and indicate the important contribution of 
microglia to the clearance of tau pathology from AD brains.

Future directions

These findings highlight an important role for microglia in 
AD progression in both positive and negative ways. It ap-
pears that with adequate response to AD immunotherapy, 
microglia could serve as beneficial effectors of therapeutic 
antibodies, since they are the primary cell type in the brain 
to mediate Fc receptor‐facilitated antibody effector function. 
If the potential beneficial effects of microglia in AD immu-
notherapy are meant to outweigh the risk of overly-activated 
harmful microglia, further work needs to address: (1) how to 
reprogram diseased microglia to promote their homeostatic 
functions, (2) how to enhance microglial clearance of tau and 
Aβ aggregates, (3) the complex microglial interaction with 
neighboring cells in diseased areas of the brain, and (4) the 
better understanding and functional characterization of di-
verse populations of microglia in the brain. Further research 
is also needed to elucidate the mechanistic pathways involved 
in metabolic de-regulation in microglia, and how modulation 
of these immuno-metabolic impairments in microglia may 
ultimately benefit the patients. 
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