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Abstract. Spreading of tau pathology to anatomical distinct regions in Alzheimer’s disease (AD) 
is associated with progression of the disease. Studies in recent decade have strived to understand 
the processes involved in this characteristic spread. We recently showed that AD-derived insoluble 
tau seeds are able to initiate neurofibrillary pathology in transgenic rodent model of tauopathy. 
In the present study, we pursued to identify the molecular changes that govern the induction and 
propagation of tau pathology on the transcriptomic level. We first show that microglia in vicinity to 
AD-Tau-induced pathology has phagocytic morphology when compared to PBS-injected group. On 
transcriptomic level, we observed deregulation of 15 genes 3-month post AD-Tau seeds inoculation. 
Integrated bioinformatic analysis identified 31 significantly enriched pathways. Amongst these, the 
inflammatory signalling pathway mediated by cytokine and chemokine networks, along with, toll-like 
receptor and JAK-STAT signalling were the most dominant. Furthermore, the enriched signalling 
also involved the regulation of autophagy, mitophagy and endoplasmic reticulum stress pathways. 
To our best of knowledge, the study is the first to investigate the transcriptomic profile of AD-Tau 
seed-induced pathology in hippocampus of transgenic model of tauopathy.
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Introduction

Alzheimer’s disease (AD) is a  progressive age-associated 
neurodegenerative tauopathy characterized by neurodegen-
eration and dementia. For decades, studies have attempted 
to understand the properties that initiate and drive the 

disease progression, mainly in AD without any known ge-
netic predisposition (late-onset or sporadic form). Besides 
environmental and immune risk factors, studies implicate 
genetic susceptibility and metabolic modifications in mani-
festation of AD (Miech et al. 2002; Cacabelos et al. 2005). 
In addition, genome-wide meta-analysis studies (GWAS) 
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implicate a number of genes involved in immune system and 
tau metabolism as potential risk factors for sporadic late-
onset AD ( Ridge et al. 2016; Jansen et al. 2019). Moreover, 
we recently demonstrated the importance of genetic back-
ground in immune-system modulation, via microglia, as 
a crucial factor on the propagation of tau pathology (Smolek 
et al. 2019a).

In AD and few other tauopathies there is the distinct 
spread of tau pathology in the brain (Braak and Braak 1991; 
Delacourte et al. 1999). The pathology manifests in the hip-
pocampus and spread to anatomically connected regions. 
Several studies in recent years have strived to mimic the 
characteristic spread in transgenic rodent models of AD or 
tauopathy, using inoculates of insoluble tau from AD brain 
(Smolek et al. 2019a, 2019b), protein isolates from trans-
genic rodent models of tauopathy (Levarska et al. 2013), or 
recombinant forms of tau (Iba et al. 2013; Reyes et al. 2013). 
Interestingly, tau species from different tauopathies induce 
pathology idiosyncratic to the specific disease (Clavaguera 
et al. 2013; Boluda et al. 2015), exhibiting a strain-dependent 
role of tau protein in disease manifestation (Levarska et al. 
2013). Moreover, different tau forms, such as oligomers or 
fibrils, also differ in their seeding potency. In addition, the 
mode of transmission such as secretion, mechanism of uptake 
is progressively unearthed (Saman et al. 2012; Yamada et al. 
2014; Tang et al. 2015; Kang et al. 2019; Morozova et al. 2019; 
Brunello et al. 2020). 

Studies have shown the differential expression of genes 
in rodent model of AD, in late stages of the disease (Annese 
et al. 2018; Rothman et al. 2018; Lau et al. 2020). However, 
very little information is known about the early molecular 
changes in brain microenvironment following initiation and 
propagation of tau pathology in-vivo. Therefore, in this study, 
we performed intracerebral injections of human AD-derived 
tau seeds to identify primary changes in the hippocampus 
of sporadic rat model of tauopathy. Our transcriptomic 
analysis revealed deregulation of 15 genes linked to different 
pathways involved in neurons and glial cells. To our best of 
knowledge, the study is the first to investigate the transcrip-
tomic profile of tau seed-induced pathology in hippocampus 
of transgenic model of tauopathy.

Materials and Methods

Transgenic model

Transgenic rat model (TG) expressing human truncated 
tau aa151-391,4Repeat was used in the study. The line has 
been previously characterized (Koson et al. 2008), and used 
for analysis of tau-induced spreading and propagation of 
pathology via intracranial application of insoluble tau from 
AD brain (Smolek et al. 2019b). All animals were housed 

under specific pathogen free facility with access to water 
and food ad libitum, and were kept under diurnal lighting 
conditions. Experiments were performed with the approval 
of the Institute’s Ethical Committee, and the study was ap-
proved by the State Veterinary and Food Administration of 
the Slovak Republic (approval #Ro‐3748/2020-220).

Isolation of sarkosyl insoluble tau from human brain

Braak stage 5 AD brain was purchased from the University 
of Geneva brain collection, Switzerland, in accordance 
with the material transfer agreement. Isolation of sarkosyl 
insoluble tau was performed as previously described (Jad-
hav et al. 2015). Briefly, Parietal cortex was homogenized 
in a  buffer containing 20 mM Tris, 0.8 M  NaCl, 1 mM 
EGTA, 1 mM EDTA, and 10% sucrose, supplemented with 
protease and phosphatase inhibitors. After centrifugation 
at 20,000 × g  for 20 min, the supernatant (S1) was col-
lected, and a small fraction was saved as the total protein 
fraction. N-lauroylsarcosine (sarkosyl) in concentration of 
40% w/v in water was added to the S1 to a final concentra-
tion of 1% and stirred for 1 h at room temperature. The 
sample was then centrifuged at 100,000 × g for 1 h at 25°C 
and resulting pellet (P2) was washed and re-suspended in 
phosphate-buffered saline (PBS) to 1/50 volume of the S1 
fraction, and sonicated briefly. 20 μg w/v of the P2 fraction 
(AD-Tau) corresponding to the S1 fraction, was used for 
the SDS-PAGE analysis. Blots were developed using pan-
tau antibody DC25 (Axon Neuroscience R&D Services, 
Bratislava, Slovakia). Intensity of bands were quantified 
using AIDA Biopackage (Advanced Image Data Analyzer 
software; Raytest, Germany), and concentration of insolu-
ble tau fraction was estimated using a standard curve with 
reference intensities of known concentrations of recom-
binant human tau 2N4R (Tau40) as previously described 
(Smolek et al. 2019b).

Stereotaxic surgery

Male transgenic rats (age 3 months) were anesthetized via 
intraperitoneal injection of a  cocktail containing Zoletil 
(30 mg/kg) and Xylariem (10 mg/kg). Animals were fixed to 
a stereotaxic apparatus and an UltraMicroPump III Micro-
syringe injector and Micro4 Controller (World Precision 
Instruments, FL, United States) were used for intracranial 
applications. Stereotaxic coordinates for the injection were 
A/P: −3.6 mm, L: ± 2.0 mm, D/V: 3.3 from bregma (Paxinos 
and Watson 1996). Animals received bilateral injections of 
1500 ng (concentration 500 ng/µl) of sarkosyl-insoluble tau 
(n = 6) or PBS (n = 5) at a rate of 1.25 μl/min, and the needle 
was positioned for 5 min before slow withdrawal to prevent 
leakage of the infused liquid. After 3 months, animals were 
anesthetized, perfused transcardially with 1×PBS-Heparin 



543Inflammatory signalling of tau seeding

and sacrificed. Hippocampi from left hemispheres were fro-
zen for transcriptomic analysis, and whole right hemispheres 
were used for histological assessment. 

Immunohistochemistry

The right hemispheres were fixed in sucrose solutions (15, 
25, and 30% for 24 h each) followed by freezing in 2-methyl 
butane. Frozen tissues were serially cut into 40-μm-thick 
sagittal sections using a  cryomicrotome (Leica CM1850, 
Leica Biosystems). The sections were blocked with Aptum 
Section block (Aptum Biologics Ltd., Oxford, UK) followed 
by incubation with antibodies AT8 (Mouse monoclonal, 
Thermo-Scientific, IL, USA), GFAP (Rabbit polyclonal, 
Abcam, Bratislava, Slovakia), or Iba-1 (Rabbit polyclonal, 
Wako, Japan) overnight at 4°C. After washing, the sections 
were incubated for 1 h  with respective Alexa conjugated 
secondary antibodies (Invitrogen, Eugene, Oregon, USA). 
After washing, the sections were mounted onto slides using 
Vectashield mounting medium (Vector laboratories, USA), 
and examined with laser scanning confocal microscope LSM 
710 (Carl Zeiss, Jena, Germany).

Gene expression profiling by real-time PCR

Left hemispheres were used for transcriptomic analysis from 
PBS- and AD-Tau-injected transgenic rats. Total RNA was 
extracted using the TRI Reagent according to manufacturer’s 
instructions (Sigma-Aldrich, USA, Cat#. T9424). Resulting 
RNA was briefly air-dried and suspended in 100 μl of RNAse-
free water (Qiagen, Germany, Cat#. 129112). The integrity 
of isolated RNA samples was determined using Agilent 
2100 Bioanalyzer (Agilent Technologies, Germany, Cat #. 
5067-1511). For transcriptomic analysis, only high-quality 
RNA samples were used, RNA integrity number for PBS- or 
AD-Tau-injected groups were 8.7 ± 0.14 standard deviation 
(SD) and 8.8 ± 0.15 SD, respectively. 

Profiling of gene expression was performed using the Rat 
Inflammatory Cytokines and Receptors PCR array (Qiagen, 
Germany, Cat #. PARN-011Z), Rat Phagocytosis PCR array 
(Qiagen, Germany, Cat #. PARN-173Z) and Rat Autophagy 
PCR array (Qiagen, Germany, Cat #. PARN-084Z), evaluat-
ing a total of 238 genes. 

Total RNA was reversely transcribed into cDNA by 
RT2 first strand kit (Qiagen, Germany, Cat #. 330401), and 
100 ng of resulting cDNA was used as a template for each 
qPCR reaction. Components of 25 μl qPCR reaction were as 
follows: 12.5 μl 2×RT2 SYBRGreen/ROX mastermix; 12 μl 
RNase-free water and 0.5 μl of cDNA (200 ng/μl). Cycling 
conditions included an initial denaturation at 95°C for 
10 min, and 42 cycles of 95°C for 15 s cycle denaturation, 
together with amplification at 60°C for 1 min. PCR specificity 
was checked by melting curve analysis. 

Fold change of target genes expression in each PBS- and 
AD-Tau-injected animal was compared to the average of 
control PBS-injected group using 2−ΔΔCT method with 
Ribosomal protein lateral stalk subunit P1 (Rplp1) as en-
dogenous reference. The Rplp1 was identified as the most 
stable gene across all samples, evaluated with the Endog-
enous control pipeline using ExpressionSuite software v.1.1 
(Applied Biosystems, Foster City, USA). Comprehensive 
list of analysed genes together with calculated fold change 
and statistical evaluation is included in the Supplementary 
Material (Table S1–S4).

Statistical evaluation of gene expression 

Statistical analysis was performed using software R, version 
4.0.3. The hypotheses were tested at a  significance level 
of 0.05. Gene expression measures in PBS- and AD-Tau-
injected groups were tested for outliers, and observations that 
were more than three times the interquartile range from the 
first and third quartile were eliminated. Then, for each gene, 
the null hypothesis H0: µcontrols − µTau = 0 was tested against 
H1: µcontrols − µTau = 0, where µcontrols is mean of control PBS 
group and µtau is mean of AD-Tau group.

The analysis was performed using a bootstrap version of 
two-sample Student t-test with Welch degrees of freedom 
with 1000 replications using the boot.t.test from the simple-
boot library.

The complete results from statistical analysis including 
sample size, means and SD of both groups, means difference, 
95% confidence intervals of a mean difference and p-values 
are reported in Supplementary Material (Table S1-S4). The 
direction describes the sign of the difference between the 
means µcontrols − µTau.

Pathway enrichment analysis

To enable the pathway enrichment analysis (PEA), we em-
ployed PathDIP. PathDIP is an annotated database of signaling 
cascades that integrates pathways with physical protein-protein 
interactions to predict significant physical associations be-
tween proteins and curated pathways (http://ophid.utoronto.
ca/pathDIP). In this study, the identified rat genes were an-
notated for their human orthologs. Human orthologs for all 
15 dysregulated rat genes were used to query pathDIP version 
4.0.21.4 (Database version 4.0.7.0) (Rahmati et al. 2020) to 
identify significantly enriched pathways, with q-value <0.05 
(false discovery rate: Benjamini-Hochberg method). We used 
all pathway sources, and only literature curated (core) pathway 
memberships. Pathway annotations from 22 different pathway 
sources were tested for enrichment and gene-pathway matrix 
was generated to highlight dysregulated genes in enriched 
pathways. Raw data, search results, and evaluation are included 
in Supplementary Material (Table S1–S4).

http://ophid.utoronto.ca/pathDIP
http://ophid.utoronto.ca/pathDIP


544 Szalay et al.

Results

Insoluble tau from AD-induced morphological changes on 
microglia in hippocampus of transgenic rodent model

In the present study, we performed bilateral injections of 
insoluble tau isolated from human AD brain (AD-Tau) 
(Fig. 1A) or PBS in the hippocampus of 3 months old TG 

rodent model of tauopathy. Using immunohistochemistry, we 
observed the presence of tau pathology in the hippocampus 
of AD-tau-injected rodents but not in PBS-injected groups, 
as previously reported (Smolek et al. 2019a). We were inter-
ested to know whether AD-Tau-induced pathology activates 
glial cells, specifically microglia and astrocytes. Therefore, we 
performed co-immunostaining using phospho-tau antibody 
AT8 (pathological tau marker) with either Iba-1 (microglia 

Figure 1. Histological assessment of hippocampus of PBS- and AD-Tau-injected rodents. A. Immunoblot using pan-tau antibody DC25 
shows the presence of insoluble tau from AD brain. Recombinant human Tau 40 was used as positive control (+ve). Representative 
confocal images showing co-immunostaining using astrocyte marker-GFAP (green) and tau marker-AT8 (red) in PBS-injected (B) 
and AD-Tau-injected (C) groups. Insets showing higher magnification of the area highlighted in B and C, respectively. No prominent 
difference in astrocyte morphology between the two groups was observed. Representative confocal images showing co-staining using 
microglia marker Iba1 (green) and AT8 (red) in PBS-injected (D) and AD-Tau-injected (E) groups. The microglia in PBS injected groups 
have numerous processes (arrow heads in inset of D); whereas, in AD-Tau-injected group the microglia show increased cell body size 
with deramification of the processes (phagocytic morphology) (asterisks in inset of E). Scale bar: 50 µm (inset 20 µm). F. Illustration 
depicting the stages involved in activation of microglia in response to stimuli. In brief, resting microglia becomes ramified with more 
processes. In later stages, it becomes reactive with increased body size but with reduced number of processes. The microglia finally attain 
phagocytic morphology with few or no processes. AD, Alzheimer’s disease; PBS, phosphate-buffered saline.
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marker) or GFAP (astrocyte marker). Interestingly, we 
did not observe any significant morphological changes in 
astroglia between the two groups (Fig. 1B,C). However, we 
observed changes in morphology of microglia in vicinity to 
AT8 positive neurofibrillary structures in hippocampus of 
AD-Tau-injected rodents (Fig. 1E). Activation of microglia 
is characterized by progressive transformation of cells from 
reactive (small cell body and numerous processes) to phago-
cytic morphology, i.e. with larger cell body and few to no 
processes (Fig. 1F). Interestingly, microglia (~97%) in vicinity 
to AT8 positive structures, in AD-Tau-injected rodents were 
phagocytic (* in inset Fig. 1E). In contrast, the microglias in 
the PBS-injected group were either resting or ramified with 
numerous processes (arrowheads in inset Fig. 1D). 

Insoluble tau from human AD induced differential expression 
of genes associated with inflammation 

We were then interested to identify the molecular changes 
associated with insoluble tau-induced pathology in trans-
genic rodent model of tauopathy. We performed transcrip-
tomic profiling of 238 different genes in the hippocampus of 
PBS- and AD-Tau-injected TG rodents using three different 
PCR arrays kits (Supplementary Material, Table S1-S4). 
Using quantitative PCR, we detected an altered expression 
of 15 genes after 3 months following the AD-Tau injection. 
In the identified group, 11 genes were up-regulated (Mbl2, 
Il17f, Cxcl11, Ccl4, Osm, Tnfα, Ccl7, Tgm2, Ccr10, Wnt5 and 
Gabarap), and 4 genes displayed reduced expression (Bnip3, 
Hprt1, Il5r and Tnfsf13b) (Table 1).

To reveal functional annotation of signalling pathways 
associated with spreading of tau pathology we performed 

integrated bioinformatic analysis. Human orthologs of dys-
regulated genes from the rat model were further analysed 
using pathDIP portal to identify specific pathways associ-
ated with involved genes and to highlight the significantly 
enriched pathways. We identified 31 significantly enriched 
pathways with the inflammatory signalling mediated by 
cytokine and chemokine network, along with TLRs and 
JAK-STAT signalling were the most dominant. Moreover, the 
enriched signalling also involved the regulation of autophagy, 
mitophagy and endoplasmic reticulum stress pathways 
(Table 2). Evaluation of the gene pathway matrix revealed 
that Ccl4 and Tnfα represent the top most abundant genes 
shared among the significantly enriched pathways suggesting 
their important role in the molecular response mechanisms 
involved in the spreading of pathological tau aggregates in 
the brain (Table S1–S4).

Discussion

The mechanism/s involved in initiation and propagation of 
tau pathology in-vivo has gained wider attention in recent 
years. Several research groups, including us, have identified 
and documented processes involved in the characteristic 
spread of tau (Clavaguera et al. 2013; Boluda et al. 2015; 
Smolek et al. 2019a, 2019b). In the present study, we extend 
our previous observation and explore the changes on mo-
lecular level in brain microenvironment post inoculation 
of insoluble tau seeds. We employed a sporadic rat model 
expressing human truncated tau aa151-391 that develops 
robust neurofibrillary pathology, akin to tauopathies. De-
spite retaining the expression of misfolded tau aa151-391, 

Table 1. Differentially expressed genes in rats injected with AD-Tau compared to animals injected with PBS 
(control)

Gene symbol Gene name Fold change p-value
Mbl2 Mannose binding lectin 2 33.15 0.016
Il17f Interleukin 17F 3.37 0.044
Cxcl11 C-X-C motif chemokine ligand 11 1.95 0.048
Ccl4 C-C motif chemokine ligand 4 1.93 0.01
Osm Oncostatin M 1.79 0.002
Tnf Tumor necrosis factor 1.59 0.012
Ccl7 C-C motif chemokine ligand 7 1.55 0.038
Tgm2 Transglutaminase 2 1.5 0.006
Ccr10 C-C motif chemokine receptor 10 1.35 0.026
Wnt5 Wnt family member 5A 1.26 0.032
Gabarap GABA type A receptor-associated protein 1.05 0.016
Hprt1 Hypoxanthine phosphoribosyltransferase 1 −1.18 0.02
Bnip3 BCL2 interacting protein 3 −1.25 0.032
Tnfsf13b TNF superfamily member 13b −1.32 0.004
Il5ra Interleukin 5 receptor subunit alpha −2.78 0.042
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the transgenic rodents do not develop pathology in the 
hippocampus. However, using intracerebral injections of 
AD-derived insoluble tau seeds we were able to induce tau 
pathology in hippocampus of these animals (Smolek et al. 
2019a, 2019b). Moreover, the AT8 positive structures were 
also observed in synaptically connecting regions adjacent to 
the site of inoculation. In addition, the exogenous AD-Tau 
seeds recruited endogenous rat tau in the neurofibrillary in-
clusions. Therefore, we used a similar approach to investigate 
tau-induced changes in hippocampal microenvironment 
employing PCR array profiling. 

Neuroinflammation is cardinal hallmark of AD char-
acterized by activation of the innate immune system, the 
trigger for which is yet uncertain. GWAS suggest that genes 
associated with inflammation are a risk factor in onset and 

progression of AD (Castanho et al. 2020; Li and De Muynck 
2021). In line, differential expression of genes associated 
with inflammation is observed in AD (Wang et al. 2018; 
Chew and Petretto 2019; Kim et al. 2019). Moreover, a recent 
study also implicates the deregulation of genes associated 
with microglia in AD (Li and De Muynck 2021; Sobue et al. 
2021). Therefore, we investigated the transcriptomic profile 
associated with the seeding and initiation of tau pathology 
in rodent model of tauopathy using three different PCR 
arrays, which extensively covers genes involved in key as-
pects of neuroinflammation (cytokines and their receptors, 
autophagy (ER stress, oxidative stress), and phagocytosis). 
We identified 15 genes that are differentially expressed in 
response to exogenous AD-derived tau seeds. Integrated 
bioinformatic analysis revealed significant enrichment of 

Table 2. Enriched pathways associated with spreading of AD-Tau aggregates

Signaling Pathway name Pathway source q-value*
Cytokines Cytokine Signaling in immune system REACTOME 3.50609E−03

Cytokine-cytokine receptor interaction KEGG 2.35584E−09
Signaling by interleukins REACTOME 5.56810E−03
Interleukin-4 and Interleukin-13 Signaling REACTOME 6.78072E−03
Interleukin-10 Signaling REACTOME 2.37526E−02
IL-17 Signaling KEGG 6.02465E−03
IL23-mediated Signaling events PID 2.01809E−02

Chemokines Chemokine Signaling WikiPathways 2.95941E−03
Chemokine Signaling KEGG 3.43831E−03
Chemokine receptors bind chemokines REACTOME 2.26209E−02
Cytokines chemokines production ACSN2 1.08907E−03

Immune cells and inflammation Inflammatory Signaling ACSN2 2.01809E−02
Recruitment of immune cells ACSN2 1.98639E−02
Inflammation mediated by chemokine and cytokine Signaling Panther Pathway 2.32315E−02
miRNAs involvement in the immune response in sepsis WikiPathways 2.01809E−02
NF-kappa B Signaling KEGG 5.65365E−03
Intestinal immune network for IgA production KEGG 2.36651E−02
Inflammatory bowel disease (IBD) KEGG 3.41348E−02
Thioguanine metabolism pathway SMPDB 2.31433E−02
Legionellosis KEGG 2.84571E−02
Lung fibrosis WikiPathways 3.44696E−02

Toll-like receptor signaling Toll-like receptor Signaling WikiPathways 6.16538E−03
Toll-like receptor Signaling KEGG 6.45435E−03
Regulation of toll-like receptor Signaling WikiPathways 2.05721E−03

JAK-STAT signaling JAK STAT pathway in postconditioning ischemia IPAVS 3.87602E−03
GP130_JAK_STAT IPAVS 5.40987E−03

Purine nucleotide salvage Guanine and guanosine salvage HumanCyc 3.55866E−02
Adenine and adenosine salvage III HumanCyc 4.47457E−02

Mitophagy Mitophagy – animal KEGG 3.41348E−02
Autophagy Autophagy Spike 3.42884E−02
ER stress ER Stress Map IPAVS 6.07290E−03

*false discovery rate: Benjamini-Hochberg method (FDR: BH-method). ER, endoplasmic reticulum. 
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pathways associated with neuroinflammation, recruitment 
of immune cells, regulation of autophagy, and cell organelles 
stress signalling. At the molecular level, our data suggest 
the initiation of signalling cascades, mainly in microglia, in 
response to tau-induced pathology. In particular, elevated 
expression of Tnfα, Ccl4 and Ccl7, factors that are chemot-
actic to phagocytic cells, indicate activation and recruitment 
of these cells during tau seeding and propagation. Likewise, 
the notable upregulation of Cxcl11 may relate to the effector 
function of microglia, mediated via receptor protein Cxcr3, 
which is crucial for their recruitment (Rappert et al. 2004; 
Koper et al. 2018). This correlates well with the phagocytic 
morphology of microglia in proximity to AT8 positive struc-
tures in the hippocampus of tau-seeded rodents. 

Furthermore, the gene Mbl2, which is highly upregulated 
following the seeding of tau aggregates is a member of lectin 
pathway of complement system. It acts as opsonin and is in-
volved in the regulation of innate immunity and removal of 
senescent and apoptotic cells by macrophages (Turner 1998). 

Among other genes, we observed upregulation of oncos-
tatin M, a pleiotropic cytokine of the IL-6 family involved in 
cell communication and signalling in the immune system, 
and exerts a  direct neuroprotective activity in the CNS 
(Houben et al. 2019).

In addition to the inflammatory signalling by cytokines, 
chemokines and TLRs, we identified the enrichment of 
autophagy, mitophagy and endoplasmic reticulum path-
ways associated genes in hippocampus of AD-Tau-seeded 
rodents. This molecular association indicates the clearance 
of tau aggregates through lysosomal pathway and chaperone-
mediated autophagy (Wang et al. 2009; Abisambra et al. 
2013). Furthermore, it highlights the degradation pathways 
associated with neurodegeneration directing towards es-
tablishment of neuro-proteostasis in the brain (Opattova 
et al. 2015).

Neuroinflammation is inevitably associated with activa-
tion of microglia (Zotova et al. 2010). It is reported that tau 
oligomers and fibrils induce activation of microglia and evoke 
their morphological alterations (Morales et al. 2013). How-
ever, it is also shown that neutralization of AD-Tau seeds by 
microglia is compromised since the cells released inefficiently 
degraded tau back to extracellular space, thereby contributing 
to spreading of tau pathology (Hopp et al. 2018). Moreover, 
tau hyperphosphorylation affects microglia-dependent tau 
degradation (Perea et al. 2018). These phenomena more likely 
relates to dual activity of microglia in tau spreading cascades, 
and can be explained by diverse molecular pathways linked 
to tau-induced neurodegeneration. 

One of the limitations, in the study, is that we employed 
male rodents in order to avoid heterogeneity; therefore, sex 
specific response to tau-induced pathology in females may 
vary. Secondly, we used bulk hippocampal tissues for tran-
scriptomic analysis, and microglial activation was observed 

only in the vicinity of the AT8 positive structures. Despite 
this limitation, we observed transcriptional changes; how-
ever, the actual number of deregulated genes may be greater 
than observed. 

Overall, for the first time, our results suggests, that exog-
enous tau seeding in transgenic rodent model of tauopathy 
induce specific activation of pro-inflammatory signalling and 
participation of phagocytic cells, including microglia, that 
are involved in the manifestation of tau-induced pathology 
and spreading.
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