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ABSTRACT
Artifi cial intelligence (AI) is here to stay. It is not a future anymore, and there are many particular problems in 
cardiology that are already being solved via machine learning (ML), and many more are to come. AI cannot 
solve complex tasks yet, and probably this will not change in the upcoming years. Therefore, cardiologists do 
not have to be afraid that computers will replace them. However, cardiologists who will not be able to use ML 
algorithms in their clinical practice will be replaced by those who will. (Fig. 2, Ref. 50). Text in PDF www.elis.sk
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Introduction

Artifi cial intelligence (AI), a popular but unprofessional phrase 
that usually refers to machine learning (ML) algorithms, is one of 
the most discussed topics of current science. ML is expected to 
signifi cantly infl uence almost all scientifi c fi elds, including medi-
cine and health care. The stakes are high: it is expected that ML 
could offer substantial improvement for patient and clinical team 
outcomes, reducing costs, and improving population health (1, 2).

ML algorithms’ usefulness becomes evident with the ever-
growing datasets. Physicians are fl ooded with data while being 
expected to work more effi ciently. Moreover, following the in-
troduction of effi cient techniques, e.g., genome-sequencing or 
biometric data from telemedical devices, medical staff will soon 
be required to interpret and theoretically act on information com-
ing from many distinct fi elds of biomedicine (3). 

Potential implementation of ML in cardiology is broad and 
ranges from predicting the patient-specifi c treatment outcomes 
(survival models, classifi cation algorithms) (4) through computer 
vision (an automated analysis of various imaging examinations, 
ECG interpretation) (5, 6) to phenotype clustering and discovery 
of pathophysiological mechanisms (3, 7). 

In this paper, we would like to explain the basics of ML algo-
rithms concisely and outline their use in cardiology. 

What is machine learning

Encyclopedically, ML is a scientifi c fi eld that studies computer 
algorithms that improve automatically through experience (8). 
Generally, an ML algorithm is capable of building a model based 
on sample data given by the researcher in order to make predictions 
or decisions without being explicitly programmed to do so (9). 

Approaches within machine learning are typically divided 
into three broad categories, depending on the nature of the signal 
and feedback available to the learning algorithm. The most clas-
sical and used is supervised learning, where the learning system 
is given example inputs and desired outputs by the “teacher”, and 
the goal is to fi nd the most appropriate mapping from input space 
to the outputs. Secondly, for unsupervised learning, the system is 
not given any outputs nor labels, and the goal is to uncover struc-
ture within the data. Finally, reinforcement learning is when the 
program interacts with its dynamical environment where it must 
perform towards a particular goal that is achieved via feedback in 
the form of rewards, which it tries to maximize (10). 

This paper focuses mainly on supervised learning as it is the 
most widely used type of ML within medicine. We will also provide 
some details of unsupervised learning systems but omit the possi-
bilities of reinforcement learning in medicine and cardiology, albeit 
recently, some interest arose around reinforcement learning (11, 12).

Supervised machine learning

Supervised learning is the most ubiquitous type of ML cur-
rently used. It is about fi nding an appropriate mapping from an in-
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put vector to the output based on the example of input-output pairs 
provided to the learning algorithm (13). A supervised learning algo-
rithm analyses the training data and produces an inferred function. 
In an optimal scenario, the algorithm will correctly determine the 
output for unseen input vectors, hence will generalize reasonably. 

We can subdivide supervised ML into two distinct types: clas-
sifi cation and regression. Fundamentally, classifi cation algorithms 
are trying to predict the correct discrete label (typically dichoto-
mous labels, but of course, multi-label problems exist), while re-
gression algorithms predict a continuous quantity (14).

In particular, cardiology benefi ts from classifi cation ML al-
gorithms (15, 16). The typical workfl ow, in this case, consists of 
gathering the dataset (clinical risk factors, biological data such as 

protein expressions, epigenome, microbiome and others), perform-
ing a feature selection in order to fi nd relevant variables (for more 
details on feature selection, see the next section), training the ML 
model, and fi nally validating the model on unseen data in order 
to assess its performance properly (Fig. 1). The most important 
supervised ML algorithms are summarized in Figure 2.

Feature Selection

Any researcher willing to implement an ML model should 
take specifi c care when deciding on which variables to use in the 
model. This step is commonly referred to as feature selection. Fit-
ting a model (e.g., basic logistic regression) is in fact, mathemati-

Fig. 1. Typical ML workfl ow: from data to predictions. An illustration of typical machine learning workfl ow, from data acquisition, preprocess-
ing and cleaning, to the feature selection, the modeling itself (classifi cation or regression), and model evaluation and prediction. When the re-
searcher acquires new observations, new data might be included alongside the original data to retrain the model and increase its performance.



Bratisl Med J 2022; 123 (1)

16 – 21

18

cally impossible when one has more independent variables than 
observations (input–output pairs). Techniques such as pairwise 
selection, forward or backward stepwise regression are often used 
in practice, however, they often lead to models that do not gen-
eralize well (17, 18). Furthermore, complex interactions between 
variables might lead to underperforming of the model. 

The ML algorithms might also help here: several feature selec-
tion methods exist in both realms – supervised and unsupervised. 
The simplest way is to use regularization (i.e. shrinking the coef-
fi cient towards zero), which is the main feature in algorithms like 
LASSO (19) or Elastic Net (a mix of L1 and L2 regularization) 

(20) or more complex methods like stability selection with gradient
boosting (21), in which the main idea is to inject more noise into 
the original problem by generating bootstrap samples (stability 
selection) (22) and then use the base feature selection algorithm 
(gradient boosting classifi er) (23). 

From the unsupervised methods, let us briefl y mention the 
principal component analysis (change of basis in the data where 
the explained variance sorts the components) (24) and linear dis-
criminant analysis (statistically, a close relative of ANOVA, al-
beit with continuous independent samples and categorical class 
label) (25). 

Fig. 2. Most important ML algorithms. Sketches of selected ML algorithms for classifi cation: logistic regression (linear model with output sig-
moidal nonlinearity), random forest (an ensemble of decision trees where the fi nal classifi cation comes from the majority vote), Support Vec-
tor Machine Classifi er (kernel trick is used to separate linearly inseparable data with a hyperplane), and an artifi cial neural network (input 
is passed through several nonlinear layers that encode the hidden structure within the dataset and fi nal sigmoid  outputs the predicted label). 
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Unsupervised machine learning

As mentioned earlier, unsupervised machine learning focuses 
on uncovering the underlying structure in the (typically) high-
dimensional datasets. The landmark of unsupervised learning 
techniques is clustering, which is a task of grouping a set of data 
points so that points in the same group are more similar to each 
other than to other groups. This is usually achieved by minimizing 
some objective function that encodes “similarity”. There exist a 
plethora of algorithms for clustering, e.g. k-means (26), DBSCAN 
(27), independent component analysis (ICA) (28) to name a few.

Dimensionality reduction is not strictly an ML technique, as 
many of the methods were invented before ML emerged. How-
ever, it slowly became an integral part of almost any ML-related 
analysis pipeline. Its goal is simple: to transform high-dimensional 
data into a low dimensional space so that the low-dimensional 
representation retains some meaningful properties. Apart from 
the methods already mentioned (PCA, ICA, LDA), there exist 
more complex, typically nonlinear methods such as t-SNE (near-
est neighbor embedding) (29) , uniform manifold approximation 
and projection – UMAP (30), or autoencoders (31). Shortly, t-SNE 
constructs a probability distribution over pairs of high-dimensional 
objects based on similarity and then minimizes a Kullback-Leibler 
divergence between high-dimensional and its low-dimensional 
map. UMAP is similar in its workings to t-SNE, but it assumes 
uniformly distributed data on a manifold. Finally, autoencoders 
are a specifi c class of artifi cial neural networks. Its goal is to learn 
a, typically, low-dimensional representation for a given dataset. 
It consists of encoder and decoder parts and a hidden layer with a 
low number of units in between, conveying the low dimensional 
representation. The autoencoders are trained so that both input and 
output are the same dataset, and thus, while training, the autoen-
coder has to learn an effective intermediate representation of the 
dataset in its hidden middle layer.

Caveats and challenges

Naturally, ML is not an omnipotent tool, and it has limitations 
and challenges researchers need to keep in mind. Even the best 
models are limited by the magnitude and quality of the input data. 
As an example, Frizzell et al (32) found that ML algorithms were 
unable to predict 30-day readmission better than basic logistic re-
gression based on a massive dataset with more than 250 variables. 
All fi ndings based on ML approaches are potentially limited by a 
dataset, especially when the dataset does not contain any strong 
predictors. However, this is true for all statistical approaches, not 
just ML algorithms.

Another big problem with the ML approach is the potential to 
overfi t. Overfi tting refers to a model that models the input data too 
well, albeit cannot generalize. This can happen when the model 
learns the relevant signal and all the noisy details in the dataset. 
In general, overfi tting is more likely to occur with nonparametric 
and nonlinear methods that have more fl exibility when learning a 
target. Fortunately, there are many ways and approaches to limit 
overfi tting. One can use a resampling technique like k-fold cross-

validation, which trains and tests ML model k times on different 
subsets of data and estimates the performance on an unseen da-
taset (33). 

Next potential pitfall of ML (but again, not limited to ML) is 
so-called dichotomania (34). Clinicians typically want a dichoto-
mized output (yes or no); however, framing scientifi c questions 
like this might be imprecise and might lead to decreased perfor-
mance of the predictive model (3). 

The last point we want to mention in this context is a bias in 
ML. Typically bias refers to a model giving too much importance 
to some of its features. At fi rst sight, it might seem like a good 
thing (and it indeed might be), but the problem occurs when the 
assumptions for a more generalized algorithm produce systemati-
cally prejudiced results. After all, the best model is only as good 
as the data it was trained on, ultimately depending on the research 
building that model (35).

Application of ML in cardiology

The human brain consists of approximately 100 billion neu-
rons, in contrast to computers biological components capable of 
plasticity (36). Computational power of even the most advanced 
computers nowadays is incomparably lower than a human brain. 
This is responsible for the failure of ML in solving complex car-
diological problems. On the other hand, there are many narrowly 
defi ned areas where ML outperforms the traditional statistical ap-
proach and cardiologists or provides new insight into a specifi c 
problem. We summarize some of the examples.

Preventive cardiology

Assessing cardiovascular risk is the cornerstone of the dia-
gnostic and therapeutic approach in cardiology. Most used risk 
scores like the Framingham risk score (37) and SCORE (38) rely 
on several traditional risk factors, e.g. age, gender, arterial hy-
pertension, smoking or blood cholesterol. However, many more 
risk factors contribute to the complexity of prognosis, which is 
impossible to predict via standard statistical approaches like clas-
sical logistic regression. ML can overcome this obstacle leading to 
better risk prediction (39), which could be refl ected in optimiza-
tion of drug treatment (40). In order to translate these novel ML 
approaches to clinical practice, broader validation on independent 
cohorts is necessary. 

Electrocardiology

Electrocardiology is probably the most developed fi eld in ML. 
We already know that a computer is comparable to a cardiologist 
in ECG reading (41). However, the capabilities of ML go beyond 
human capabilities. Thanks to data mining, computers are able to 
extract new information from ECG recordings that is hidden to 
human interpretation. For instance, convolutional neural networks 
could identify patients with atrial fi brillation from ECGs acquired 
in sinus rhythm with remarkable predictive value (AUC of 90 % af-
ter internal validation) (42). Furthermore, ML was able to identify 
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left ventricular dysfunction from the ECG. Interestingly, this algo-
rithm was also able to predict left ventricular deterioration (43). 

Cardiovascular imaging

Computer vision is an important application of ML algorithms 
in general. Because interpretation of cardiovascular images is chal-
lenging and requires long term expertise, ML might bring revolu-
tion into this fi eld. Echocardiography is the most used imaging 
modality in cardiology. Therefore, it is no surprise that the biggest 
interest of computer vision algorithms in cardiovascular medicine 
is focused there. Several trials showed that ML-based assessment 
of left ventricular ejection fraction and wall motion abnormalities 
is precise (44, 45). Thanks to the development of speckle tracking, 
AI could be useful in more diffi cult scenarios, e.g., distinguishing 
between hypertrophic cardiomyopathy vs athletic heart (46) or 
constrictive vs restrictive pericarditis (47). The biggest obstacle 
in the widespread use of the mentioned algorithms are different 
machine vendors, image processing and image quality. It is im-
portant to remind that performance of AI is only as good as the 
quality of the dataset. Therefore, skilled personnel will always be 
needed to acquire high-quality images for the analysis. Nuclear 
cardiology is another fast-expanding fi eld in terms of AI applica-
tion. Indeed, many ML techniques are incorporated in the routine 
single photon emission computer tomography or positron emission 
tomography (48). Thanks to these developments, not only does 
myocardial ischemia quantifi cation gets improved, but prognosis 
assessment and revascularization strategy could be optimized (49). 

Precision medicine 

Precision medicine aims for the highest possible personaliza-
tion of diagnostic and therapeutic approaches.  For this purpose, 
omics is used (e.g., genomics, proteomics, metabolomics etc.). 
However, omics examination provides large datasets that are dif-
fi cult, even impossible, to interpret via standard statistical methods. 
ML enables a true innovation here by enabling analysis of these 
complex datasets. The synergy between omics and ML is prob-
ably one of the most important factors in the future development 
of medicine. The combination of precise data with sophisticated 
analysis should improve medical care signifi cantly. Evidence-
based medicine in this fi eld is also promising, and we already know 
that ML-based analysis of proteomic or genomic examination pro-
vides better prognosis prediction than standard methods (16, 50). 

Conclusion

Artifi cial intelligence is here to stay. It is not a future anymore, 
it is the present, and the fi eld of cardiology is no exception. There 
are many particular problems in cardiology that are already be-
ing solved via ML and many more are to come. AI cannot solve 
complex questions yet, and probably this will not change in the 
upcoming years. Therefore, cardiologists do not have to be afraid 
that computers will replace them. However, cardiologists who will 
not be able to use ML algorithms in their clinical practice will be 

replaced by those who will. Therefore, understanding the basics of 
ML seems to be an essential part of clinical cardiology knowledge.
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