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Bone is a common metastatic site of malignancies, caused by the complex interaction between tumor cells and the bone 
microenvironment. The complicated procedure covers multiple targets for therapeutic strategies against bone metastasis. 
At the present, only bisphosphonates and denosumab are currently approved for the prevention of skeletal-related events. 
But it is still ineffective for some patients, and none of them are proven to prolong the overall survival of patients with bone 
metastasis. Thus, new bone-modifying agents and therapeutic strategies are required. The review aimed to generalize the 
basic theory of bone metastasis and major put emphasis on the development of fundamental and potential target drugs in 
the behavior of bone metastasis. The summary of the drug development process helps to provide ideas for finding new and 
effective treatments for bone metastasis. 
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Bone is a major metastatic site of malignancies, such as 
breast cancer, prostate cancer, lung cancer, etc. [1]. Bone 
metastasis is divided into osteolytic metastasis with excessive 
bone resorption and osteoblastic metastasis with excessive 
bone formation. Bone metastasis can cause skeletal-related 
events (SREs), including bone radiotherapy, pathological 
fractures, spinal cord compression, surgery to bone, and 
hypercalcemia [2], which result in a poor prognosis and 
increase the economic burden.

The treatment of bone metastasis mainly includes bone 
modification drugs, radiotherapy, and surgery. The role of 
radiotherapy is mainly to relieve pain and increase strength, 
and the purpose of surgery is mainly to prevent disability. 
Bone-modifying drugs (BMAs) can be used throughout the 
entire process of treatment of bone metastasis to decrease 
the incidence of SREs. At present, just bisphosphonates 
and denosumab are currently approved for the prevention 
of SREs. But it is still vain for some patients, and not any of 
them are proved to prolong the overall survival of patients 
with bone metastasis. Thus, the development of new agents 
and new strategies are key to improve the treatment of 
bone metastasis. After decades of effort, the mechanism of 

bone metastasis has gradually been elucidated and drugs of 
different mechanisms are continuously emerging.

In this review, we would like to briefly summarize the 
basic theory of bone metastasis and put an emphasis on the 
key drugs and potential therapeutic interventions of bone 
metastasis.

The mechanism of bone metastasis

At present, the mechanism of bone metastasis is not clear. 
The “seed and soil” theory believed that the interaction 
between tumor cells and bone microenvironment plays an 
important role in tumor cells colonizing bone [3]. Emerging 
evidence has shown that primary tumor cells, bone marrow-
derived myeloid cells (BMDCs) contribute to form the 
pre-metastatic niche (PMN) by releasing tumor-specific 
growth factors, inflammatory cytokines, chemokines, angio-
genesis factors, etc. [4, 5], which is beneficial to the coloniza-
tion and growth of tumor cells. Then, disseminated tumor 
cells (DTCs) in the bone matrix and bone marrow stroma 
interact with osteoclasts and osteoblasts resulting in bone 
destruction. Bone destruction produces bone-derived 
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cytokines such as insulin-like growth factors (IGFs) and 
transforming growth factor-beta (TGF-β), which are benefi-
cial to the growth and invasion of tumor cells in bone tissue 
in turn. This is a “vicious circle” [6]. Therefore, the forma-
tion of the “vicious circle” is the key in the therapy of bone 
metastasis.

Bone normal physiology and bone metastasis pathology

Bone normal physiology depends on the dynamic balance 
between bone resorption by osteoclasts and bone formation 
by osteoblasts. Preclinical studies have confirmed several 
signaling pathways involved in osteogenesis and osteoclasto-
genesis (Figure 1). Metastatic tumor cells break the balance 
of osteoclasts and osteoblasts resulting in a “vicious circle”. 
Herein, we reviewed the process of bone normal physiology 
and the “vicious circle” to provide a theoretical basis for the 
introduction of drug development.

Bone normal physiology. When bone is aged or 
damaged, osteoclast precursors differentiate into active 
osteoclasts via macrophage colony-stimulating factor 
(MCSF) and the receptor activator for nuclear factor-κ B 
ligand (RANKL) [7]. RANKL is a member of the tumor 
necrosis factor (TNF) family, produced by osteocytes, osteo-
blasts, and bone marrow stromal cells. RANKL binds to the 
receptor activator of nuclear factor-κB (RANK) on osteoclast 
precursors surface to trigger the activation of osteoclasts. 
Osteoprotegerin (OPG), a decoy receptor from osteoblasts, 
binds to RANKL and inhibits the RANK/RANKL signaling 

pathway, blocking excessive activation of osteoclasts [8–10] 
(Figure 1). Activated osteoclasts mediate bone resorption by 
expressing cathepsin K [11].

Bone resorption induces the release of factors like TGF-β, 
bone morphogenetic proteins (BMPs) from the bone matrix, 
which facilitate differentiation of mesenchymal stem cells 
(MSCs) into osteoblasts [12, 13]. Then, bone formation is 
activated. At the same time, osteocytes secrete sclerostin 
(SOST) and dickkopf1 (DKK1) to prevent excessive bone 
formation by blocking the WNT pathway [14] (Figure 1). 
Bone normal physiology depends on the balance between 
bone resorption and bone formation.

Pathology of osteolytic metastasis. Tumor-derived 
cytokines, such as IL-6, IL-8, IL-11, PTHrP, upregulate the 
expression of RANKL and downregulate the expression of 
OPG [15, 16]. Tumor cells also secrete MCSF [17] to promote 
osteoclasts differentiation and bone resorption. The activa-
tion of osteoclasts degrades the bone matrix leading to the 
release of numerous growth factors, such as TGF-β, IGFs, 
and Ca2+, thus stimulating tumor cell proliferation [18]. On 
the other hand, tumor cells also inhibit osteoblast differentia-
tion by secreting SOST and DKK1 [19]. All processes estab-
lish a “vicious circle” as described above (Figure 2).

Pathology of osteogenic metastasis. Osteogenic 
metastasis mainly occurs in advanced prostate cancer. The 
mechanism is not clear. Tumor-derived cytokines, such 
as endothelin-1 (ET-1) [20], BMPs, Wnt-family proteins 
(Wnts), TGF-β, are proved to promote osteoblast differ-
entiation and osteogenesis (Figure 2). ET-1 downregulates 

Figure 1. The signal pathway in osteoclastogenesis and osteogenesis. Abbreviations: OPG-osteoprotegerin; RANKL-receptor activator for nuclear 
factor-κ B ligand; RANK-receptor activator of nuclear factor-κB; TRAF-6-tumor necrosis factor receptor-associated factor 6; NF-κB-nuclear factor κB; 
SOST-sclerostin; DKK-1-dickkopf-1; Wnts-Wnt-family proteins; FZD-frizzled; LRP-5-low-density lipoprotein-related receptor-5; GSK3β-glycogen 
synthase kinase 3β; TGF-β-transforming growth factor-β; BMPs-bone morphogenetic proteins; SMAD4-mothers against decapentaplegic homolog 4; 
R-SMADs receptor-regulated Smads
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Figure 2. The development of bone metastasis and vicious cycle. Abbreviations: TGF-β-transforming growth factor-β; IGFs-insulin-like growth fac-
tors; FGFs-fibroblast growth factors; PDGF-platelet-derived growth factor; GM-CSF-granulocyte-macrophage colony-stimulating factor; ET-1-endo-
thelin-1; PTHrP-parathyroid hormone-related protein; BMP-bone morphogenetic protein; TGF-β-transforming growth factor-β; Wnts-Wnt-family 
proteins; MSC-mesenchymal stem cell; OPG-osteoprotegerin; RANKL-receptor activator for nuclear factor-κ B ligand; RANK-receptor activator of 
nuclear factor-κB; SOST-sclerostin; DKK-1-dickkopf-1; CatK-cathepsin K

the autocrine production of DKK1 and promotes osteoblast 
differentiation via binding to the endothelin A receptor 
(ETR), activating Wnt signaling. ET-1 can also inhibit bone 
resorption to promote osteogenesis. BMPs and TGF-β 
promote osteoblast differentiation via the SMAD signaling 
pathway [21] (Figure 1).

The validated BMAs

The currently validated BMAs include bisphosphonates 
and denosumab, a RANKL inhibitor, both of which mainly 
act on osteoclasts. In the past decades, bisphosphonates and 
denosumab have elicited tremendous attention because of 
their success in achieving long-term durable responses. 
They have been proved to reduce and prolong the occur-
rence of SREs. Although there is no sufficient evidence to 
prove that bisphosphonates and denosumab can prolong the 
overall survival of patients, they are still the standard drugs 
of bone metastasis.

Bisphosphonates

Bisphosphonates have a very high affinity for hydroxyap-
atite crystals and can effectively suppress bone resorption by 
inhibiting hydroxyapatite breakdown. Based on this preclin-
ical rationale, three generations of bisphosphonates entered 
the clinical development (Table 1). These results provided 
sufficient data support for the prevention of SREs [22–35].

The first generation is represented by Clodronate 
(CLO). Early reports of two controlled trials showed CLO 
could relieve bone pain in patients with breast cancer 
and prostate cancer [36, 37]. A double-blind controlled 
trial in patients with bone metastasis secondary to breast 
cancer who was randomized treated with CLO (1.6 g/d) or 
placebo demonstrated that the combined rate of all SREs 
was remarkably reduced (218.6 vs. 304.8/100 patient-years; 
p<0.001) [22]. Another randomized trial about metastatic 
breast cancer with bone involvement indicated that oral 
CLO (600 mg/bid) could significantly prolong the time 
to the first SRE than the control group (p=0.015) and the 
incidence of fractures was significantly reduced in the CLO 
group (p=0.023) [23].

Pamidronate is a second-generation agent. Combine data 
from two randomized controlled studies show Pamidronate 
(90 mg/3–4 w) was superior to placebo in patients with 
osteolytic bone metastasis from breast cancer [25]. The 
skeletal morbidity rate was lower in the Pamidronate group 
compared with placebo (2.4 vs. 3.7; p<0.001). The incidence 
of SREs was 51% in the Pamidronate group and 64% in 
the placebo group (p<0.001). Additionally, Pamidronate 
significantly increased median time to first SRE (12.7 vs. 
7 months for placebo; p<0.001). Unfortunately, the data of 
head-to-head comparison with the first-generation drugs 
are missing, and no prospective randomized controlled 
study on prostate cancer has been designed, although 
Pamidronate is effective in the clinic.
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Table 1. Clinical trials of bisphosphonates in patients with bone metastasis.

Agent Patients Dose Results Ref.
Clodronate

vs. Placebo Breast cancer 1.6 g/d The combined rate of all morbid SREs ↓
(p<0.001)

[22]

vs. No-treatment Breast cancer 800 mg bid po the time to the first SRE →
(p=0.015)

[23]

Pamidronate

vs. Placebo Breast cancer 60 mg/4 w Cumulative number of SREs ↓
(p<0.01)

[24]

vs. Placebo Breast cancer 90 mg/3-4 w The skeletal morbidity rate ↓
(p<0.001)
SREs ↓
(p<0.001)
The median time to first SRE →
(p<0.001)

[25]

Zoledronic acid

vs. Placebo Renal cell carcinoma 4 or 8 mg/3 w The proportion of patients with an SRE↓
(p=0.015)
The time to the first SRE →
(p=0.006)

[26]

vs. Pamidronate Breast cancer
Multiple myeloma

4 mg/3-4 w vs. 90 mg/3-4 w the overall risk of developing SREs ↓
(p=0.030)
The risk of SREs in breast cancer ↓
(p=0.025)

[27]

vs. Placebo Prostate cancer 4 mg/3 w The annual incidence of SREs ↓
(p=0.005)
The median time to the first SRE →
(p=0.009)
The ongoing risk of SREs ↓
(p=0.002)

[28]

vs. CLO Prostate cancer 4 mg/m
vs. 1.6 g/d

Bone progression-free survival ↑
(p=0.04)

[29]

vs. Placebo Lung cancer and other solid tumors 4 or 8 mg/3 w The median time to first SRE →
(p=0.009)
The annual incidence of SREs ↓
(p=0.012)
The risk of developing a SRE ↓
(p=0.003)

[30]

Oral Ibandronate

vs. Placebo Breast cancer 20 or 50 mg/d Skeletal morbidity period rate ↓
(p=0.024, p=0.037)
The relative risk of SREs ↓
(p=0.009 and p=0.005)

[31]

vs. Placebo Breast cancer 50 mg/d Skeletal morbidity period rate ↓
(p=0.004)
The risk of SREs ↓
(p=0.0001)

[32]

vs. ZOL Breast cancer 50 mg/d vs. 4 mg/3-4 w Annual rates of SREs non-inferiority [33]

Ibandronate

vs. Placebo Colorectal carcinoma 6 mg/4 w The proportion of patients with SREs ↓ (p=0.019)
The time to first SRE →
(p=0.009)

[34]

vs. Placebo Breast cancer 6 mg/4 w The proportion of patients with an SRE ↓
(p=0.027)
Time to first SRE→
(p=0.007)

[35]

Notes: ↓ reduced, → prolonged. Abbreviations: SRE-skeletal-related event; COL-Clodronate; ZOL-Zoledronic acid
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Zoledronic acid (ZOL), a third-generation agent, has 
demonstrated highly durable response rates of several large 
phase III studies involving patients with bone metastasis in 
advanced breast cancer, prostate cancer, renal cell carcinoma, 
lung cancer, and other solid tumors (Table 1). In a random-
ized double-blind multicenter trial of ZOL (4 or 8 mg) vs. 
Pamidronate (90 mg), ZOL (4 mg) significantly reduced 
the risk of SREs (p=0.025) compared with the Pamidronate 
group of patients with breast cancer [27]. The median time 
to first SRE was no statistically different between the two 
groups. However, subgroup analysis showed in breast cancer 
with hormonal therapy, ZOL (4 mg) prolonged the median 
time to the first SRE by 45 days (415 days vs. 370 days for 
Pamidronate; p=0.047). Additionally, another randomized 
placebo-controlled trial demonstrated the benefit of ZOL in 
the management of bone metastasis from advanced prostate 
cancer [38]. The result of 122 patients who completed a total 
of 24 months on study illustrated the median time to the first 
SRE was significantly prolonged in ZOL (4 mg) (488 days vs. 
321 days for placebo; p=0.009). Based on the above research, 
ZOL is the most well-demonstrated bisphosphonate in 
prostate cancer and is also the most widely used bisphospho-
nate in clinical practice.

Ibandronate is another third-generation agent. In a 
non-inferiority phase 3 trial of bone metastasis from breast 
cancer, the findings could not reject the null hypothesis that 
oral Ibandronate (50 mg/d) was inferior to ZOL (4 mg/3–4 w). 
The notable result was that the incidence of renal toxic effects 
was 24% in the oral ibandronate group and 32% in the ZOL 
group [33]. Ibandronate was also evaluated in a random-

ized placebo-controlled pilot study, enrolling 73 patients 
with bone metastasis from colorectal carcinoma (CRC) [34]. 
Patients randomly received intravenous ibandronate (6 mg) 
every 4 weeks or a placebo. The results demonstrated that the 
proportion of patients with SREs was significantly reduced in 
the ibandronate group (39% vs. 78% with placebo; p=0.019) 
and the time to first SRE is extended by at least 6 months 
(median >279 vs. 93 days with placebo; p=0.009). One of our 
studies confirmed that the loading dose of Ibandronate (6 
mg for three days) has certain advantages in reducing bone 
pain [39]. Although Ibandronate has not shaken the status of 
ZOL, it also provides a new option, especially in oral dosage 
forms.

Bisphosphonates are basic drugs recommended by guide-
lines for the treatment of bone metastasis. However, renal 
toxicity and the high incidence of osteonecrosis of the jaw 
(ONJ) have always been troubled issues in clinical practice. 
Therefore, we need drugs with few side effects.

RANKL inhibitor

Denosumab is the first anti-RANKL antibody approved 
for marketing. As a fully human anti-RANKL IgG2 antibody, 
Denosumab can suppress the activation of osteoclasts and 
prevent bone resorption by inhibiting the RANK/RANKL 
signaling pathway. Several studies confirmed the role of 
Denosumab in bone metastasis (Table 2).

In three presented randomized phase III studies, 
Denosumab (120 mg/4 w) was superior to ZOL (4 mg/4 w) 
in delaying time to first on-study SRE with advanced breast 

Table 2. Current data of denosumab versus ZOL in patients with bone metastasis.
Patient population Type of study Results Ref.
Breast cancer
N=2046

RCT Median time to first SRE: NoR vs. 26.4 months; p=0.01
Overall survival: HR 0.95; 95% CI:0.81 to 1.11; p=0.49

[40]

Prostate cancer
N=1904

RCT Median time to first SRE: 20.7 vs. 17.1 months; p=0.008
Overall survival: HR 1.03; 95% CI:0.91 to 1.17; p=0.65

[41]

MM
N=1718

RCT Median time to first SRE: 22.8 vs. 24.0 months; p=0.010
Overall survival: HR 0.90; 95% CI:0.70 to 1.16; p=0∙41

[42]

Other solid tumors
(Excluding BC and PC)
or MM
N=1776

RCT Median time to first SRE: 20.6 vs 16.3 months; p=0.06
Overall survival: HR 0.95; 95% CI:0.83 to 1.08; p=0.43

[43]

Solid tumors
(Except BC and PC)
N=1597

Subgroup analysis of RCT Median time to first SRE:21.4 vs. 15.4 months; p=0.017
Overall survival: HR 0.92; 95% CI:0.81 to 1.05; p=0.215

[44]

Solid tumors and MM
N=5723

Combined analysis of 3 RCTs Median time to first SRE: 27.66 vs. 19.45 months; p<0.001
Overall survival: HR 0.99; 95% CI:0.91 to 1.07; p=0.71

[45]

Gastrointestinal cancer
and other rare cancer
N=149

Retrospective study Median time to SRE: 186 vs. 79 days; p=0.0053 [46]

Lung cancer
N=411

Subgroup analysis of RCT Overall survival: 8.9 vs. 7.7 months
HR 0.80; 95% CI: 0.67 to 0.95; p=0.01

[47]

Non-squamous NSCLC
N=103

Retrospective study Overall survival: 21.4 vs. 12.7 months; p<0.01 [48]

Abbreviations: RCT-Randomized Controlled Trial; NoR-not reached; BC-Breast cancer; PC-Prostate cancer; MM-multiple myeloma; NSCLC-non-small 
cell lung cancer
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cancer (p=0.01), prostate cancer (p=0.008), and multiple 
myeloma (p=0.010) [40, 42]. In another randomized phase 
III randomized involving patients with other advanced 
cancer (excluding breast and prostate cancer) and multiple 
myeloma, Denosumab was non-inferior to ZOL statisti-
cally (p=0.06) [43]. However, in a subgroup analysis of data 
from patients with solid tumors (except breast and prostate 
cancer), the median time to the first SRE was significantly 
prolonged in Denosumab (21.4 months vs. 15.4 months for 
ZOL; p=0.017) [44]. A combined analysis of three RCTs 
also confirmed that Denosumab (120 mg/4 w) can signifi-
cantly prolong SREs in solid tumors and multiple myeloma 
(p<0.001) [45]. Evidence of Denosumab in gastrointestinal 
cancer was provided by a retrospective study in Japan, the 
result showed patients had benefited from Denosumab [46]. 
Unfortunately, Denosumab was not found overall survival 
better than ZOL above. Although a result of subgroup analysis 
from patients with lung cancer showed the median time of 
overall survival is prolonged by 1.2 months in Denosumab 
(8.9 vs. 7.7 months for ZOL; p=0.01) [47], and a retrospec-
tive study of non-squamous NSCLC observed the advantage 
of survival [48], more prospective data are needed to confirm 
the survival advantage.

On the other hand, clinical trials above had proved that 
denosumab was superior to ZOL in terms of renal toxicity. 
However, the incidence of ONJ is still high. Given that 
bisphosphonates and Denosumab are anti-bone resorptions, 
developing drugs with other mechanisms may prevent this 
trouble.

Other clinical trials of unapproved agents

Some other drugs are in clinical research, including anti-
bone resorption agents and anti-bone formation agents. 
Although the results of preclinical studies are exciting, they 
have not brought adequate evidence for the treatment of 
bone metastasis. Some drugs are effective in the treatment of 
osteoporosis, but they cannot be confirmed in bone metas-
tasis. The main reason is the difference in the bone microen-
vironment.

Cathepsin K inhibitors. Cathepsin K (CTSK) is a 
lysosomal cysteine protease secreted by activated osteoclasts, 
which could effectively mediate bone resorption by degrading 
type I collagen, type II collagen, and exciting matrix-metallo-
proteinase-9 (MMP-9) [49–51]. Therefore, CTSK inhibitors 
can prevent bone resorption theoretically. However, there are 
no approved agents for bone metastasis so far.

Odanacatib (ODN-MK-0822) was the first drug to show 
therapeutic effects in reducing the fracture risk of postmeno-
pausal osteoporosis patients in the LOFT study but was 
associated with a high risk of cardiovascular events [52]. 
In vitro studies demonstrated that ODN-MK-0822 could 
inhibit invasion, migration and adhesion of human breast 
cancer cells [53] and decrease the mRNA expression of 
secreted pro-osteoclast factors [54]. In a randomized 2:1 

study, Odanacatib (5 mg/d) suppressed uNTx equivalently to 
ZOL (4 mg/4 w) after 4 weeks of treatment in patients with 
bone metastasis of breast cancer [55]. There is no evidence 
of other CTSK inhibitors such as ONO-5334, AAE581, and 
MIV-711 in the treatment of bone metastasis.

c-Src inhibitors. c-Src is a non-receptor tyrosine kinase 
and is abundant in osteoclasts. Preclinical studies have proved 
c-Src plays an important role in cell proliferation, angiogen-
esis [56], and bone homeostasis [57]. c-Src affects the bone-
resorbing activity of mature osteoclasts by boosting the rapid 
assembly and disassembly of the podosomes [58]. Therefore, 
the c-Src inhibitor may prevent osteoclast-mediated bone 
resorption.

On the basis of this preclinical rationale, four c-Src inhibi-
tors, Dasatinib, Bosutinib, Vandetanib, and Saracatinib, were 
involved in clinical studies of bone metastasis. In phase I/II 
study of breast cancer bone metastasis, Dasatinib combined 
with zoledronic acid was proven to be well tolerated and had 
responses in patients with HR-positive [59]. However, in the 
SWOG S0622 study, either of the 2 dose schedules of Dasat-
inib was unsuccessful to control bone metastasis in metastatic 
breast cancer [60]. Similarly, another phase II study of Dasat-
inib with weekly Paclitaxel also showed ineffectiveness in 
MBC [61]. With respect to metastatic castration-resistance 
prostate cancer (CRPC), the READY study showed the Dasat-
inib (100 mg/d) group had no significant benefit in delaying 
median time to first SRE (not reached vs. 31.1 months for 
placebo; p=0.81) [62].

Other c-Src inhibitors, such as Bosutinib, Vandetanib, 
and Saracatinib, are also short of sufficient evidence of 
bone metastasis. Preclinical studies showed the ability of 
SKI-606 (Bosutinib) to block breast cancer and prostate 
cancer invasion, growth, and metastasis in vitro and in vivo 
[63–65]. Bosutinib could distinctly reduce tumor growth and 
lytic lesion areas in the bone by an animal model of prostate 
cancer [64]. Nevertheless, in a phase II study in patients with 
advanced breast cancer who pretreated with chemotherapy, 
Bosutinib did not change the level of bone resorption 
markers during the process of treatment [66]. In a random-
ized placebo-controlled study, Zamboney et al. showed that 
the addition of Vandetanib to Fulvestrant failed to prolong 
time to first SRE and change the biomarkers of bone turnover 
in hormone-receptor-positive metastatic breast cancer [67]. 
With respect to Saracatinib (AZD 0530), preclinical studies 
demonstrated Saracatinib (AZD 0530) could inhibit osteo-
clast formation effectively in vitro [68, 69] and prevent mice 
from developing severe osteolytic lesions in vivo studies [70]. 
The result of a phase I study showed Saracatinib significantly 
decreased the bone resorption markers of osteoclast activity 
in patients with advanced cancer [71]. However, further 
research showed that Saracatinib could not relieve bone pain 
effectively [72].

Integrin inhibitors. Integrins are heterodimeric cell 
surface receptors. Previous studies have established that 
integrins can mediate tumor cells’ adhesion to the extracel-
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lular matrix (ECM) [73, 74] and facilitate the proliferation 
and invasion of tumor cells [75]. Moreover, numerous studies 
have attempted to explain the role of ανβ3 in bone metastasis 
[76–78] and anti-αvβ3 therapy can reduce bone resorption 
by inhibiting osteoclast adhesion in vitro [79, 80]. Although 
initial enthusiasm for integrin inhibitors was generated from 
advanced cancers, the experience with integrin inhibitors in 
bone metastasis is less mature.

Cilengitide is a selective inhibitor of αvβ3 and αvβ5 integ-
rins. A randomized phase II trial of metastatic castration-
resistant prostate cancer patients was a failure of altering 
bone markers, so there were no further data about the bone 
disease [81].

MEDI-522 is another inhibitor of human ανβ3 integrin. 
Unfortunately, a phase II study in patients with metastatic 
androgen-independent prostate cancer who experienced 
MEDI-522 in combination with Docetaxel, Prednisone, and 
ZOL did not present the result of the incidence of SREs.

ATN-161 and PSK 1404, nonpeptide antagonist of αvβ3, 
could block bone metastasis and bone resorption in the 
animal model of breast cancer [82, 83].

The latest evidence showed that integrin alpha5 (ITGA5) 
is overexpressed in bone metastasis of breast cancer [84] 
and ITGA5 antibody (M200) decreased human osteoclast-
mediated bone resorption in vitro [84]. We hope the effect 
of M200 could be confirmed in vivo and in clinical trials in 
the future.

DKK1 inhibitors and SOST inhibitors. Wnt signaling 
bone formation pathway has emerged as a crucial factor in 
bone formation [85, 86]. DKK1 and SOST was the antagonist 
of the Wnt signaling pathway as described above. Preclinical 
studies showed that inhibiting Dkk1 could prevent osteolytic 
disease in breast cancer and multiple myeloma [87, 88].

BHQ880 is a human anti-DKK1 monoclonal antibody. 
In a presented phase Ib study, BHQ880 in combination with 
zoledronic acid was effective in promoting bone mineral 
density (BMD) in MM [89]. A clinical trial of DKN-01, 
another new agent, is recruiting.

As regards SOST inhibitors, Romosozumab, Blosozumab, 
and BPS804 have been shown to result in disease responses 
in clinical trials of osteoporosis [90–92]. Unfortunately, 
researchers have not designed clinical trials on bone metas-
tasis so far.

Potential drugs

Previous research has focused too much on bone resorp-
tion and reconstruction, which seems to ignore the role of 
the bone microenvironment. And the target is not accurate 
enough. Fortunately, scientists are constantly discovering 
new therapeutic targets, including bone-derived cytokines 
and new drug delivery systems, which have brought us 
positive signals.

Bone-derived growth factor inhibitors. Bone-
derived cytokines such as IGFs and TGF-β and receptors 

played an important role in the “vicious circle” and epithe-
lial-to-mesenchymal transition (EMT).

AZD3463, an IGF-1R inhibitor, suppresses bone metas-
tasis of breast cancer via the PI3K-Akt pathway in vitro, 
especially when combined with ZOL [93].

TGFβR inhibitors ZL170 and SD208 reduce bone metas-
tasis of breast cancer and prostate cancer via blocking the 
TGFβ/SMAD pathway [94, 95]. Given that growth factors are 
widely distributed in the human body, we need to develop 
more precise drugs to treat bone metastasis.

Targeting hypoxic microenvironment

The hypoxic microenvironment has emerging roles in the 
development of bone disease. Hypoxia plays a key role at 
all stages of bone metastasis. In vitro studies demonstrated 
that hypoxia promoted osteoclast formation by upregulating 
RANKL [96–98] and inhibited the differentiation of osteo-
blasts [99]. Hypoxia-inducible factor (HIF)-1 promoted the 
formation of PMN by regulating the expression of LOX [100, 
101]. Targeting hypoxic microenvironment and HIF may 
a new treatment strategy for bone metastasis of malignant 
tumors.

CaSR inhibitors. The calcium-sensing receptor (CaSR) 
is a G-protein-coupled receptor. The function of CaSR is 
unequal in different tumors. CaSR is a protective receptor 
in colon cancer [102, 103]. Otherwise, previous studies have 
confirmed that overexpression of the CaSR promotes bone 
metastasis in several tumors such as breast cancer, prostate 
cancer, lung adenocarcinoma, and renal cell carcinoma 
[104–107]. CaSR might be a potential therapeutic target of 
preventing bone metastasis. NPS2143, a CaSR antagonist, 
was proven to reduce bone metastasis in vitro and animal 
models in renal cell carcinoma [106].

Nanodrugs and conjugate drugs. Many potential 
drugs have not reached effective concentrations to treat bone 
metastasis. To achieve the therapeutic concentration in the 
bone, the treatment of bone metastasis with the most effec-
tive and minimal systemic toxicity requires new treatment 
strategies. Nanoparticles encapsulate therapeutic drugs, 
protect them from degradation, and can bind to specific 
sites to improve efficacy. Another strategy is traditionally 
anti-tumor drugs such as Paclitaxel and Bortezomib specifi-
cally anchored to the bone by coupling with bisphosphonates 
[108].

Conclusion

At present, most studies on the mechanism of bone metas-
tasis are mainly focused on breast and prostate cancer. There 
are many unclear mechanisms of bone metastasis because 
each tumor has its own characteristics. This is the main 
reason for the failure of many drugs. The drugs approved 
for the treatment of bone metastasis are limited. Anti-bone 
resorption therapy with bisphosphonates and denosumab 
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has improved the outlook for patients with bone metas-
tasis in a variety of malignancies. Despite the benefit of this 
approach, many questions remain, such as not all patients 
respond to current agents, high incidence of osteonecrosis 
of the jaw, and no advantage in prolonging overall survival.

Therefore, further insight into the mechanisms of bone 
metastasis is needed, and new therapeutic strategies are 
required. With the continuous elucidation of tumor metas-
tasis mechanism and innovation of anti-tumor therapy, we 
could focus our attention on the metastatic microenviron-
ment, the formation of PMN, and the combined applica-
tion of bone-targeted drugs and anti-tumor drugs, such as 
chemotherapy or immune checkpoint inhibitors. The therapy 
of bone metastasis will continue to be a challenge today and 
future.
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