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Periostin: a predictable molecule to prognosis and chemotherapy responses of 
gastrointestinal and hepato-biliary-pancreatic malignant tumors? 
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With the continuous development of medical science and technology, the medical community’s understanding of the 
disease is constantly updated, just as strategies for treating malignant tumors are constantly updated. New diagnoses, follow-
up indicators, and treatment plan formulations need more evidence to be supported. To date, radical surgical resection is 
still the preferred treatment for advanced digestive system malignancies, and combination therapy including chemotherapy 
and targeted therapy before or after surgery is aimed at improving the prognosis and quality of life of patients. However, if 
tumor recurrence, metastasis, chemotherapy, and drug resistance to targeted agents after surgery prevent the achievement 
of the desired therapeutic effect, and if neoadjuvant chemotherapy and targeted therapy cannot reduce the staging of the 
tumor, surgery cannot be performed. These are huge problems that we face now and will continue to face for some time. 
Relevant scientific data and evidence have been produced to explain unsatisfactory efficacy, such as epithelial-mesenchymal 
transformation, the tumor microenvironment, extracellular matrix proteins, cancer-related fibroblasts, and other factors 
that may be related to tumor progression and poor therapeutic effects. An extracellular matrix protein, periostin (POSTN), 
influences the above factors and has received multidisciplinary attention. In this paper, periostin and digestive system-
related tumors are reviewed, and the production, mechanism of action, drug resistance correlation analysis, and coping 
strategies of periostin are summarized to further understand its characteristics. This work provides evidence for potential 
therapeutic targets for digestive system tumors in the future. 
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Malignant tumors of the digestive system have a high 
incidence worldwide and limited therapeutic effects. In 
clinical practice, both doctors and patients need a reliable 
marker to monitor tumor progression and, more impor-
tantly, a screening marker to predict the drug sensitivity of 
nonsurgical treatments (e.g., chemotherapy, targeted therapy, 
and immunotherapy). Markers that can be successfully used 
in clinical practice must meet two conditions: reproducibility 
and convenience.

Since the clinical introduction of targeted drugs, drug 
resistance has emerged for many types of targeted therapy 
drugs, which urgently necessitates the identification of exact 

markers to guide drug use. Some scholars use gene sequencing 
to screen the sensitivity of targeted drugs to develop individ-
ualized treatment plans [1, 2]. Others have also analyzed and 
screened sensitive markers from the perspective of intes-
tinal microorganisms to ensure the effective application of 
immune checkpoint inhibitors in patients with gastric cancer 
[3]. Additionally, scholars have developed individualized 
targeted drug therapies for patients with positive connec-
tions and achieved safe and effective antitumor results [4]. 
These scientific efforts illustrate one point, that is, the existing 
targeted therapies and immunotherapies are not yet able to 
achieve precise and individualized treatment and can only 
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benefit some patients. Reviewing traditional chemotherapy, 
there is also the problem of tumor insensitivity to chemo-
therapy drugs, which urgently needs to be solved. In recent 
years, an increasing number of studies have investigated the 
influence of the tumor microenvironment, cells and extra-
cellular matrix on tumorigenesis, development and outcome, 
which may help guide the work of clinicians and benefit 
patients more. According to this review, periostin (POSTN), 
a specific extracellular matrix protein, may be valuable in the 
clinical treatment and prognosis of some digestive system 
tumors.

The extracellular matrix (ECM) is important for the 
normal structure and function of connective tissues. Secreted 
by local cells, the ECM provides physical support to cells, 
tissues, and organs. POSTN is a 90 kDa disulfide-linked 
protein belonging to the fasciclin family and insect fasciclin 
I, which has remarkable structural homology. Moreover, 
from the molecular point of view, POSTN from different 
tissue sources has different subtypes. However, all of these 
subtypes can be regulated by transforming growth factor β 
(TGF-β) [5, 6]. POSTN has an important role in regulating 
the inflammatory and tumor microenvironments [7].

POSTN, a secreted protein from the extracellular matrix, 
has been proven to be related to tumor development and 
prognosis in some malignant tumor studies. The role of the 
tumor microenvironment in tumor progression has been 
widely recognized. The tumor microenvironment includes 
not only cellular components such as immune cells, fibro-
blasts, and endothelial cells, as well as malignant tumor cells 

themselves, but also noncellular components, such as the 
ECM [8] and cancer-promoting stromal factors [9]. POSTN 
is considered an independent factor associated with malig-
nancy progression, is associated with patient OS, and can 
also be used as a marker for tumors of epithelial origin [10]. 
Data from trials involving the Notch signaling pathway in 
the differentiation of hepatocellular precursors and hepato-
cellular carcinoma suggest that POSTN may be a reliable 
prognostic biomarker and a potential therapeutic target in 
human solid carcinoma [11]. Research on the hypothesis of 
tumor resistance to antiangiogenic drugs has suggested that 
a) high levels of POSTN promote tumor angiogenesis; b) 
POSTN improves cancer cell survival under hypoxic condi-
tions; and c) genetic modulation of POSTN induces epithe-
lial-mesenchymal transition (EMT) and enhances cancer cell 
invasion and metastasis, which represents an escape mecha-
nism from anticancer treatment [12].

Gastric cancer (GC)

The overexpression of POSTN was observed in GC tissues 
and metastatic lymph nodes, suggesting that the POSTN 
protein plays an important role in the progression and 
metastasis of GC [13]. This may be caused by PI3 kinase-Akt 
activation and thus increase tumor cell invasion (Figure 1) 
[14]. POSTN was expressed in the stroma of primary gastric 
tumors and metastases but not in normal gastric tissue and 
was closely related to the expression of α-smooth muscle actin 
(SMA). Isoproterenol upregulates the expression of POSTN 

Figure 1. Different sources of POSTN in gastric cancer determine the biological characteristics of POSTN. A) POSTN from epithelial cells has an in-
hibitory effect on cancer. B) POSTN from the extracellular matrix (ECM) and cancer-related fibroblasts promotes the growth and invasion of cancer 
tissues.
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that POSTN is related to the occurrence and development 
of GC through the ERK pathway and may also promote 
EMT [21]. However, based on the understanding of cancer-
associated fibroblasts in the academic community, the source 
of POSTN still needs to be discussed [22]. Other observa-
tions suggest that POSTN derived from different types of 
cells may play distinct biological roles in gastric tumori-
genesis. As mentioned above, an experiment investigating 
the source and function of POSTN was conducted. POSTN 
derived from GC cells was identified by in situ hybridiza-
tion. Further tests showed that POSTN derived from gastric 
cancer cells could inhibit the proliferation and invasion of 
cancer cells and promote the apoptosis of tumor cells at 
the same time (Figure 1A). It stabilizes p53 and E-cadherin 
proteins through the Rb/E2F1/p14(ARF)/MDM2 signaling 
pathway and exhibits tumor-suppressive activity in GC 
[23]. In contrast, POSTN from cancer-associated fibroblasts 
exhibits obvious effects by promoting tumor growth and 
metastasis (Figure 1B). At present, the molecular character-
ization of malignant ascites is particularly limited in cases of 
GC. Gastriscin and POSTN, which can distinguish malig-
nant ascites from benign ascites, were verified by ELISA [24]. 
POSTN expression gradually increased with an increase in 
the NIH classification risk level, which was closely related 
to disease-free survival and overall survival. The expres-
sion of POSTN protein in GC tissues and metastatic foci 
was significantly higher than that in adjacent normal gastric 
mucosa tissues by immunohistochemistry and western 
blot. In addition, the expression of POSTN in advanced GC 
tissues was higher than that in early GC tissues. The current 
results confirm the significance of POSTN in driving gastric 
tumorigenesis and metastasis and suggest its potential use 
as a diagnostic or prognostic biomarker, as well as a candi-
date therapeutic target [25]. In light of the above evidence, 
POSTN is a very promising diagnostic and prognostic 
marker. According to Kii et al.’s theory, POSTN in the blood 
is attributable to the increase in vascular permeability (hyper-
permeability) caused by the initial tumor stage or inflamma-
tory factors, POSTN in its free form is detected and captured, 
and serum POSTN can be used as a biomarker to detect 
tumors, inflammation, fibrosis, and allergies [26]. However, 
if the source of POSTN cannot be accurately distinguished, 
serological tests are not used to determine tumor prognosis. 
More clinical trials are needed to demonstrate the value of 
serological tests.

Esophageal cancer (EC)

In early experiments, gene detection at the mRNA and 
protein levels confirmed POSTN overexpression in esoph-
ageal squamous cell carcinoma (ESCC), which may be 
related to the communication between cells and ECM [27]. 
Subsequent studies in organotypic (three-dimensional) cell 
models and microarray experiments further confirmed its 
strong association with tumor cell migration and invasion in 

in GC cells [15]. Nicotine upregulates POSTN in GC cells 
through a cyclooxygenase-2 (COX-2)-dependent pathway, 
which is blocked by the COX-2-specific inhibitor NS398. 
POSTN-silenced gastric cancer cells exhibited reduced cell 
proliferation, elevated sensitivity to chemotherapy with 
5-fluorouracil, and decreased cell invasion and Snail expres-
sion (p<0.05). POSTN is a nicotine target gene in GC and plays 
a role in GC cell growth, invasion, drug resistance, and EMT 
facilitated by nicotine [16]. The regulatory effect of nicotine 
has also been found in other malignancies, which cannot 
be blocked by specific nicotinic receptor blockers, and the 
mechanism of its resistance to cisplatin has been confirmed 
[17]. Western blot analysis showed that the time-dependent 
induction of POSTN in MKN-45 cells was increased 8-fold 
compared with that in normoxic cells with the upregulation 
of hypoxia-inducible factor-1α under hypoxia (2% O2). In 
addition, the loss of POSTN protein significantly reduced 
the mRNA expression and secretion of vascular endothe-
lial growth factor (VEGF) in hypoxic MKN-45 cells. There-
fore, it can be inferred that POSTN is a hypoxic-response 
gene that mediates crosstalk between GC and endothelial 
cells under hypoxic conditions, partly by regulating VEGF 
expression [18]. A cell assay (3-(4,5-dimethylthiazole-2-yl)-
2,5-diphenyltetrazole bromide assay) showed that POSTN 
had no effect on the proliferation of gastric cancer cells 
(SGC-7901). Compared with empty vector-transfected cells, 
POSTN overexpression caused SGC-7901 cells to become 
more resistant to cisplatin- or 5-fluorouracil (5-FU)-induced 
apoptosis, with less mitochondrial cytochrome C release 
and reduced caspase-3 and poly (ADP-ribose) polymerase 
cleavage. Pretreatment of POSTN-overexpressing cells 
with the Akt inhibitor MK-2206 partially saved POSTN-
mediated inhibition of p53 expression and drug resistance. 
These data suggest that POSTN has a protective effect against 
cisplatin- or 5-FU-induced apoptosis of SGC-7901 cells, 
possibly by regulating the Akt/p53 pathway, thus allowing 
it to become a potential therapeutic target for gastric cancer 
[19]. The current staging of gastric cancer cannot predict the 
prognosis of stage II and III GC alone and the benefits of 
adjuvant chemotherapy. Tumor immune microenvironment 
biomarkers and tumor cell chemical sensitivity may increase 
the predictive value of staging. The study of the tumor 
micro-environment and comprehensive evaluation methods 
may benefit patients in choosing chemotherapy regimens 
[17]. There are overlapping components in the treatment of 
breast cancer and GC, such as HER2-targeted therapy and 
gemcitabine drug chemotherapy. Citing breast cancer-related 
studies, gemcitabine resistance occurs within a few weeks, 
which may be related to tumor heterogeneity and the influ-
ence of the tumor microenvironment. However, POSTN was 
found to be a key factor in epithelial-mesenchymal transfor-
mation (EMT)-dependent chemotherapy in a trial [20].

Bioinformatics methods were used to explore the relation-
ship between POSTN and the GC microenvironment. Then, 
through cell, animal, and human sample testing, it was found 
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Liver and biliary system-related malignancies

There is evidence that the interaction of hepatocel-
lular carcinoma (HCC) with activated hepatic stellate cells 
promotes tumorigenicity, growth, migration, invasion, 
angiogenesis, and metastasis of HCC [38, 39]. In addition, 
the interaction between the extracellular matrix and cells and 
changes in the microenvironment are key factors in the devel-
opment and progression of tumors [40]. In vivo injection of 
active hepatic stellate cells (HSCs) into tumor-carrying mice 
showed that HSCs could produce POSTN protein, which 
promoted the tumor progression of residual hepatocellular 
carcinoma after heat treatment. The process was inhibited by 
a vitamin D analog calcipotriol. The chemotherapy regimen 
consisting of calcitriol combined with cisplatin can prevent 
the accelerated progression of residual HCC after suboptimal 
heat treatment [41]. Another experiment also confirmed 
that POSTN regulated residual HCC cells after heat treat-
ment through the integrin β1/Akt/GSK-3β/β-catenin/TCF4/
Nanog pathway. The integrin β1-mediated secondary pathway 
can be blocked by metformin [42]. Recent studies have also 
confirmed that metformin can reduce vascular calcification 
through the regulation of POSTN, P53, and other factors to 
produce anti-ferroptosis effects [43]. In hepatic metastasis 
of pancreatic ductal cell carcinoma, it was found that early 
inflammatory cell infiltration, such as granulin, monocytes, 
and metastasis-associated macrophages, could activate HSCs 
to secrete POSTN, thus creating a fibrotic microenviron-
ment to support the growth of metastatic carcinoma tissue 
(Figure  3B) [44]. Sulfatase 2 is secreted in the paracrine 

ESCC [28, 29]. Another clinical trial also demonstrated that 
the upregulated rate of POSTN had a significant correlation 
with lymph node metastasis, adventitia invasion, and TNM 
stage [30]. Research on the specific mechanism by which it 
promotes the migration and invasion of ESCC has gradu-
ally developed. First, POSTN is an important factor for the 
adhesion of tumor cells and enables tumor cells to adhere 
and migrate [29]. Moreover, it is very important that POSTN 
expression is positively correlated with VEGF expression, 
which may determine the number and capacity of new 
blood vessels directly regulated by VEGF [31]. Related to 
the specific effect pathway of ESCC, POSTN cooperates 
with mutant p53 to mediate invasion through the induction 
of STAT1 signaling in the esophageal tumor microenviron-
ment (Figure 2A) [32]. Conversely, in the study of esopha-
geal adenocarcinoma (EAC), paracrine interaction between 
CAF-secreted POSTN and EAC-expressed integrins results 
in PI3 kinase-Akt activation and increased tumor cell 
invasion (Figure 2B) [14]. A recent retrospective study found 
that the expression of inflammation-related factors such as 
the neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte 
ratio (PLR), and C-reactive protein (CRP)-albumin ratio 
(CAR) in ESCC was directly related to POSTN [33]. Evidence 
suggests that POSTN is an independent prognostic factor in 
ESCC [31, 34, 35]. Since POSTN has been proven to be of 
prognostic and diagnostic value, the clinical application of 
related research is gradually being carried out, and the results 
are exciting. The practical value of POSTN combined with 
radionuclide-related examination and PET-CT is expected to 
be applied in clinical diagnosis and treatment [36, 37].

Figure 2. The occurrence and development of different pathological types of esophageal carcinoma are related to POSTN. A) Squamous cell carcinoma 
is formed through the combined action of the STAT1 pathway and P53 mutation. B) Formation of adenocarcinoma through the activation of the PI3K/
AKT pathway by binding integrin.
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form in human HCC, and its overexpression can increase 
endothelial cell proliferation, adhesion, chemotaxis, and 
tube formation. In vivo studies found that sulfatase 2 affected 
angiogenesis through the TGFβ1/Smad pathway and POSTN 
protein, and POSTN was the key effector protein. Sulfatase 
2 knockout mice significantly reduced micro angiogenesis 
compared with non-knockout mice. In clinical specimens, it 
was found that the level of sulfate esterase 2 was positively 
correlated with the density of microvessels and the expression 
level of POSTN and negatively correlated with the prognosis 
of patients. The TGFβ1/Smad pathway is an important signal 
transmission axis between sulfatase 2 and the upregulation of 
POSTN transcription (Figure 3A), which has the potential to 
target anti-angiogenic therapy [45]. Arsenic trioxide is used 
in traditional Chinese medicine to treat malignant tumors. 
In the in vitro test, the expression of POSTN in tissues was 
first induced under hypoxic conditions, and its overexpres-
sion caused resistance to arsenic trioxide. Moreover, interest-
ingly, after the expression of POSTN was reduced, tissue cells 
were again sensitive to arsenic trioxide. Notably, downregu-
lation of POSTN significantly enhanced the anticancer effect 
of arsenic trioxide on SMMC7721 tumors and reduced the 
proportion of Ki-67-positive proliferating cells. Targeting 
POSTN may be a promising strategy to enhance arsenic 
trioxide anticancer therapy for liver cancer [46]. Recent 
bioinformatics analyses suggest that both miR-876 and 
POSTN are risk factors for HCC survival, and patients with 

low miR-876 expression and high POSTN expression have a 
worse prognosis. miR-876 inhibited HCC EMT and fibrosis 
by targeting POSTN, thereby affecting HCC progression and 
prognosis. miR-876 and POSTN may be useful therapeutic 
targets or prognostic markers for HCC [47]. Another study 
demonstrated that the combined assessment of POSTN 
protein overexpression and microvascular invasion in HCC 
is associated with poor prognosis and can be used as a good 
prognostic marker for HCC [48]. The postoperative median 
survival time and 3-year survival rate of HCC patients with 
high POSTN expression were significantly lower than those 
of the low POSTN expression group (10.00 months, 44.44%; 
59.00 months, 53.13%, p=0.0312). POSTN is related to the 
pathological process of the metastasis and invasion of liver 
cancer and may promote the migration and invasion of liver 
cancer cells. It is expected to be an important prognostic 
biomarker for tumor recurrence after HCC surgery and a 
therapeutic target for inhibiting metastasis [49]. Animal 
experiments showed that cisplatin increased the mRNA 
levels of matrix metalloproteinase (MMP-2) and POSTN 
in liver tissue, and vincristine also increased the mRNA 
levels of MMP-9 in liver tissue. According to histological 
and immunohistochemical analyses, cisplatin induced liver 
fibrosis, while vincristine induced neutrophil recruitment 
in liver tissue. In addition, increased mRNA expression of 
MMP-2 and POSTN after cisplatin or vincristine pretreat-
ment may lead to fibrosis or neutrophil recruitment, respec-

Figure 3. The origin of POSTN in the liver and its relationship with inflammatory cells. A) Hepatic stellate cells produce POSTN under hypoxic condi-
tions, and POSTN binds integrin β to promote hepatocellular carcinoma progression and metastasis through the Notch pathway. B) Inflammatory-
related cells include monocytes, macrophages, neutrophils, etc. Hepatic stellate cells are stimulated to produce POSTN and then promote tumor pro-
gression and metastasis through the pathway (A). C) Chemotherapeutic agents such as cisplatin and vincristine can lead to increased POSTN secretion, 
liver fibrosis, and neutrophil aggregation, eventually initiating pathway (A).
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tively (Figure 3C). These niche factors may be associated 
with increased liver metastasis [50]. However, experiments 
have shown that the secreted protein POSTN is expressed to 
varying degrees in both primary cancer and liver metastasis, 
although the final statistical analysis showed that POSTN 
expression was not significantly associated with metastatic 
disease accompanying pancreatic ductal adenocarcinoma 
[35]. In patients with HCC, it was found that serum POSTN 
levels in advanced HCC patients were significantly higher 
than those in early HCC or healthy subjects, which was 
further confirmed by mRNA levels. In a subsequent experi-
ment, the Notch pathway was found to exert a direct regula-
tory effect on POSTN [51]. Importantly, POSTN expres-
sion was found to be an independent predictor of overall 
and disease-free survival for HCC. The expression level of 
POSTN in HCC may be related to tumor metastatic poten-
tial and angiogenesis. Its abnormal expression can be used 
as a predictor of postoperative prognosis in patients with 
HCC [52]. There have also been trials to prove the diagnostic 
significance of serum POSTN: preoperative serum POSTN 
has limited diagnostic value in HCC and nonmalignant liver 

disease, but it can be used as an independent prognostic 
biomarker for HCC patients [53]. However, in early trials, 
both from a genetic and an immunohistochemical perspec-
tive, POSTN has important diagnostic value in the differen-
tiation of bile duct cell malignancies and is also an impor-
tant factor in predicting the poor prognosis of bile duct cell 
malignancies [54, 55]. A similar observation was made in 
bile duct carcinoma [56].

Colorectal cancer

POSTN is a cancer-promoting molecule of colon cancer. 
Inhibition of POSTN expression can increase the apoptosis 
rate of colon cancer cells and inhibit EMT. The expres-
sion and function of POSTN are regulated by the let-7a/
miR-98 family [57]. A new method based on categorizing 
the desmoplastic reaction (DR) showed that POSTN may 
be a key molecule in the production of colorectal cancer. 
POSTN expression was closely associated with DR catego-
rization [58]. Similarly, a clinical trial showed that POSTN 
overexpression in the stroma of colorectal cancer was 

Figure 4. Role of POSTN in colorectal cancer. A, B) Colitis-related colorectal cancer, interleukin 6 can stimulate the extracellular matrix to produce 
POSTN through the STAT3 pathway. POSTN also activates the FAK-SRC and YAP/TAZ pathways by binding integrins to tumor growth, and inter-
leukin-6 is present in tumor tissue. C) At the molecular level, POSTN increases cell survival by activating the Akt/PKB signaling pathway through the 
αvβ (3) integrin.
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inversely associated with 5-year survival [59]. Studies of 
genomic heterogeneity in the microenvironment of primary 
colorectal cancer and liver metastases from colorectal 
cancer have identified selected genes that may lead to new 
diagnostic and therapeutic targets, including POSTN [60]. 
A large body of evidence shows that integrin receptors are 
closely involved in tumor formation and development, as 
well as cell migration and survival [61–63]. Specific blockade 
of some integrin receptors, such as αVβ3, can inhibit tumor 
metastasis (Figure 4C) [64]. POSTN expression significantly 
promoted metastatic growth of colon cancer by preventing 
stress-induced apoptosis and enhancing endothelial cell 
survival to promote angiogenesis. At the molecular level, 
POSTN increases cell survival by activating the Akt/PKB 
signaling pathway through αvβ (3) integrin. The results of 
this trial reaffirm the strong association between the integrin 
receptor and POSTN in colorectal cancer [65]. Another type, 
colitis-related colorectal cancer, is derived from inflamma-
tory bowel diseases such as ulcerative colitis and Crohn’s 
disease. Increased POSTN protein expression is observed 
in the lamina propria in patients with colitis-associated 
colon cancer [66]. Studies on the pathogenesis of colorectal 
neoplasms caused by chronic inflammatory bowel disease 
have revealed that inflammatory mediators interact with 
POSTN to promote each other’s production. Interleukin 6 
can activate fibroblasts to secrete POSTN through the STAT3 
pathway in chronic colorectal inflammation, and POSTN is 
activated through integrin-mediated outside-in signaling to 

activate FAK-Src kinases. This causes interleukin-6 to appear 
in the tumor. Such reciprocating interactions eventually lead 
to the formation of tumors (Figures 4A, 4B) [67]. Previous 
animal trials have shown contrasting results in vitro and 
in vivo, demonstrating that POSTN can inhibit the occur-
rence of colitis-related colorectal cancer [68]. Regarding the 
specific type of colorectal cancer associated with colitis, the 
relationship between POSTN and tumors still needs further 
study. However, based on dialectical thinking regarding 
commonness and personality, there may be a detailed 
connection between the commonness of POSTN carcino-
genesis and the personality of cancer suppressants, which 
needs to be further understood and revealed. In the clinical 
application of differential diagnosis of tumors, POSTN also 
showed partial advantages at the beginning [69], though 
further studies are needed. POSTN creates an extracellular 
matrix environment that is conducive to tumor growth and 
promotes tumor growth and invasion and chemotherapy 
resistance. The effects of this invasion and resistance can 
be reduced by blocking the PI3K/Akt or Wnt/β-catenin 
pathway [70–72]. Studies on chemotherapy resistance in 
colorectal cancer have shown that exosomes of 5-FU-resis-
tant tumor cells can promote angiogenesis, and exosomal 
dipeptidyl peptidase IV (DPP4) is a powerful proangiogenic 
agent. Exosomes rich in DPP4 increase POSTN expression 
in human umbilical vein endothelial cells through nuclear 
translocation or activation of the Smad signaling pathway 
at Twist1, and silencing or suppression of DPP4 neutralizes 

Figure 5. POSTN and pancreatic tumor formation. A) Monocytes differentiated into M1- and M2-type macrophages; M1 macrophages were associated 
with inflammation, and M2 macrophages were associated with tumorigenesis. B) Pancreatic stellate cells produce POSTN, and the combination of 
POSTN with integrin activates the ERK/VEGF pathway and PI3K/AKT pathway to promote the growth of new blood vessels, nourish tumor cells, and 
infiltrate inflammatory cells, including M2 macrophages.
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these effects. In vivo and clinical data showed that high DPP4 
expression was associated with tumor progression. These 
findings suggest that DPP4 may be a target for inhibiting 
angiogenesis in 5-FU-resistant colon cancer [73]. Similarly, 
xenograft experiments proved that the key genes of angio-
genesis include POSTN, and certain specific regulations 
promote angiogenesis [74]. POSTN activates the prolifera-
tion, migration and invasion of colon cancer cells through 
the receptor integrin/pAKT pathway, while autophagy is 
decreased. When the Akt pathway is specifically blocked, 
autophagy resumes. The expression of genes associated with 
epithelial-mesenchymal transformation was reduced [75].

Pancreas-associated tumors

Pancreatic stellate cells create a desmoplastic environ-
ment of cancerous tissues. Stellate cells secrete POSTN 
after stimulation (Figure 5B). POSTN expression was tested 
under extreme conditions, such as hypoxia, starvation, and 
radiation therapy. The results showed that POSTN was 
able to first tolerate hypoxia and starvation, was continu-
ously expressed, and then, surprisingly, its expression was 
uninhibited under radiation therapy [76]. Among tumor-
associated macrophages, M1-like macrophages are associ-
ated with inflammatory infiltration, M2-like macrophages 
promote angiogenesis and tumorigenesis [77] (Figure 5A). 
POSTN was not expressed at the early stage of pancreatic 
intraepithelial neoplasia. During the progression from 
intraepithelial neoplasia to ductal adenocarcinoma, the 
expression level of POSTN was gradually increased, and 
it was found that there was a close relationship between 
macrophages and pancreatic stellate cells. When the stellate 
cells were in a static state, they could be activated by cocul-
ture with macrophages. At the same time, macrophages 
increase the production of cytokines [78]. POSTN was also 
found to be closely associated with drug resistance in other 
tumor antiangiogenic therapy studies [79]. In pancreatic 
neuroendocrine tumors, POSTN may be used as a chemo-
kine or survival factor for macrophages. In animal experi-
ments, it was found that the expression of POSTN led to 
the aggregation of M2-like macrophages. POSTN was then 
found to be specifically positively associated with M2-like 
macrophage expression in untreated human pancreatic 
endocrine tumors [44, 80]. In pancreatic intraductal papil-
lary mucinous neoplasms (IPMNs), the histological grade 
of branch duct type (BD-IPMN) was positively correlated 
with the expression levels of alpha-smooth muscle actin 
(α-SMA), POSTN, and galectin-1, and they could become 
new markers for determining the indications for surgery 
in BD-IPMNs [81]. One study suggested that POSTN and 
CA242 are potential diagnostic serum biomarkers comple-
menting CA19.9 in the detection of early pancreatic cancer 
[82]. The expression level of POSTN was very low in normal 
pancreatic tissue, acute pancreatitis, and chronic pancreatitis 
with no specific differences, while specifically high expres-

sion was found in pancreatic ductal adenocarcinoma tissue. 
It was then proven that the high expression of POSTN and 
other matrix proteins may have an inhibitory effect on tumor 
progression rather than always promoting effect progres-
sion [83]. Tumor growth and nutritional support are closely 
related to angiogenesis, and blocking angiogenesis may limit 
tumor growth and progression. In this case, a conceptual 
system associated with tumor formation is formed, namely, 
the angiogenic switch [84, 85]. The angiogenic switch, the 
time at which a tumor becomes vascularized, is a critical 
step in tumor progression. POSTN was found in higher 
abundance when tumors began to be supplied with blood – 
namely, vascularized [86]. In the study of pancreatic cancer, 
lentivirus infection and recombinant POSTN were used to 
regulate POSTN expression, and it was found that increased 
POSTN expression promoted tubule formation dependent 
on human umbilical vein endothelial cells. Additionally, 
POSTN promotes tumor angiogenesis through the ERK/
VEGF signaling [87]. POSTN was specifically expressed 
in pancreatic stellate cells (PSCs) and in the stroma of 
pancreatic ductal adenocarcinoma, creating a microenvi-
ronment that supported tumor growth. Both in vivo and in 
vitro, gemcitabine-induced apoptosis was increased when 
POSTN was silenced, providing evidence that POSTN not 
only drives the carcinogenic process itself but is also signifi-
cantly associated with gemcitabine-induced apoptosis, 
suggesting that POSTN increases chemotherapeutic resis-
tance to gemcitabine in pancreatic ductal adenocarcinoma. 
Resistance to gemcitabine in PDAC chemotherapy may be 
addressed by targeting POSTN [88]. The increased stiffness 
of the PDAC stroma leads to intratumoral hypo-vascularity 
and hypoxia, representing a physical barrier to chemo-
therapy access. Treatment targeting tumor-stromal tissue 
may improve the survival of patients with pancreatic ductal 
adenocarcinoma, which is very promising [89, 90]. Recent 
trials have also demonstrated that POSTN plays an impor-
tant role in the study of chemotherapy resistance in other 
cancers, such as breast cancer and ovarian cancer, where 
resistance to docetaxel can be specifically combined with 
POSTN peptides to solve the problem of drug resistance [20, 
91, 92].

Conclusion

As mentioned above, different sources of POSTN in gastric 
cancer may have different biological functions, including 
tumor promotion or tumor suppression. Therefore, we 
proposed the hypothesis that the diagnostic and prognostic 
value of serum POSTN expression in gastric cancer requires 
further detailed studies. On the other hand, experimental 
evidence has shown the prognostic value of POSTN proteins 
in liver-related malignancies, colorectal cancer and pancre-
atic cancer, and more data are expected to support and 
validate this finding in the future. We explored the relation-
ship of POSTN with angiogenesis and drug resistance in the 
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tumor microenvironment. POSTN is usually considered 
an oncogene in diverse human cancers, whereas it acts as a 
tumor suppressor in bladder cancer [93]. Baseline POSTN 
and POSTN responses appeared to be reliable surrogate 
markers to predict the chemotherapy response and survival 
in patients with advanced non-small-cell lung cancer [79]. 
Recent studies have shown that POSTN is a marker for the 
prognosis and diagnosis of solid tumors [11].

Integrins play an important role in angiogenesis, and the 
types of integrins expressed in stationary blood vessels and 
newly sprouted capillaries are different [94]. The molec-
ular structure of POSTN has a domain that binds integrin, 
which may indicate that the structural characteristics of 
POSTN affect angiogenesis [95]. Furthermore, the interac-
tion of POSTN with VEGF may facilitate the preparation 
of materials to promote angiogenesis, and activation of the 
pathway may recruit more vascular endothelial cells derived 
from in situ endothelial cells or from pluripotent stem cells 
derived from bone marrow [85]. POSTN acts as an interme-
diate mediator of angiogenesis. Furthermore, if the serolog-
ical expression level has good specificity and sensitivity, then 
the appropriate serological level range needs to be further 
studied. Among the numerous studies on POSTN and solid 
tumors, studies involving chemotherapy drug resistance and 
the efficacy of targeted antiangiogenic drugs are exciting, 
and we see a promising new target and research direction to 
overcome dissatisfaction with therapeutic effects (Table  1). 
As predicted by some experts, research on the tumor micro-
environment and cancer-related fibroblasts is bound to 
generate great breakthroughs in the next 10 years [22]. We 
pay close attention to POSTN because studies on this protein 
are closely related to clinical work. It is hoped that future 
studies can further explore and study its potential value and 
offer new hope for the treatment of tumors with new specific 
targets.
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