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Summary. - The La protein binds to RNA and protects replication of the hepatitis B virus (HBV). We
recently developed the compound nH115a, an inhibitor of the La protein that has high stability and anti-
HBV activity. However, the mechanism, by which this compound inhibits HBV infection and its safety to
embryos, remains unclear. Our goal was to examine the molecular mechanism, by which nH115a inhibits
HBV infection, and to characterize its embryotoxicity. Microarray experiments using HepG2. 2. 15 cells
(established by transfecting an HBV plasmid into HepG2 hepatoma cells) and bioinformatics analyses
were used to measure the effect of nH115a on the expression of IncRNAs, mRNAs, and circRNAs. The em-
bryonic stem cell test was used to assess the embryotoxicity of nH115a. nH115a significantly altered the
expression of 2402 IncRNAs, 338 mRNAs, and 559 circRNAs. Gene Ontology (GO) analysis indicated the
differentially expressed transcripts functioned in interleukin-2 production, I-SMAD binding, RNA-induced
silencing complex (RISC), NLRP3 inflammasome complex assembly, cytoplasmic sequestering of nuclear
factor kappa-B (NF-kB), and death receptor binding. Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis indicated the most enriched pathways included transforming growth factor-p (TGF-f) signaling,
pathways in cancer, ubiquitin mediated proteolysis, p53 signaling, antigen processing and presentation,
Fc gamma R-mediated phagocytosis, and B cell receptor signaling. The results of the embryonic stem cell
testindicated that nH115a exhibited weak embryotoxicity. In conclusion, immune responses, TGF-3/SMAD
signaling,and cancer-related pathways may functioninthe nH115a-mediated inhibition of HBV replication.
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Introduction

Chronic hepatitis B (CHB), which is the result of per-
sistent infection by the hepatitis B virus (HBV), is a seri-
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ous worldwide public health problem, mainly because it
can lead to cirrhosis and hepatocellular carcinoma (Sa-
rinetal.,2016). It was estimated that more than 240 million
people (Schweitzer et al.,2015) worldwide are chronically
infected with HBV; 65,000 people (Montuclard et al.,2015)
die each year directly from hepatitis, and many more die
from complications of CHB (WHO Guidelines Approved
by the Guidelines Review Committee, 2015). HBV is highly
infectious and spreads through blood or body fluids.
Mother-to-child transmission during childbirth is the
most common transmission route in China (Zeng et al.,
2019). Newborns who test positive to the hepatitis B e an-
tigen (HBeAg) and the hepatitis B surface antigen (HBsAg)
have anincreased risk of HBV infection (Tieleet al.,2018).

The most effective preventive strategy for newbornsis
active and passive dual immunization, in which infants
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receive the HBV vaccine and hepatitis Bimmunoglobulin
(HBIG) treatment within 24 h after birth (Fan et al., 2016).
However, about 5 to 10% of infants experience immune
failure, and this almost always occurs when the mother
is HBeAg-positive and has an HBV DNA titer greater than
200,0001U/ml (Panetal.,2016; Wen et al.,2016). The Ameri-
can Association for the Study of Liver Diseases recom-
mended two major categories of antiviral drugs for treat-
ment of CHB: nucleos(t)ide analogues and interferon-a
(IFN-a) (Terrault et al., 2016). The three analogues recom-
mended during pregnancy are tenofovir (TDF), telbivu-
dine (LDT), and lamivudine (LMV) (Zhou et al.,2017). The
2015,U.S.Food and Drug Administration (FDA) classifica-
tion of drug safety during pregnancy considered LDT and
TDF as category B drugs, and LMYV as a category C drug.
Most guidelines recommend TDF as the first choice for the
treatment of pregnant women who have hepatitis Bdue to
its favorable safety and drug resistance profiles (European
Association for the Study of the Liver, 2017; Idilman, 2017).

La protein, also called Sjogren syndrome antigen B, is
amultifunctional nucleoprotein (Teplovaet al.,2006) that
binds to RNA (Horke et al.,2002), protecting RNA from ri-
bozyme degradation (Intineet al.,2003). Previous research
reported that La protein binds to the stem-loop of HBV
RNA and blocks RNA cleavage sites, thus stabilizing the
RNA by preventing ribozyme binding and catalysis (Wolin
and Cedervall,2002). Other research also reported signifi-
cant positive correlations in the levels of HBV proteins
and RNAs with La expression (Ni et al., 2004). Therefore,
agents that block the RNA binding site of the La protein
have potential as new anti-HBV drugs.

We previously described the use of virtual screening
to identify a novel small molecule inhibitor of the La
protein H11. Our results indicated that H1l suppressed
the expression of La protein and had strong anti-HBV
activity (Tang et al., 2012). We subsequently modified the
structure of H11 to develop a more stable derivative - N-
methyl pyrazolo[1,5-a] pyridine-2-carboxamide (nH115a,
the chemical formulais shown in Fig.1) (Tongetal.,2019).
Our in vitro studies indicated that nH115a had antiviral
activity similar to that of entecavir, in that it reduced the
level of HBV antigens by about 50%. Our mouse experi-
ments indicated that nH115a reduced the levels of HBV
DNA by 98.9%, HBsAg by 57.4%, and HBeAg by 46.4%; the
inhibitions in the control group (PBS injection group)
were much lower (90.8%, 3.8%, and 9.8%) (Tong et al.,2019).
These results indicated that nH115a has potential as an
anti-HBV compound.

Long noncoding RNAs (IncRNAs) are a large group of
noncoding transcripts that have more than 200 nucleo-
tides (Heward and Lindsay, 2014; Zhang and Cao, 2016).
The IncRNAs function by interacting with RNA, DNA, and
proteins, and thereby alter major biological processes,

such as interferon responses (Valadkhan and Gunawar-
dane, 2016), cancer progression (Chen, 2016), and viral
infections (Yang et al., 2019; Moyo et al., 2016).

Our goal was to examine the molecular mechanism, by
which nH115a inhibits HBV infection and to character-
ize its embryotoxicity. We used microarray analysis to
identify IncRNAs, mRNAs, and circRNAs, whose levels
were altered during the nH115a-mediated suppression of
HBV,and performed bioinformatics analyses (Gene Onto-
logy [GO] and Kyoto Encyclopedia of Genes and Genomes
[KEGG]) to investigate the functions and interactions of
the different transcripts.

We also used the embryonic stem cell test (EST) to
evaluate the embryotoxicity of nH115a. The European
Centre for the Validation of Alternative Methods (ECVAM)
(Boessetal.,2003) approved EST models as an alternative
for determination of the in vitro embryotoxicity of drugs
and other chemicals (Liu et al., 2017). We thus evaluated
the embryotoxicity of nH115a by measuring its toxicity to
3T3cells (IC,,3T3) and D3 cells (IC, D3) and its inhibition
of D3 cell differentiation (ID,,D3).

Materials and Methods

Cell culture and nH115a treatment. Mouse embryonic stem
cells (ES-D3, strain 129/Sv+c/+p), mouse embryonic fibroblast
cells (MEF-3T3, strain aa: BALB/c), and Kunming White MEF
cells (passage 3, P3) were purchased from Shanghai Institute of
Life Sciences, Chinese Academy of Sciences. HepG2. 2.15 cells
were donated by the Shanghai Public Health Clinical Center,
Affiliated to Fudan University. D3 cells were cultured on MEF
feeder layers in high glucose Dulbecco's modified Eagle's me-
dium (DMEM,; Gibco, Carlsbad, CA, USA) supplemented with
15% fetal bovine serum (FBS; Gibco), 1% glutamine (Gibco), 1%
streptomycin, 1% penicillin (Gibco), 1% nonessential amino
acids (Gibco), 0.1 mM p-mercaptoethanol (Sigma), and 1000 U/
ml murine leukemia inhibitory factor (mLIF). 3T3 cells were
maintained in DMEM with 10% FBS and 100 pg/ml streptomycin
and 100 units/ml penicillin. HepG2.2.15 cells were established
by transfecting an HBV plasmid into HepG2 hepatoma cells to
establish stable expression of the HBV virus. HepG2. 2. 15 cells
were maintained in DMEM with 380 pg/ml G418 (Gibco). All
cells were incubated at 37°C in 5% CO, atmosphere. nH115a was
dissolved in Dimethyl Sulfoxide (DMSO; Sigma-Aldrich) at 1 M
and stored at-20°C. The stock solution was the diluted in com-
plete DMEM to a concentration of 50 puM and filtered through
a 0.22-um membrane for following microarray test.

Cytotoxicity assay. The Cell Counting Kit-8 (CCK-8, Bimake)
was used to assess the cytotoxic effects of nH115a on 3T3 cells
and ES-D3 cells. Cells were seeded in 96-well plates at a density
of 500 cells/well. After 2 h, 200 pl of complete medium contai-
ning different concentrations of nH115a (1000, 2000, 4000 uM)
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or DMSO (control) were added. On day 3 and day 5, the medium
was changed, and the cell viability was assessed on day 10 by
measuring A, using a Gen5 microplate reader. Concentra-
tion-response curves were plotted to determine IC,, values.

Differentiation assay. ES-D3 cells naturally differentiate into
cardiomyocytes. An assay originally described by Riebelingetal.
(2015) was used to determine the effect of nH115a on the dif-
ferentiation of these cells into contracting cardiomyocytes.
Different doses of nH115a were dissolved in an embryonic stem
cell differentiation medium (H-DMEM medium, without mLIF)
for preparation of mono-cellular suspensions. Then, 20 pul of
suspension (approximately 750 ES-D3 cells) were placed on the
lid of 2100 mm x 20 mm culture dish filled with 5-10 m1 PBS as
hanging drops for 3 days. When embryoid bodies (EBs) were ob-
served, they were transferred into sterile Petri dishes for 2 days.
On day 5, the EBs were plated separately into the wells of a 24-
well tissue culture plate (BD Falcon, Erembodegem, Belgium)
with different concentrations of nH115a to allow adherence
and outgrowth of the EBs and development of spontaneously
beating cardiac muscle cells. On day-5, the EBs were separately
added to gelatin-coated 24-well plates to allow development of
spontaneously beating cardiac muscle cells. On day 10, quantita-
tive real-time polymerase chain reaction (QRT-PCR) was used
to determine the level of p-MHC (a marker of differentiation).
A concentration-response curve was plotted to determine the
ID, D3 value.

Classification of embryotoxicity. ECVAM proposed a method
that combines three endpoints (IC, D3, IC, 3T3, and ID, D3) to
classify the embryotoxicity of a test compound (Table 1). Based
on the results, a test compound is considered to have strong
embryotoxicity (III > I and III > II), weak embryotoxicity (II >
Iand II > III), or no embryotoxicity (I > IIand I > III).

RNA extraction and gRT-PCR. Total RNA from cells was ex-
tracted using the TRIzol reagent (Life Technologies, Carlsbad,
CA, USA). Then, it was purified using the NucleoSpin RNA
Clean-up XS kit (Cat. #740903, MN, Germany) and the RNase-
Free DNase Set (Cat. #79254, QIAGEN, GmbH, Germany). The
purity and concentration were determined using a NanoDrop

ND-2000 spectrophotometer and the Agilent Bioanalyzer
2100 (Agilent Technologies, Santa Clara, CA, USA). RNAs was
reverse transcribed into cDNA using PrimeScript RT Master
Mix (RR036Q; Takara, Japan). The expression of f-MHC was
measured by gqRT-PCR using the TB Green Premix Ex Taq (Tli
RNaseH Plus) kit (RR420A, TaKaRa, Japan) on the ABI 7900
Real-time PCR System (Applied Biosystems, Foster City, CA,
USA) according to the manufacturer's recommendation.
Specific primers for GAPDH and p-MHC are listed in Table 2.
Relative fold change was calculated using the 2-22¢t method
normalized to GAPDH.

Microarray analysis. The microarray experiments were per-
formed as previously described (Pan et al., 2018). In brief, total
RNA was amplified and labeled using the Low Input Quick Amp
WT Labeling Kit and the RNA Spike-In Kit, One Color (Agilent
technologies, Santa Clara, CA, US). Then, the labeled cRNAs were
purified using the RNeasy mini kit (QIAGEN, GmBH, Germany)
and hybridized onto Agilent Sure Print G3 Mouse GEV28x60 K
Microarray and Sino human IncRNA array V3.0 for 17 h. After
washing, each slide was scanned using the Agilent Microarray
Scanner (Cat. #G2565CA, Agilent Technologies, Santa Clara,
CA, USA). Raw data were extracted and normalized to correct
for measurement errors. All IncRNAs, mRNAs, and circRNAs
with altered expression were identified by use of scatter plots,
volcano plots, and heatmaps. A 2.0-fold or more difference in
expression with a P-value of 0.05 was considered significant.

Prediction of IncRNA targets. Genes that were less than 10 kb
from the IncRNAs were selected as cis-target genes. The Basic
Local Alignment Search Tool database was used to identify
genes with complementary or similar sequences to the IncR-
NAs. Based on RNA duplex energy, sequences above athreshold
value (e < -30) were considered as trans-target genes.

GO and KEGG analysis: GO was used for classification of the
function of genes and gene products into three domains: mo-
lecular function, biological process, and cellular component.
KEGG was used for the systematic analysis of gene function
and genomic information. Differentially expressed mRNAs
were analyzed using Fisher's exact test with the cluster Profiler

Table 1. ECVAM linear discriminant functions used to determine embryotoxicity

Classification Linear discriminant formula
I 5.9161g (IC, 3T3) + 3.5001g (IC,,D3) - 5.307[(IC,,3T3 - ID, D3)/IC,,3T3] - 15.72
I 3.6511Ig (IC, 3T3) + 2.3941g (IC,,D3) - 2.033[(IC,,3T3 - ID, D3)/IC, 3T3] - 6.85
111 -0.1251g (IC,,3T3) + 1.9171g (IC,,D3) + 1.500[(IC,,3T3 - ID, ,D3)/IC, 3T3] - 2.67
Table 2. Specific primers for GAPDH and (}-MHC
Primer name Forward primer Reverse primer
GAPDH CCTTCCGTGTTCCTACCC CAACCTGGTCCTCAGTGTAG

B-MHC GCCCCTCCTCACATCTTCTCC

CAGGGTTGGCTTGGATGATTT
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Fig.1

Microarray profiling of nH115a-treated HepG2. 2. 15 cells

Scatter plots, volcano plots, and hierarchical clustering of differentially expressed IncRNAs (a, b, ¢), mRNAs (d, e, f), and circRNAs (g, h,
i). Scatter plots: X-axis indicates normalized signal values from the control group, Y-axis indicates normalized signal values from the
nH115a group, red dots indicate genes upregulated by 2-fold or more, and green dots indicate genes downregulated by 2-fold or more.
Volcano plots: X-axis indicates fold-change, Y-axis indicates P value, vertical lines indicate a 2.0-fold increase or decrease, horizontal line
indicates a P-value of 0.05, red dots indicate genes upregulated by 2-fold or more, and green dots indicate genes downregulated by 2-fold
or more. Heatmaps: Red indicates high relative expression, green indicates low relative expression, and lines on the top and left indicate
functional relationships.
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Fig.2

GO (a) and KEGG (b) analysis of cis-target mRNAs by differentially expressed IncRNAs
Each vertical axis shows the GO or KEGG category and each horizontal axis shows the enrichment score. There were significant diffe-

rences in all indicated categories (all P <0.05).

packages from R/Bioconductor. The 30 GO terms with the larg-
est enrichment factors were shown in plots.

Data analysis. Three independent replicates were performed
for each experiment. Statistical analysis was performed using
SPSS software version 22.0 (SPSS, Inc., Chicago, IL, USA). All
results were expressed as the means + standard deviations
(SDs). Student's t-test was used for comparisons of two groups.
A P-value below 0.05 was considered significant.

Results

Effect of nH115a on differential expression of RNAs in
HepG2. 2.15 cells

Weinitially used microarray analysis to examine the ef-
fect of nH115a on the expression of IncRNAs, mRNAs, and
circRNAs in HepG2.2.15 cells,and presented these results
as scatter plots (Fig. la,d and g) and volcano plots (Fig. 1b, e
and h). Compared to the control (DMSO) group, the nH115a
group had 2268 upregulated and 134 downregulated IncR-
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Fig.3

GO (a) and KEGG (b) analysis of trans-target mRNAs by differentially expressed IncRNAs
Eachvertical axis shows the GO or KEGG category and each horizontal axis shows the enrichment score. There were significant differences

in all indicated categories (all P < 0.05).

NAs,298 upregulated and 40 down-regulated mRNAs, and
364 upregulated and 195 downregulated circRNAs. Among
the differentially expressed IncRNAs, NONHSAT114917.2
was the most upregulated and NONHSAT008884.2 was
the most downregulated. Among the mRNAs, SPDYE4
(NM_001128076) was the most upregulated and CDHR1
(NM_033100) was the most downregulated. Among the
circRNAs, hsa_circ_0091618 was the most up-regulated
and hsa_circ_0047158 was the most down-regulated.
Overall, these results indicated that nH115a treatment
affected the levels of many different RNAs and led to
more up-regulated than down-regulated transcripts. It

is particularly notable that there were 2268 upregulated
IncRNAs following nH115a treatment. We used hierar-
chical clustering to determine the relationships of the
differentially expressed genes (Fig. 1c,f and i). These re-
sults suggested that transcripts with similar functions
clustered together.

GO and KEGG analyses of differentially expressed
IncRNAs

We next examined the possible functions of the di-
fferentially expressed IncRNAs using GO and KEGG analy-
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Fig. 4

GO (a) and KEGG (b) analysis of differentially expressed mRNAs
Eachvertical axis shows the GO or KEGG category and each horizontal axis shows the enrichment score. There were significant differences

in all indicated categories (all P <0.05).

sis of their cis-target mRNAs and trans-target mRNAs.
There were 1408 cis-target mRNAs. GO analysis (Fig. 2a)
of these mRNAs indicated the differentially expressed
IncRNAs were related to many biological processes, such
as nucleotide-excision repair, DNA damage recognition,
positive regulation of actin cytoskeleton reorganization,
and negative regulation of the oxidative stress-induced in-
trinsic apoptotic signaling pathway. The major molecular
functions of the differentially expressed IncRNAs were an-
giotensin receptor binding and I-SMAD binding. We also
performed KEGG analysis to examine the possible anti-
HBV mechanism of nH115a (Fig.2b). The ten most enriched

pathways included transforming growth factor-p (TGE-B)
signaling,adipocytokine signaling, Hippo signa-ling,and
Adenosine 5'-monophosphate-activated protein kinase
(AMPK) signaling. The significantly enriched pathways
were related to cancer, transcriptional mis-regulation in
cancer, and ubiquitin-mediated proteolysis.

There were 5293 trans-target mRNAs. GO analysis
(Fig.3a) of these mRNAs indicated that the differentially
expressed IncRNAs were involved in regulation of NLRP3
inflammasome complex assembly, cytoplasmic sequester-
ing of NF-kB, NLRP3 inflammasome complex assembly,
RISC complex,and death receptor binding. KEGG analysis
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GO (a) and KEGG (b) analysis of differentially expressed circRNAs
Eachvertical axis shows the GO or KEGG category and each horizontal axis shows the enrichment score. There were significant differences

in all indicated categories (all P <0.05).

of these trans-target mRNAs indicated that the differently
expressed IncRNAs were mostly related to lysosome me-
tabolism and the p53 signaling pathway (Fig. 3b).

GO and KEGG analyses of differentially expressed
mRNAs

We performed the same analyses for differentially
expressed mRNAs (Fig. 4a,b). These results showed that
the mRNAs with significant differential expression were
enriched inthe glutamate receptor signaling pathway and
interleukin 2 production. The cell adhesion molecules

(CAMs) and antigen processing and presentation were
among the major KEGG pathways. The enrichment of
several mRNAs related to antigen processing and presen-
tation (KLRC1, HSPA6,CD8B,and KIR3DL3) suggests that
further studies should examine the functions of these
genes in patients with CHB.

GO and KEGG analyses of differentially expressed
circRNAs

GO analysis indicated the differentially expressed
circRNAs were associated with numerous biological
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Embryonic stem cell test
Effect of nH115a concentration on viability of ES-D3 cells (a; IC,,: 2726 uM) and 3T3 cells (b; IC,: 3702 uM); After hanging drop culture for 3
days, suspension culture for 2 days, and adherent culture for 5 days, ES-D3 cells were differentiated into cardiomyocyte cells (c¢); expression

of p-MHC (differentiation marker) in D3 cells (c, d; ID, : 17.26 pM).

processes (Fig. 5a). These included hemidesmosome
assembly, regulation of centrosome duplication, tRNA
export fromthenucleus, centriolereplication, centrosome
duplication, and regulation of transcription involved in
the G1/S transition of mitosis. KEGG analysis indicated
enrichment of Fc gamma R-mediated phagocytosis, Fc
epsilon RI signaling, B cell receptor signaling, and ErbB
signaling (Fig. 5b).

Embryotoxicity of nH115a

We used the EST to evaluate the embryotoxicity of
nH115a (Fig. 6). We first cultured 3T3 and ES-D3 cells, and
then treated these cells with different concentrations
of nH115a for 10 days. For both types of cells, viability
decreased as nH115a concentration increased (Fig. 6a,b).
The IC,,3T3 at 24 h was 3702 pM (647.5 mg/1) and the
IC,,D3 at 24 h was 2726 uM (477 mg/1).

ES-D3 cells spontaneously differentiate into cardiomy-
ocytesintheabsence of mLIF. We measured cell differen-
tiation by use of qRT-PCR to determine the expression of
B-MHC, amaker of cardiomyocyte development (Fig. 6¢,d).
The results indicated that cell differentiation decreased
asthelevel of nH115a increased, with anID, D3 0f 17.26 uM
(3.02 mg/1). We then used these three IC_, values with the
EST linear discriminant equations to calculate embryo-
toxicity (Table 1). The results (II > Iand II > III) indicated
that nH115a had ‘weak’ embryotoxicity.

Discussion

Currently available therapies effectively suppress viral
replication, but their efficacy is limited because of drug
resistance and ineffective removal of the cccDNA reser-
voir (Panetal.,2016). Therefore, it is of great significance to



74 PAN, J. et al..: RNA MICROARRAY AND EMBRYOTOXICITY ANALYSIS OF nH115a

develop new anti-HBV drugs with different mechanisms
of action. The La protein facilitates HBV replication be-
cause it binds to and improves the stability of HBV RNA,
thereby preventing its degradation by host cells. This sug-
gests that the La protein may be a potential target for the
treatment of HBV infection. nH115a is a derivative of H11
(an inhibitor of HBV) that has improved in vivo stability
and antiviral activity. However, the antiviral mechanism
of nH115a has not been elucidated. The present study ex-
amined the mechanism by which nH115a inhibited HBV
replication and its embryotoxic profile.

Compared with DMSO control group, a large number
of transcripts were found to be abnormally expressed
in nH115a-treated group. It is worth noting that the ex-
pression patterns of IncRNA are consistent with mRNA
in that they have more up-regulated transcripts than
down-regulated transcripts. These results suggest there
may be functional connections between the differentially
expressed IncRNAs and mRNAs during the pathogenesis
of HBV infection.

Previously published studies have reported that
AMPK signaling pathway inhibits HBV replication
through controlling cellular autophagy (Xie et al., 2016;
Wanget al.,2020). TGE-p signaling plays an important role
in HBV infection and can trigger HBV cccDNA degrada-
tion through activation-induced cytidine deaminase-
dependent deamination (Liangetal.,2015; Qiaoetal.,2016).
Considering the antiviral activity of nH115a, our findings
unsurprisingly revealed enrichment in AMPK, TGF-$
pathways and I-SMAD GO term. Furthermore, agonism of
FFAR2 hasbeen proved to ameliorate HBx-induced oxida-
tive stress (He et al.,2020). Here, we found the FFAR2 was
significantly upregulated in nH115a-treated HepG2.2.15,
revealing its role in HBV infection.

In contrast to the well-known adaptive immune re-
sponse, the detailed role of innate immune response in
HBV infection is controversial. HBV seems to be able to
evade interferon-based innate reactions (Yoneda et al.,
2016; Mutzetal.,2018). Recently, many studies have proved
that the NF-kB and Hippo signaling pathways harbor
aregulatory task in innate immune response to HBV in-
fection (Hesari et al., 2018; Luo et al., 2021). Chronic HBV
infection suppressed NLRP3 expression via suppressing
NF-kB pathway and reactive oxygen species (ROS) produc-
tion (Yuetal.,2017). Our results showed that differentially
expressed transcripts are enriched in Hippo, NF-kB path-
way, NLRP3 inflammasome complex assembly, as well
as antigen processing and presentation, indicating that
nHI115a may exert antiviral effects by regulating innate
and adaptive immune responses.

We also found that the target genes of differentially
expressed LncRNA are enriched in cancer-related path-
ways, such as hepatocellular carcinoma, transcriptional

mis-regulation in cancer and p53 signaling pathway. It is
interesting that La protein is also involved in cell cycle
(Huang and Tang,2020),invasion, apoptosis (Stavraka and
Blagden, 2015) and Epithelial-mesenchymal transition
(EMT) tumor processes (Petz et al., 2012). In our previous
study, La protein contributes to cells proliferation and
migration and serves as a potential therapeutic target
for hepatocellular carcinoma (Panetal.,2020). Therefore,
it is of clinical significance to study whether La protein
plays arolein hepatocellular carcinoma via regulation of
HBV expression. At the same time, these results suggest
that whether nH115a has anti-tumor activity remains to
be established.

When considering the administration of a drug to
apregnant woman with CHB, the safety of thedrugtothe
fetusis amajor concern. However, it is also important for
awoman with CHB to reduce the HBV DNA titer to lower
the risk of transmission to the newborn. The results of
our embryonic stem cell test indicated that nH115a ex-
hibited ‘weak’ embryotoxic effects. These results suggest
that nH115a should be examined in future studies that
assess its potential for use as a novel anti-HBV drug for
pregnant women.

In conclusion, we found that nH115a, a novel inhibitor
of the La protein, exhibited weak embryotoxicity and may
mediate the inhibition of HBV replication by regulating
immune responses, TGF-p/SMAD signaling, and cancer-
related pathways. Our study provides novel mechanism
for nH115a-mediated HBV replication inhibition. How-
ever, there are several questions that are yet to be solved.
These differentially expressed transcripts need more
experiments to prove their expression level changes. The
anti-HBV mechanism of nH115a obtained by bioinformat-
ics analysis also needs further experimental studies by
interference with related pathways.
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