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Abstract. Autism spectrum disorder (ASD) is a neurodevelopmental disease characterized by emo-
tional and social deficits, which can be associated with sympathetic dysregulation. Thus, we aimed to 
analyze the electrodermal activity (EDA) using time, and novel spectral and nonlinear indices in ASD. 
The cohort consisted of 45 ASD boys and 45 age-matched controls. EDA was continuously recorded 
at rest. The EDA indices were evaluated by time-, spectral-, and nonlinear-domain analysis. Our 
results revealed increased non-specific skin conductance responses, spectral parameters in high and 
very-high frequency bands, approximate and symbolic information entropy indicating sympathetic 
overactivity in ASD vs. controls (p < 0.05, for all). Surprisingly, the nonlinear index from detrended 
fluctuation analysis α1 was lower in ASD vs. controls (p = 0.024) providing thus distinct information 
about qualitative features of complex sympathetic regulation. Concluding, the complex time, spectral, 
and nonlinear EDA indices revealed discrete abnormalities in sympathetic cholinergic regulation as 
one of the potential pathomechanisms contributing to cardiovascular complications in ASD. 
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Introduction

Electrodermal phenomena represent spontaneous changes 
in the electrical features of the skin, particularly in the sweat 
glands activity (Boucsein 2012; Gersak and Drnovsek 2020). 
More specifically, the external stimulation of sweat glands by 
weak electrical current spreading through two tactile elec-
trodes into the skin surface causes the imbalance between 

positive and negative ions in the sweat resulting in measur-
able changes of electrodermal activity (EDA) (Boucsein 
2012). In physics analogy, the sweat glands symbolise 
variable resistors, i.e. the amount of glands activated during 
perspiration represents the number of resistors involved in 
EDA (Hugdahl 1998). The potential differences – voltage (U) 
arises between two electrically charged particles. By connect-
ing these two parts to the conductor, an electric current (I) 
flows through the conductor until the potentials are equal-
ized. The quotient of voltage and current is termed resistance 
(R). The relations between these parameters are quantified 
by Ohm´s law, where resistance corresponds with electrical 
voltage between two electrodes localized on skin surface 
divided by constant electrical current passing through the 
skin: R = U/I (Dawson et al. 2007). The conductance, as an 
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inverse of resistance, is the result of current flow when using 
constant voltage (Hugdahl 1998; Dawson et al. 2007). 

From the physiological perspective, the skin conductance 
directly depends on the amount of activated sweat glands 
regulated by the sympathetic nervous system (Dawson et 
al. 2007; Boucsein 2012). More specifically, EDA represents 
momentary changes in the electrical conductance of the 
skin reflecting the sudomotor activity of the eccrine sweat 
glands regulated by the sympathetic cholinergic activity (An-
dreassi 2000). Further, EDA is considered as an important 
index assessing the level of cognitive and emotional arousal 
(Critchley et al. 2000; Boucsein 2012) as well as sympathetic 
arousal to stress, i.e. everyday stress responses in natural 
environment (Vavrinsky et al. 2021). Thus, EDA measure-
ment as a non-invasive and sensitive method is increasingly 
used in psychophysiological research (Posada-Quintero et 
al. 2016; Aldosky 2019; Posada-Quintero and Chon 2020). 

Autism spectrum disorder (ASD) represents a  serious 
neurodevelopmental disorder characterized by deficiencies 
in social communication and behaviours. The exact defini-
tion of ASD is not clear yet, but ASD is thought to be a mani-
festation of complex genetic defects additionally influenced 
by external factors (Betancur 2011; Ostatnikova et al. 2016). 
In this context, the autonomic nervous system (ANS) plays 
a crucial role in the control of the physiological, emotional/
cognitive and behavioural state during social interaction. Re-
cently, scientists’ interest in detecting relationships between 
autonomic dysfunction and ASD has been growing, but the 
exact pathomechanisms leading to autonomic abnormalities 
in ASD are still unclear (Bal et al. 2010; Ming et al. 2011; Plus 
2019; Bharath et al. 2020). Moreover, the existing findings 
on the ASD-linked sympathetic regulation reflected by EDA 
are controversial, such as increased, i.e. associated with more 
social impairments (O’Haire et al. 2015; Neuhaus et al. 2016; 
Fenning et al. 2017), unaltered (Kong et al. 2021), decreased 
(linked with augmented externalizing behaviour complica-
tions in ASD children) (Bujnakova et al. 2016; Baker et al. 
2018), or slower habituation of sympathetic skin response 
to auditory stimuli indicating a  persistent predominant 
state of sympathetic activity in autism (Bharath et al. 2020). 
Furthermore, Baker et al. (2015) found positive associa-
tions of EDA and interpersonal variability (i.e. relationship 
between parent and ASD child) during naturalistic free play. 
More specifically, the ASD children with better relationship 
with their parent are characterized by faster EDA declining 
(Baker et al. 2015).

In addition to the standardly used EDA parameters 
(e.g. skin conductance level, non-specific skin conduct-
ance responses), the EDA changes can be also evaluated by 
spectral-domain and nonlinear indices (deterministic chaos, 
recurrence plot, detrended fluctuation analysis) (Lanata et 
al. 2012). In this context, our previous study evaluated the 
alterations between time and nonlinear EDA indices (ap-

proximate and symbolic information entropies) during and 
after cognitive stressors in healthy group. We revealed that 
nonlinear indices of EDA represent more sensitive tool for 
extraction of EDA characteristics as features of sympathetic 
control (Visnovcova et al. 2016). However, quantification of 
EDA by using spectral and nonlinear parameters in mental 
disorders is rare. Thus, we aimed to evaluate resting EDA by 
different parameters of the spectral and nonlinear analysis in 
children suffering from ASD. We hypothesized that complex 
EDA analysis could provide important and independent 
information related to sympathetic cholinergic regulatory 
network in children suffering from ASD. Further, we aimed 
to use the Random Forest (RF) machine learning algorithm 
to detect relevant EDA predictors for differentiating autism 
spectrum disorder. To the best of our knowledge, this is the 
first study to use EDA complex and detailed analysis associ-
ated with machine-learning algorithm in children suffering 
from ASD.

Materials and Methods

Ethics statement

The study was approved by the Ethics Committee of Jes-
senius Faculty of Medicine in Martin, Comenius University 
in Bratislava in accordance with the Helsinki declaration 
(2000) of the World Medical Association. All patients and 
their parents/legal guardians were carefully informed about 
study protocol. The written consent was provided by the 
legal guardian. 

Participants

A total of 55 boys with ASD were examined, of which 10 
ASD boys were excluded due to large number of movement 
artifacts. The final studied cohort consisted of 45 boys with 
ASD diagnosis (average age: 11.64 ± 0.44 years) and 45 aged 
and gender-matched apparently healthy control (HC) (av-
erage age: 11.72 ± 0.45 years). The ASD participants were 
recruited from the regional Autism Centre and Psychiatric 
Clinic University Hospital Martin. Diagnosis of ASD without 
comorbidities (e.g. attention deficit/hyperactivity disorder) 
was made by a specialist in child and adolescent psychiatry 
and corroborated with Diagnostic and statistical manual of 
mental disorder (DSM-5, APA 2013). In addition, the intel-
lectual functioning measured by Wechsler Intelligence Scale 
for Children (WISC III) was performed by a licensed clinical 
psychologist. Inclusion criteria for ASD group: diagnosis of 
ASD by child psychiatrist, IQ above 70, without mediation 
treatment, ability to withstand the study protocol. Exclusion 
criteria for ASD and control groups were following: presence 
of a genetic or neurological disorders, acute or chronic res-
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piratory, cardiovascular, endocrine diseases, other diseases 
potentially altering ANS activity (underweight, obesity, 
smoking, drug abuse). The control group did not suffer from 
any mental disorders. Additionally, body mass index (BMI) 
of both groups was calculated to exclude potential effect of 
under-/overweight on ANS (BMI: 20.00 ± 0.66 kg/m2 in 
ASD; 19.15 ± 0.53 kg/m2 in HC). 

Protocol

The examination was performed in the Psychophysiological 
laboratory (Biomedical Center Martin, Jessenius Faculty of 
Medicine in Martin) under standard conditions with the 
minimization of internal/external stimuli, i.e. a quiet room, 
22°C, air humidity around 50% in the morning between 
8:00–11:30 a.m., after a  light breakfast one hour before 
examination. The whole examination protocol lasted 40 
min: initial 10 min necessary for all instructions, 5 min 
for the InBody anthropometric analysis (InBody 120, Bio-
space Co. Ltd. Soul, Korea), 5 min for lying comfortably 
on a special chair and placing the EDA electrodes. After-
wards, the initial phase lasting 15 min to avoid potential 
effect of stress was followed by 5 min of continuous EDA 
recording (Fig. 1). 

Moreover, the ASD group´s examination protocol 
consisted of two periods. For the first time, the patients 
and their legal guardian came to get acquainted with the 
ambulance environment and the course of examination 
to minimization of external stress stimuli. For the second 
time, the ASD boys were examined according to protocol. 
For minimization of movement artifacts – we sufficiently 
instructed patients with ASD and controls to minimize any 
hand and fingers movements and to withstand the whole 
examination without any movement by positive motiva-
tion – small reward (e.g. chocolate) after examination. 
Continuous EDA was recorded with sampling frequency 
of 256 Hz (required by hardware) (FlexComp Infinity Bio-
feedback, Thought Technology, Canada). The EDA signal 
was monitored by two dry, Ag-AgCl, bipolar electrodes 
placed on the middle phalanges of two fingers on the left 

(non-dominant) hand (Blain et al. 2010; Poh et al. 2010; 
FlexComp Infinity Hardware Manual). The reusable EDA 
electrodes were carefully cleaned with an alcohol wipe 
before each examination. The baseline phase of the study 
lasted for 5 min. The typical time series of EDA in ASD 
and control group were shown in Figure 2.

Data analysis

Time- and spectral-domain parameters of EDA 

Firstly, the tonic EDA was extracted by 10th order low-pass 
finite impulse response filter (cut off 0.0004 Hz) for time 
domain parameters. Next for spectral-domain indices, the 
raw EDA data were filtered with an 8th-order Chebyshev 
Type  I  low-pass filter and down-sampled to 2  Hz and to 
eliminate any trend the data were high-pass filtered with an 
8th-order Butterworth filter (Posada-Quintero et al. 2016).

The skin conductance level (SCL) was calculated as 
a mean of tonic EDA. Typical values are ranged from 0 to 
30 microsiemens (µS) according to electrodes size (Venables 
et al. 1980; Dawson et al. 2007; Boucsein 2012). Non-specific 
skin conductance responses (NS.SCRs) were evaluated as the 
rate of spontaneous skin conductance responses that occur 
without external stimuli (Boucsein 2012). The standard 
values are from 0 to 3 per min during baseline. The values 
over 3 indicate increased arousal states (Dawson et al. 2007). 
Index SCL expresses the level of mental arousal of the sub-
ject, while the NS.SCRs represent an amount of momentary 
arousal and define pulses in EDA signal (Figner and Murphy 
2011; Braithwaite et al. 2013).

The power spectra of EDA signals were calculated using 
Welch’s periodogram method with a 50% overlap. The mean 
power spectrum was evaluated by fast Fourier transform 
(with Blackman window length of 128 samples) and spectral 
powers (µS2) in the fitting frequency bands (VLF: 0.000–
0.045 Hz; EDA-Symp (sum of LF: 0.045–0.15 Hz and HF1: 
0.15–0.25 Hz); HF: 0.25–0.40 Hz and VHF: 0.40–0.50 Hz) 
were achieved according to Posada-Quintero et al. (2016). 
Frequency-domain indices provide information about the 

Figure 1. The time schedule of the examination protocol.
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spectral distribution of sympathetic arousal in the skin 
(Posada-Quintero et al. 2016).

Entropy-based parameters of EDA

Approximate (ApEn) entropy defines the probability of 
similarity between vectors of length m  (from time series 
of long N points) and vector of length m+1 within a given 
tolerance size r: ApEn (m, r, N) = Фm(r) − Фm+1(r), where 
N  is number of points, m  is length of sequence (for N = 
300 length of sequence m = 2), r is tolerance of similarity 
(r є < 0.1 of standard deviation (SD); 0.25 SD>). Minimum 
values of ApEn (around zero) designate more predictable, 
regular system. In contrast, the elevated ApEn informs about 
a random and more intricate system (Pincus 1991; Pincus 
and Goldberger 1994).

Symbolic information entropy (SIE) is another entropy-
based parameter that appears to be sufficient to detect the 
complexity of the systems and evaluate nonlinear charac-
teristics of biological time series. Firstly, the time series is 
transformed by coarse-graining into symbolic sequences 
with a given alphabet into four numbers (0, 1, 2, 3) to iden-
tify the dynamic changes of data. Consequently, from these 
special number codes, the SIE could be generated (Yang and 
Liu 2014; Visnovcova et al. 2016). The numbers describe 
fluctuations of the time series, i.e., 0 and 1 specify slow and 
fast elevation of the data, respectively; 2 and 3 identify fast 
and slowly declining of the data, respectively. The patterns 
are arrayed into vectors of length L = 2 and they are match-
ing into the group according to numbers of the vector. For 
instance, vector 20 means the change of SCL from a  fast 

decrease to a slow increase in the waveform. Index SIE rep-
resenting the uncertainty and messiness of the system can be 
defined as: SIE(m) = – Σ M 

i=1 (pi * Pi), where pi is probability 
of occurrence of individual vectors with length L  in each 
groups; if pi > 0, then Pi = log2(pi), else if pi = 0, then Pi = 0. 
Like ApEn, higher SIE values represent more unpredictable, 
irregular and chaotic signals, whereas standards around zero 
describe higher regularity and symmetry (Yang et al. 2014; 
Visnovcova et al. 2016).

Scaling-based parameters of EDA

Detrended fluctuation analysis (DFA) represents a scaling 
method for assessing the numerical self-similarity properties 
of the signals. DFA is used to endorse the presence of sus-
tained long-term range relations in EDA signals. Generally, 
exponents α1 and α2 are estimated by linear regression as 
a trend line associating log F(n) to log (n) in the timescales. 
Indices α1 and α2 represent interactions over short (≤ 30 s) 
and long (> 30 s) timescales, respectively (Peng et al. 1995). 
The root-mean-square fluctuation F(n) of the signal was 
calculated according to Lanata et al. (2012) formula as:

F (n) =  √1
N ∑ [N

k=1 y(k) −  yn(k)]2. 

 Statistical analysis

Statistical analysis was performed by SYSTAT (SSI, Rich-
mond, CA, USA). The Shapiro-Wilk normality statistical 
test was used for evaluation data distributions (Gaussian/

Figure 2. The typical time 
series and time epochs (av-
erages every 4  s  of record) 
of electrodermal activity 
(EDA). A. Control subject. B. 
Subject suffering from autism 
spectrum disorder (ASD).

A

B
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non-Gaussian). Absolute values of spectral EDA indices 
(EDA-VLF, EDA-LF, EDA-HF1, EDA-Symp, EDA-HF2, 
EDA-VHF) differed greatly among individuals, therefore, 
they were logarithmically transformed for next statistical 
analysis. Consequently, the unpaired Student´s t-test was 
used for between-group comparison of EDA indices because 
data were normally distributed. Additionally, for multiple 
hypothesis testing was used the Benjamini-Hochberg (BH) 
correction of p value (pBH). EDA parameters were expressed 
as mean ± SEM. The results are considered statistically sig-
nificant if the following logical conjunction applies: p < 0.05 
Ʌ pBH < 0.05 Ʌ p < pBH. The associations between the EDA 
parameters were analysed using Spearman´s rank-order 
correlation test, where a value of p < 0.05 (two-tailed) was 
considered statistically significant.

A predictive model of the case-control status was built 
using the RF machine learning algorithm. RF was trained 
on the data, and the nested cross-validation algorithm with 
the minimum graph depth criterion was used to select im-
portant features (EDA parameters). The receiver operating 
characteristic (ROC) curve generated by the RF with selected 
EDA indices was used to quantify their predictive ability. The 
ROC curve was constructed from the out-of-bag data. The 
data analyses were performed in R Core Team (The R Project 
for Statistical Computing, https://www.r-project.org/) v. 
3.5.2, using libraries beeswarm (Eklund 2020), robustbase 
(Maechler et al. 2020), randomForestSRC (Ishwaran and 
Kagalur 2020), ggRandomForests (Ehrlinger 2020).

Results

The comparison between groups of time-domain EDA 
parameters

In general, boys with ASD had a slightly higher SCL than 
controls, however, these differences were not significant. The 
ASD patients had significantly higher number of NS.SCRs 
compared to controls (p = 0.0070; pBH = 0.0071). 

The comparison between groups of spectral-domain EDA 
parameters

The spectral indices lnEDA-HF2 and lnEDA-VHF were 
significantly increased in ASD compared to controls (p = 
0.0165, pBH = 0.0213; p = 0.0138, pBH = 0.0142; respectively). 
No significant differences in remaining spectral EDA indices 
were found between groups. 

The comparison between groups of nonlinear EDA parameters

Nonlinear entropy-based parameters ApEn and SIE revealed 
significant increasing in ASD compared to controls (p  = 
0.0249, pBH = 0.0425; p = 0.0224, pBH = 0.0283; respectively). 
Index α1 was significantly lower in ASD compared to con-
trols (p = 0.0236, pBH = 0.0354). No significant changes were 
found in remaining nonlinear parameters. All results are 
summarized in the Table 1.

Table 1. The parameters of electrodermal activity (EDA)

EDA parameter df Controls ASD p pBH 
SCL (µS) 84.00 1.46 ± 0.17 1.61 ± 0.24 0.6000 0.0779
NS.SCRs 84.00 2.05 ± 0.47 4.60 ± 0.77 0.0070 0.0071
lnEDA-VLF(µS2) 83.00 1.70 ± 0.18 1.95 ± 0.18 0.3310 0.0708
lnEDA-LF(µS2) 83.00 1.88 ± 0.16 2.17 ± 0.18 0.2268 0.0638
lnEDA-HF1(µS2) 83.00 0.81 ± 0.13 1.23 ± 0.18 0.0662 0.0495
lnEDA-Symp(µS2) 83.00 1.94 ± 0.15 2.25 ± 0.18 0.2020 0.0567
lnEDA-HF2(µS2) 83.00 0.22 ± 0.13 0.73 ± 0.16 0.0165 0.0213
lnEDA-VHF(µS2) 83.00 −0.78 ± 0.16 −0.20 ± 0.17 0.0138 0.0142
ApEn 84.00 0.57 ± 0.03 0.68 ± 0.03 0.0249 0.0425
SIE 84.00 2.08 ± 0.08 2.37 ± 0.09 0.0224 0.0283
α1 84.00 1.23 ± 0.06 1.05 ± 0.05 0.0236 0.0354
α2 84.00 0.47 ± 0.06 0.50 ± 0.06 0.7311 0.0850

Values are expressed as mean ± SEM. SCL, skin conductance level; NS.SCRs, nonspecific skin conductance 
responses; EDA-VLF, electrodermal activity in very low frequency band; EDA-LF, electrodermal activity in low 
frequency band; EDA-HF1, electrodermal activity in high 1 frequency band; EDA-Symp, EDA in the sum of low 
and high 1 frequency bands; EDA-HF, EDA in high 2 frequency band; EDA-VHF, EDA in very high frequency 
band; ApEn, approximate entropy; SIE, symbolic information entropy; α1 and α2, indices of detrended fluctua-
tion analysis short-term and long-term correlations, respectively; df, degree of freedom; ASD, autism spectrum 
disorder; BH, Benjamini Hochberg correction of p value. The p value expresses the comparison between groups. 
The results are considered statistically significant if the following logical conjunction applies: p < 0.05 Ʌ pBH < 
0.05 Ʌ p < pBH.

https://www.r-project.org/
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Correlation analysis

Correlation analysis in the total group (control group and 
ASD group together) revealed significant positive correla-
tions between time index SCL and spectral indices EDA-VLF, 
EDA-LF, EDA-Symp, EDA-VHF. SCL showed significant 

negative correlation with DFA indices α1 and α2. Index 
NS.SCRs significantly positively correlated with all spectral-
domain indices (EDA-VLF, EDA-LF, EDA-HF1, EDA-Symp, 
EDA-HF2, EDA-VHF). Spectral indices (EDA-HF1, EDA-
Symp, EDA-HF2 and EDA-VHF) significantly positive 
correlated with SIE. Spectral indices EDA-VLF, EDA-LF, 
EDA-Symp and EDA-VHF significantly negative correlated 
with DFA α2 index. Significantly negative correlations were 
found between nonlinear entropy-based parameter ApEn 
and nonlinear scaling DFA parameter α1. No significant cor-
relations were found in the remaining parameters. All results 
from correlation analysis are summarized in the Table 2.

Random forest machine learning analysis

To assess the predictive value of the studied EDA indices, 
ROC curve was generated. Based on random forest analysis, 
nonlinear (SIE, and α1) and spectral (EDA-HF1, EDA-HF2, 
EDA-VHF) indices and BMI were selected as important 
predictors. According to the ROC curve (Fig. 3) and area 
under the curve (AUC, 0.699), the predictive ability of these 
EDA indices is moderate.

Discussion

The main results can be summarized as follows: (1) several 
parameters of time (NS.SCRs), frequency (EDA-HF2 and 
EDA-VHF) and entropy-based nonlinear (ApEn and SIE) 
analysis were significantly higher indicating sympathetic 
overactivity in boys suffering from autism compared to con-
trols; (2) in contrast, the nonlinear scaling index of DFA – α1 
showed different pattern compared to the time, frequency 
and entropy-based EDA characteristics – it was decreased in 

Table 2. The correlation analysis of the EDA parameters in total group (control group, and ASD group together) 

SCL NS.SCRs lnEDA-
VLF

lnEDA- 
LF

lnEDA-
HF1

lnEDA-
Symp

lnEDA-
HF2

lnEDA-
VHF ApEn SIE α1

NS.SCRs 0.217 –
lnEDA-VLF 0.557** 0.677** –
lnEDA-LF 0.452** 0.737** 0.927** –
lnEDA-HF1 0.144 0.698** 0.735** 0.880** –
lnEDA-Symp 0.436** 0.743** 0.919** 0.998** 0.898** –
lnEDA-HF2 −0.114 0.644** 0.534** 0.708** 0.911** 0.729** –
lnEDA-VHF 0.289* 0.503** 0.316* 0.480** 0.652** 0.496** 0.846** –
ApEn 0.109 0.154 0.201 0.217 0.237 0.220 0.230 0.151 –
SIE −0.131 0.146 0.147 0.247 0.364** 0.409** 0.409** 0.369** 0.152 –
α1 −0.453** −0.097 −0.096 −0.076 0.024 0.007 0.069 0.007 −0.424** −0.035 –
α2 −0.908** −0.174 −0.406** −0.331* −0.083 −0.310* −0.145 −0.310* −0.193 0.045 0.551**

Values are expressed as Spearman´s rank-order correlation coefficient. NS.SCRs, nonspecific skin conductance responses; ApEn, approxi-
mate entropy. For other abbreviations, see Table 1. * correlation is significant at the level 0.05; ** correlation is significant at the level 0.001.

Figure 3. Receiver operating characteristic (ROC) curve analysis 
for the predictive potential of nonlinear (SIE, and α1) and spectral 
(EDA-HF1, EDA-HF2, EDA-VHF) indices and BMI (selected based 
on random forest analysis) in autism detection. The dashed line 
represents ROC curve of random classifier with AUC = 0.5; AUC, 
area under the curve; FPR, false positive rate (1 -Specificity); TPR, 
true positive rate (Sensitivity).
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ASD providing thus distinct information about complexity 
of sympathetic cholinergic control network in autism; (3) in 
addition, the correlation analysis revealed negative correla-
tion between nonlinear scaling index DFA and time, spectral 
and entropy-based parameters. 

It seems that ASD is characterized by the sympathetic 
overactivity indexed by the several EDA quantitative time 
(NS-SCRs) and frequency (lnEDA-HF2 and lnEDA-VHF) 
domain indices and qualitative entropy (ApEn and SIE)-
based nonlinear indices. This assumption is in agreement 
with other studies which revealed tachycardia (Kushki et 
al. 2013; Bujnakova et al. 2016; Ming et al. 2016), shortened 
pre-ejection time (Neuhaus et al. 2016), and elevated dias-
tolic blood pressure (Ming et al. 2016) indicating higher 
sympathetic activity in children suffering from autism. In 
contrast, Bricout et al. (2018) revealed attenuated sym-
pathetic vasomotor regulation indexed by blood pressure 
variability during head-up tilt test in ASD children. In this 
respect, EDA indices could represent another part of the 
assessment of sympathetic activity, i.e. cholinergic innerva-
tion from sudomotor fibres associated with sympathetic 
control (Posada-Quintero and Chon 2020), and complete 
the complex sympathetic response in autism. 

Furthermore, we used EDA nonlinear analysis revealing 
complex qualitative features of this physiological bio-signal. 
In contrast to nonlinear entropy-based parameters, the 
scaling DFA parameter α1 was decreased in boys suffering 
from autism. Moreover, the correlation analysis revealed 
negative correlations between DFA and other EDA indices 
(time, spectral and entropy-based parameters). This varia-
tion in assessment of complex and multipart characteristics 
of signal could be explained by mathematical point of view, 
where the fundamental principle of entropy is the finding 
the probabilities of distribution of similar vectors with cer-
tain length into time series (Richman and Moorman 2000), 
while α1 represents scaling method evaluating statistical 
self-similarity relationships over short-time scale (Lanata et 
al. 2012). The elevation of entropy-based parameters could 
be explained by ASD symptoms like stereotype and repetitive 
behaviours, which might result in increased distribution in 
similar EDA patterns needed for entropy analysis. 

From neurophysiological point of view, the altered EDA 
could indicate the differences in sympathetic modulation to 
meet task demands associated with central/peripheral neu-
robiological differences in ASD (Panju et al. 2015; Haigh et 
al. 2020). More specifically, a widespread network of regions, 
including the amygdala, the prefrontal, anterior cingulate, 
and insular cortices, is included in the sympathetic regula-
tion (Pina-Camacho et al. 2012). ASD has been associated 
with abnormalities in neuroanatomical functioning and 
connectivity in these regions affecting thus sympathetic 
cholinergic functioning also at the peripheral level (Panju 
et al. 2015). Therefore, we assume that the EDA analysis in 

time and frequency domains and entropy could represent 
a promising and sensitive tool for early ASD-linked altera-
tions in sympathetic regulatory integrity. 

Recently, the machine learning algorithms (e.g. RF) are 
more often used in clinical research to select relevant pre-
dictors potentially contributing to differentiation of mental 
disorders. In this context, the RF algorithm has identified 
three spectral EDA (EDA-HF1, EDA-HF2, EDA-VHF) and 
two nonlinear EDA (SIE, α1) indices as relevant predictors 
for ASD differentiation. The predictive power of EDA param-
eters resulting from the ROC curve revealed only moderate 
ability to discriminate patients suffering from autism. From 
this perspective, the predictive model of EDA indices based 
on RF algorithm is not specific enough to differentiate ASD 
patients, however, the potential inclusion of traditional ASD 
assessment such as questionnaires (e.g. ADOS II) (Raya et al. 
2020) or other autonomic parameters (e.g. indices from the 
heart rate and blood pressure analysis) (Tonhajzerova et al. 
2021) in the predictive model could improve its predictive 
power in ASD differentiation.

Conclusions

Our study revealed increased EDA time, spectral and non-
linear indices based on entropy indicating sympathetic over-
activity in ASD boys. However, the nonlinear index α1 – as 
a short-time parameter of scaling method – showed different 
pattern of complexity of sympathetic cholinergic network in 
ASD. We suggest, that complex and detailed EDA analysis 
could reveal initial abnormalities of sympathetic regulation 
in ASD even before commonly used SCL assessment.

Limitations of the study

In present study, the cohort consisted of a relatively small 
homogenous sample of male adolescents with ASD; there-
fore, it needs to be validated in a larger cohort with respect 
to gender. The male group was used because the prevalence 
of ASD is four time higher in male compared to female 
population and to exclude sex differences (Loomes et al. 
2017). Moreover, special questionnaires or any tests to obtain 
psychological profiles in ASD were not used in this study. 
We suggest that further research to study relations between 
ASD-linked psychological symptoms and sympathetically 
mediated indices based on EDA biosignal is needed. Further, 
EDA represents a  noninvasive index of the sympathetic 
cholinergic system; therefore, it is not possible to apply these 
results in terms of general sympathetic dysregulation associ-
ated with autism spectrum disorder. Although sympathetic 
overactivity represents a potential pathomechanism contrib-
uting to cardiovascular complications, it is not possible to 
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determine cardiovascular risk based on altered sympathetic 
regulation indexed by EDA alone. Future research based 
on non-invasive continuous simultaneous and analysis of 
other physiological parameters providing information on 
sympathetic regulatory mechanisms (e.g. blood pressure 
variability, systolic time intervals) is necessary. 
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