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Circular RNAs: novel regulators of resistance to systemic treatments in breast 
cancer 
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Systematic treatments including chemotherapy, endocrine therapy, and HER2-targeted therapy are important thera-
peutic approaches to breast cancer. However, drug resistance is a major barrier to achieving a cure in breast cancer (BC) 
patients. Hence, it is urgent to gain insight into the drug-resistance mechanisms in order to improve the prognosis of 
BC patients. Genetic alternations, epigenetic alternations, and other non-genetic mechanisms such as BC stem-like cells, 
metabolic reprogramming, and tumor microenvironment contribute to drug resistance of BC. With the development of 
single-cell sequencing of circulating tumor cell and next-generation sequencing of matched pre- and post- progression 
tumor biopsies or ctDNA from BC patients with drug resistance, new mechanisms of resistance are being discovered. An 
increasing number of microRNAs and long non-coding RNAs have been found to be associated with the drug resistance 
of BC. However, there are few reports on the role of circular RNAs (circRNAs) as master regulators of drug resistance. 
Therefore, there is still much to say in the field of drug resistance-related circRNAs. In this review, we mainly focus on 
literature evidence for the detailed mechanisms associated with systematic treatments’ resistance of BC and how circRNAs 
intensify or weaken drug resistance. Exogenous expression of tumor suppressive circRNAs or knockdown of oncogenic 
circRNAs has been verified to reverse drug resistance of BC cells, which highlights that circRNAs may function as potential 
biomarkers and/or therapeutic targets of BC. Treatment targeting abnormally expressed circRNAs alone or combined with 
other systemic treatments may be a promising approach to conquering drug resistance. 
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It is well known that breast cancer (BC) is the most 
common malignant tumor among women, which seriously 
threatens the health of females worldwide. According to data 
from Global Cancer Statistics 2020, female breast cancer has 
surpassed lung cancer as the most commonly diagnosed 
cancer, with an estimated 2.3 million new cases worldwide 
in 2020 [1]. In the past, surgery was generally the first choice 
for breast cancer treatment in most cases. In 2000, Perou 
and his colleagues first reported that BC could be classified 
into different molecular subtypes by differences in their gene 
expression patterns [2]. Depending on the expression states 
of estrogen receptor (ER), progesterone receptor (PR), human 
epidermal growth factor receptor 2 (HER2), and Ki-67, BC can 
be classified into four molecular subtypes: luminal A subtype, 
luminal B subtype, HER2-enriched subtype, and basal-like 

subtype (triple-negative subtype). Each subtype has a different 
treatment and response. Nowadays, according to different 
molecular subtypes of BC, different systematic treatment 
strategies (including conventional chemotherapy, endocrine 
therapy, and HER2-targeted therapy) are developed for BC 
patients. With the improvements in early diagnosis and treat-
ment strategies, BC-associated death has been decreasing. 
However, the prognosis of BC patients is still unsatisfactory, 
especially locally advanced and advanced BC patients. Drug 
resistances including endocrine resistance, chemoresistance, 
and HER2-targeted therapy resistance are the main causes 
of recurrence and poor prognosis in BC patients. Hence, it is 
extremely urgent to explore the internal mechanisms of drug 
resistance in order to develop new strategies to reverse drug 
resistance and prolong the survival time of BC patients.

Neoplasma 2022; 69(5): 1019–1028



1020 Xiao-Qiang GUO & Yu-Ming HUA

Circular RNAs (circRNAs) are the new stars of the 
noncoding RNA (ncRNA) family featured by covalently 
closed loops, which render them more stable than liner 
RNAs and resistant to RNase R. CircRNAs used to be 
mistaken for products of splicing errors [3]. Nevertheless, 
with the development of high-throughput RNA sequencing 
(RNA-seq) and bioinformatic analysis, multiple circRNAs 
have been discovered and verified to play critical roles in 
cancer development and progression through modula-
tion of various biological processes [4, 5]. Due to stable 
structure and crucial  biological  functions, circRNAs have 
attracted more and more attention from researchers in 
recent years. Although the functions of circRNAs need to 
be further investigated, emerging evidence reveals that 
circRNAs participate in different biological processes by 
multiple mechanisms including functioning as sponges 
for microRNAs or RNA-binding proteins [6, 7], affecting 
the transcription and splicing of host genes [8, 9], acting 
as scaffolds in the assembly of protein complexes [10], 
translating proteins [11], and regulating epigenetic altera-
tions [12]. Among them, the most well-known mechanism 
for circRNAs is serving as competing endogenous RNA 
(ceRNAs), thus reducing the inhibition of genes targeted by 
certain microRNAs. What’s more, accumulated evidence has 
shown that circRNAs play critical roles in drug resistance 

of human cancers. For example, circCUL2 could regulate 
cisplatin sensitivity in gastric cancer cell lines through 
miR-142-3p/ROCK2-mediated autophagy activation. In 
BC, certain circRNAs were also verified to be associated with 
drug resistance, such as circ_0025202 and circWAC [13, 14].

In this review, we summarize the detailed mechanisms 
associated with BC drug resistance and how circRNAs inten-
sify or weaken drug resistance, highlighting that circRNAs 
may function as potential biomarkers and/or therapeutic 
targets of BC.

Mechanisms of BC drug resistance

A proportion of BC patients may recurrence and metas-
tasis owing to drug resistance, so it is of great urgency to 
have a deep understanding of drug resistance mechanisms. 
With the development of single-cell sequencing of circu-
lating tumor cell (CTC) and next-generation sequencing of 
matched pre- and post- progression tumor biopsies or circu-
lating tumor DNA (ctDNA) from BC patients with drug 
resistance, some new mechanisms of resistance are being 
discovered (Figure 1).

Mechanisms of endocrine resistance. Genetic mutation 
of endocrine therapy targets may be one of the crucial resis-
tance mechanisms. ESR1, the gene encoding ERα, was found 

Figure 1. A summary diagram of mechanisms involved in resistance to systemic treatments in breast cancer.
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mutated in metastatic BC (MBC) by Zhang and his colleagues 
in 1997 [15]. Recent data showed that the ligand-binding 
domain (LBD) point mutations (most commonly at Y537 
and D538) in ESR1 occurred in ~20% of ER+ MBC following 
long-term endocrine therapy, such as tamoxifen or aroma-
tase inhibitors (AIs) [16]. These point mutations in ESR1 
allow hormone-independent ER transcriptional activity, 
resulting in resistance to endocrine therapy [17]. Magnani et 
al. [18] found that CYP19A1, the gene encoding aromatase, 
amplified in 21.5% of AI-resistant breast tumors. Acquired 
CYP19A1 amplification in ER+ BC patients could increase 
the aromatase activity and lead to estrogen-independent ERα 
binding to target genes, thus resulting in resistance to AIs.

Aberrant activation of the downstream signaling pathways 
such as PI3K/AKT/mTOR (PAM) pathway, CDK4/6/RB 
pathway, and MAPK pathway can also lead to endocrine 
resistance in BC. The PTEN/PI3K/AKT/mTOR pathway 
members are frequently mutated in ER+ HER2– breast 
tumors, and aberrant activation of the PAM pathway is 
implicated in acquired resistance to hormonal therapy [19]. 
Clinical trials’ results have shown that the PAM pathway 
antagonists can improve the prognosis of MBC patients. 
For example, the BOLERO-2 trial showed that mTORC1 
inhibitor everolimus combined with steroidal AI exemes-
tane could prolong the progression-free survival (PFS) of 
patients with ER+ HER2– MBC previously treated with 
non-steroidal AI [20]. Based on the data of the SOLAR-1 
trial, alpelisib (a specific inhibitor of the PIK3CA product 
PI3Kα) plus fulvestrant improved PFS of patients with 
PIK3CA-mutated HR+ HER2– MBC previously treated 
with AI when compared to fulvestrant alone. Moreover, 
there was a 7.9-month improvement in median OS for the 
alpelisib-fulvestrant group, although the analysis did not 
cross the prespecified boundary for statistical significance 
[21]. Razavi et al. [22] identified an increased number of 
genetic alterations involved in components of the MAPK 
pathway. In particular, loss-of-function NF1 alterations 
occurred more frequently in endocrine-resistant tumors 
compared with the other MAPK pathway genes. NF1 loss-
of-function mutations are implicated in both acquired and 
intrinsic endocrine resistance [23]. Cyclin D and cyclin-
dependent kinases 4 and 6 (CDK4/6) induce phosphoryla-
tion of retinoblastoma (Rb) protein, which is a well-known 
G1/S-checkpoint regulator. Acquired resistance in ER+ BC is 
associated with genetic alteration of the cyclin D1-CDK4/6-
Rb signaling pathway. Aberrant amplification of both cyclin 
D1 and CDK4 occurs in the luminal B subtype (58% and 
25%, respectively) and HER2-enriched subtype (38% and 
24%, respectively) [24]. Nowadays, CDK4/6 inhibitions 
(palbociclib, ribociclib, and abemaciclib) have been widely 
used in the treatment of ER+ HER2– MBC patients.

There are several other genetic alternations associated 
with endocrine resistance. Razavi et al. [22] reported that 
alterations in ER transcriptional regulators (MYC, CTCF, 
FOXA1, and TBX3)  were enriched in endocrine-resistant 

MBC and correlated with a poorer response to subsequent 
endocrine therapies. Some studies suggested that HER2 
amplification or HER2-activating mutations could reduce 
the response to hormonal therapies [25, 26]. Moreover, the 
crosstalk of ER pathway and HER-2 pathway may result in 
resistance to ER-directed treatment. Haricharan et al. [27] 
found that somatic mutations in DNA damage repair genes 
were involved in endocrine resistance and poor outcomes of 
ER+ BC patients.

In addition to genetic alternations, epigenetic and other 
non-genetic mechanisms also contribute to drug resistance 
to ER-directed therapies. Aberrant activation of histone 
deacetylase (HDAC) has been found in breast tumors. 
Loss-of-function of the four ERα corepressors (silencing 
mediator for retinoid or thyroid hormone receptors (SMRT), 
COUP-TF II, nuclear corepressor (NCoR), and SPEN) may 
lead to aberrant recruitment of HDACs to ERα-target genes 
and decrease endocrine sensitivity in BC [28]. Recently, 
a randomized, double-blind, placebo-controlled, phase 3 
trial showed that a combination of an oral subtype-selective 
HDAC inhibitor, tucidinostat, with AI could be used for the 
treatment of postmenopausal patients with HR+ advanced 
BC [29]. Furthermore, BC stem-like cells (BCSCs), metabolic 
reprogramming, ncRNAs, and tumor microenvironment 
(TME) are also implicated in endocrine resistance [30].

Mechanisms of chemoresistance. The phenomenon of 
multiple drug resistance (MDR) is a critical mechanism of 
chemotherapy resistance. The emergence of MDR is closely 
correlated with the expression of a class of ATP binding cassette 
(ABC) transporters, which can transport anti-neoplastic 
drugs out of cancer cells via energy from ATP hydrolysis and 
decrease intracellular drug uptake [31]. Emerging evidence 
has shown that overexpression of ABC transporters is associ-
ated with chemoresistance of BC [32]. Among these ABC 
transporters, ABCB1, ABCC1, and ABCG2 are extensively 
studied. ABCB1, also known as P-glycoprotein (P-gp) or 
multidrug resistance protein 1 (MDR1), is the first identi-
fied and the most well-studied ABC transporter owing to its 
profound impact on the pharmacokinetic profiles of various 
anticancer drugs. ABCC1, also known as MDR-associated 
protein 1 (MRP1), has been reported to induce drug resis-
tance by extruding non-ionic lipophilic drugs and amphipa-
thic anions conjugated with sulfate, glucuronic acid, or 
glutathione and altering intracellular drug redistribution 
[33]. ABCG2, also known as breast cancer resistance protein 
(BCRP), is initially cloned from a multidrug-resistant BC 
cell line where it is found to confer resistance to chemothera-
peutic agents such as mitoxantrone and topotecan. ABCG2 
can recognize and transport conventional chemotherapeutic 
drugs and targeted small therapeutic molecules by active 
efflux of anticancer drugs [34]. Based on the important role 
of ABC transporters in MDR, the ABC transporter inhibitors 
have been explored for overcoming cancer MDR. However, 
the clinical results of ABC transporter inhibitors are far from 
satisfactory.
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Mechanisms of HER2-targeted therapy resistance. 
Previously, HER2+ BC tends to be more aggressive than 
HR+ BC and has a worse prognosis. Fortunately, the rapid 
development of HER2-targeted therapies has significantly 
improved the prognosis of HER2+ BC patients. However, 
there is still a significant number of patients with HER2+ 
BC suffering from recurrence and metastasis owing to 
drug resistance to HER2-targeted therapy. Hence, it is of 
great importance to explore the mechanisms underlying 
resistance to HER2-targeted therapy. Some mechanisms 
have been reported to be concerned with resistance to 
HER2-targeted therapy. Studies have shown that aberrant 
activation of downstream Raf/MEK/ERK signaling pathway 
and PAM signaling pathway, induced by a loss of PTEN or 
PIK3CA mutations, may be correlated with trastuzumab 
resistance [43–45]. Furthermore, increased HER signaling 
through compensatory mechanisms within other HER 
family members (such as HER1 and HER3) and activation 
of receptor tyrosine kinases (RTKs) or other membrane 
receptors beyond the HER family (such as vascular endothe-
lial growth factor receptor (VEGFR), insulin-like growth 
factor 1 receptor (IGF-1R), and mesenchymal epithelial 
transition factor (MET)) may also contribute to resistance 
to HER2-targeted therapy [46]. In addition, overexpres-
sion of heat shock protein 90 (HSP90) or the p95 isoform of 
HER2 (p95HER2) can modulate HER2 kinase activity, which 
confers resistance to trastuzumab [47]. Of note, sensitivity to 
anti-HER2 therapy is dependent on the host immune system, 
so failure to elicit an appropriate immune response due to 
disrupted antibody-receptor interaction may be another 
mechanism of trastuzumab resistance [48]. What’s more, the 
crosstalk of the ER pathway and the HER-2 pathway may 
result in resistance not only to endocrine therapy but also to 
anti-HER2 therapy. Nowadays, some novel anti-HER2 drugs 
including tyrosine kinase inhibitors (TKIs), pertuzumab, 
trastuzumab-DM1, and trastuzumab deruxtecan have been 
used in the treatment of HER2+ MBC patients following 
treatment with trastuzumab. However, resistance to other 
anti-HER2 therapies is also an issue to be faced in the thera-
peutic process.

The dysregulation of circRNAs is re-
lated to drug resistance in BC

Though a large number of studies have been done to 
reveal the mechanisms of drug resistance, a complete under-
standing of the molecular mechanisms of drug resistance 
in BC remains a great challenge. It is crucial to overcome 
drug resistance and improve patient outcomes. Significantly 
differential circRNA expression profiles have been identified 
between drug-resistant and drug-sensitive BC cells by high-
throughput sequencing, indicating that circRNAs participate 
in BC drug resistance. The involvement of circRNAs in BC 
resistance to endocrine drugs, chemotherapy drugs, and 
anti-HER2 drugs is summarized below (Table 1).

Accumulating evidence suggests that multiple signaling 
pathways are implicated in resistance to chemotherapeutic 
drugs in BC, such as the PAM pathway, JAK/STAT pathway, 
and NF-kB pathway. The PAM signaling pathway plays a 
crucial role in a variety of oncogenic processes in BC. The 
loss of PTEN and activation of the PAM pathway contribute 
to poor prognosis and chemoresistance of BC [35]. Currently, 
PAM inhibitors combined with other drugs are being devel-
oped for the treatment of MBC. NF-kB, a pro-inflammatory 
transcription factor, is widely involved in the initiation and 
progression of BC. Moreover, data has shown that the NF-kB 
signaling pathway is a crucial regulator of triple-negative BC 
(TNBC) and is associated with chemoresistance and metas-
tasis of BC as well as other cancers [36]. BCSCs also play 
important roles in the chemoresistance in BC [37]. Certain 
pathways play critical roles in the self-renewal and survival 
of BCSCs, including the Notch, Wnt/β-catenin, Hedgehog, 
JAK/STAT, TGF-β, and HIPPO pathways [35, 37]. Therefore, 
targeting these pathways may be a promising approach to 
eliminating chemoresistance in BC.

A large number of studies have shown that the DNA 
damage repair (DDR) mechanism is implicated in the devel-
opment, metastasis, and chemoresistance of BC. The DDR 
pathway can repair both endogenous and exogenous sources 
of DNA damage and maintain the integrity and stability of 
the genome. By activation of the DDR mechanism, BC cells, 
especially BCSCs, can resist the anti-cancer efforts of many 
chemotherapeutic drugs that function by inducing DNA 
damage, so a deeper understanding of the DDR mechanism 
may help to reverse the chemoresistance of BC. Inherited 
or acquired mutations in certain genes are associated with 
DDR, the best-known of which are the BC susceptibility 
genes 1/2 (BRCA1/2) [38]. Specific gene mutations can make 
BC cells sensitive to specific DDR inhibitors, for instance, 
BRCA1/2 germline mutation-related BC cells are sensitive to 
poly (ADP-ribose) polymerase (PARP) inhibitors [39].

There is a growing body of evidence showing that the 
components of TME can crosstalk with tumor cells, thus 
promoting the chemoresistance of numerous malignancies 
including BC. TME involves the cellular and non-cellular 
components, including stromal cells (such as tumor-associ-
ated macrophages (TAMs), cancer-associated fibroblasts 
(CAFs), mesenchymal cells, and endothelial cells), extra-
cellular matrix, immune cells, etc. Genetic and phenotypic 
alterations of tumor cells result in uncontrolled growth 
and dysplasia, which create hypoxia, oxidative stress, and 
acidosis within the TME, leading to an adjustment of the 
extracellular matrix (ECM) and response from stromal cells 
and immune cells. The remodeling of TME in turn contrib-
utes to the acquisition of resistant phenotype by activation 
of certain signaling pathways associated with chemoresis-
tance [40]. In recent years, some effort has been made to d
evelop the targeting TME components alone or in combina-
tion with conventional drugs as new therapeutic strategies 
[41, 42].
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circRNAs regulate endocrine resistance of BC. The 
potential of circRNAs in the resistance of BC has begun 
to be recognized. A number of oncogenic as well as tumor 
suppressive circRNAs have been proven to be implicated in 
the endocrine resistance of BC by regulation of their target 
genes. In recent reports, circRNAs play their roles mainly 
by severing as sponges for miRNAs and forming a ceRNA 
network. For instance, Gao et al. [49] delineated a circRNA-
microRNA-mRNA regulatory network in tamoxifen and 
fulvestrant resistant BC cells by microarray analysis. Another 
study showed that circ_UBE2D2 was upregulated in tamox-
ifen-resistant BC tissues and cell lines, indicating the poten-
tial role of circ_UBE2D2 in tamoxifen resistance of BC [50]. 
Moreover, exosomes-mediated transfer of circ_UBE2D2 
could interact with miR-200q-3p to reinforce tamoxifen resis-
tance of BC by regulation of cell viability, metastasis, and ERα 
level. In addition, several tumor suppressive circRNAs have 
been identified to be associated with tamoxifen resistance. 
Liang et al. [51] found that downregulation of circBMPR2 
resulted in tamoxifen resistance of BC cells via inhibition 
of tamoxifen-induced apoptosis, which could be reversed 
by restoration of its expression. Mechanistically circBMPR2 
could serve as a sponge for miR-553 and further lead to the 
upregulation of ubiquitin-specific protease 4 (USP4), which 
inhibited tamoxifen resistance by regulation of ER protein 
expression levels. Another circRNA, circ_0025202, was 

significantly downregulated in tamoxifen-resistant BC tissues 
and cells, and the upregulation of circ_0025202 suppressed 
cell proliferation, invasion, and migration, and increased 
apoptosis and sensitivity to tamoxifen [52]. Mechanistically, 
circ_0025202 could act as a sponge for miR-182-5p and then 
indirectly regulate the expression of FOXO3a. Functional 
studies showed that silencing of FOXO3a might diminish 
tamoxifen-induced apoptosis and promote tamoxifen resis-
tance. A recent similar study reported that circ_0025202 
could regulate tamoxifen sensitivity via miR-197-3p/HIPK3 
axis in BC [13]. Hence, targeting the circRNA-microRNA-
mRNA network may be a potent therapeutic approach for 
the endocrine resistance in BC patients.

circRNAs regulate the chemoresistance of BC. Chemo-
therapy can effectively reduce the risk of BC recurrence and 
improve the prognosis of patients, especially for patients 
with TNBC and HER2+ BC. Nevertheless, acquired resis-
tance to chemotherapy drugs is one of the main causes of 
tumor recurrence. Recently, several oncogenic and tumor 
suppressive circRNAs have been proven to play key roles in 
the chemoresistance of BC.

Taxanes are commonly used as first-line chemo-
therapy  drugs for the treatment of BC patients. Paclitaxel 
(PTX), also called taxol, is one of the taxane family members 
and functions by stabilizing microtubules and preventing 
mitosis (M)-phase entry, thus resulting in cell death. Several 

Table 1. CircRNAs associated with resistance to systemic treatments in breast cancer.
circRNA Expression Genes and Pathways Drug resistance References
circ_UBE2D2 ↑ miR-200q-3p/ERα tamoxifen [50]
circBMPR2 ↓ miR-553/ USP4 tamoxifen [51]
circ_0025202 ↓ miR-182-5p/ FOXO3a; miR-197-3p/HIPK3 tamoxifen [13, 52]
circGFRA1 ↑ miR-361-5p/TLR4 Paclitaxel [53]
circAMOTL1 ↑ AKT pathway Paclitaxel [54]
circ-RNF11 ↑ miR-140-5p/E2F3 Paclitaxel [55]
circWAC ↑ miR-142/MMP1/ PTEN/PAM pathway Paclitaxel [14]
circ_0006528 ↑ miR-1299/CDK8 Paclitaxel [62]
circ_0000199 ↑ miR206/612/ PAM pathway Docetaxel; Cisplatin;  

Adriamycin; Gemcitabine
[57]

circABCB1 ↑ PI3K-AKT and AGE-RAGE pathways Docetaxel [58]
circEPHA3.1/3.2 ↓ PI3K-AKT and AGE-RAGE pathways Docetaxel [58]
circ_0006528 ↑ miR-7-5p/Raf1/ MAPK/ERK pathway; miR-1236-3p/CHD4 Adriamycin [59-61]
circKDM4C ↓ miR-548p/ PBLD Adriamycin [63]
circ_0001667 ↑ miR-4458/ NCOA3 Adriamycin [64]
circ_0085495 ↑ miR-873-5p/integrin β1 Adriamycin [64]
circ-LARP4 ↓ – Adriamycin [66]
circATXN7 ↑ miR-149-5p/HOXA11 Adriamycin [67]
CDR1as ↑ miR-7/CCNE1 5-FU [69]
circSMARCA5 ↓ SMARCA5 Cisplatin [71]
circUBAP2 ↑ microRNA-300/anti-silencing function 1B/ PAM pathway Cisplatin [72]
circ_0001598 ↑ miR-1184/PD-L1 Trastuzumab [73]
circCDYL2 ↑ GRB7/ FAK/ AKT and ERK1/2 pathway Trastuzumab [74]
circ-BGN ↑ OTUB1/SLC7A11 Trastuzumab [75]
circ-MMP11 ↑ miR-153-3p/ANLN Lapatinib [76]
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oncogenic circRNAs have been reported to contribute to 
PTX resistance. For instance, circGFRA1 could enhance 
PTX resistance of TNBC by the miR-361-5p/TLR4 pathway 
[53]. Another study showed that the overexpression of 
circular RNA angiomotin-like 1 (circAMOTL1) induced the 
PTX resistance of MDA-MB-231 BC cells via posttranscrip-
tional regulation of the AKT pathway [54]. Recently, Zang 
et al. [55] reported that the expression of circ-RNF11 was 
increased in PTX-resistant BC tissues and cells, and silencing 
of circ-RNF11 could enhance the PTX sensitivity of BC cells 
by the miR-140-5p/E2F3 axis. What’s more, circWAC was 
demonstrated to be upregulated in PTX-resistant TNBC cells 
and induced PTX resistance by serving as a sponge of miR-142 
and indirectly regulating the expression of MMP1, which 
has been confirmed to activate the PI3K/AKT pathway by 
regulating PTEN polyubiquitination and play an oncogenic 
role [14, 56]. Similarly, inhibition of circ_0000199 could 
increase the chemosensitivity of TNBC cells to PTX as well as 
other agents (such as cisplatin, adriamycin, and gemcitabine) 
by interfering with miR206/612 and attenuating the PI3K/
AKT/mTOR signaling pathway [57]. Docetaxel is regarded 
as a second-generation taxoid anticancer agent, which is a 
semisynthetic derivative of paclitaxel. A recent comprehen-
sive RNA research found that circABCB1 was upregulated 
in docetaxel-resistant BC cell lines, while circEPHA3.1 and 
cirEPHA3.2 were downregulated, indicating their potential 
roles in docetaxel resistance. Mechanistically, the above three 
circRNAs may contribute to docetaxel resistance by cross-
talk with eight abnormally expressed miRNAs and indirectly 
regulate the PI3K-AKT and AGE-RAGE pathways [58].

Adriamycin (ADM), also called doxorubicin, is another 
important first-line chemotherapy  drug for BC therapy. 
Multiple circRNAs have been verified to be involved in ADM 
resistance in BC. By next-generation sequencing and bioin-
formatics analysis, Gao et al. [59, 60] found that circ_0006528 
expression was significantly upregulated in ADM-resistant 
BC cells and tissues, and the overexpression of circ_0006528 
could contribute to ADM resistance via the miR-7-5p/Raf1 
axis and indirect activation of the MAPK/ERK signaling 
pathway. Another study also verified that circ_0006528 could 
contribute to ADM resistance in BC cells via modulating the 
miR-1236-3p/CHD4 axis [61]. Interestingly, circ_0006528 
was also found to be involved in PTX resistance in BC cells 
by modulating the miR-1299/CDK8 axis [62]. Another 
circRNA, circKDM4C, has been shown to act as a ceRNA 
of miR-548p and, thus, attenuate the ADM resistance of BC 
cells via blocking miR-548p-dependent suppression of PBLD 
[63]. In addition, circ-LARP4, circ_0001667, circATXN7, 
and circ_0085495 have also been found to be associated with 
ADM resistance of BC and function mainly by a ceRNA 
network [64–67].

Several other agents are also commonly used for the treat-
ment of BC patients in clinical settings, such as 5-fluorouracil 
(5-FU) and cisplatin. 5-FU is an antimetabolite drug, which 
functions by suppressing thymidylate synthase and incorpo-

rating its metabolites into RNA and DNA [68]. It has been 
found that several circRNAs are related to 5-FU chemore-
sistance in cancers, including BC. For example, circRNA 
CDR1as expression was increased while the miR-7 expres-
sion was decreased in 5-FU-resistant BC cells, and silencing 
of CDR1as enhanced the chemosensitivity of 5-FU-resis-
tant BC cells via upregulation of miR-7 expression and 
downregulation of CCNE1 expression [69]. Cisplatin exerts 
anticancer activity via interfering with DNA repair mecha-
nisms, causing DNA damage, and finally leading to apoptosis 
[70]. Cisplatin is often used for neoadjuvant and palliative 
treatment of TNBC in clinical practice. Recently, overex-
pression of circSMARCA5 has been verified to increase the 
chemosensitivity of BC cells to cisplatin by interacting with 
host gene SMARCA5 and inhibiting DNA damage repair 
[71]. More recently, circUBAP2 has been verified to induce 
the cisplatin resistance of TNBC via the microRNA-300/anti-
silencing function 1B histone chaperone axis, which further 
triggered the PAM signaling [72].

circRNAs regulate HER2-targeted therapy resistance of 
BC. There are numerous reports focused on analyzing the 
roles of miRNAs or lncRNAs in resistance to HER2-targeted 
therapy. However, few reports explore the expression and 
function of circRNAs in resistance to HER2-targeted therapy 
of BC. A recent study showed that circ_0001598 was upregu-
lated in trastuzumab-resistant BC tissues, and its overex-
pression could induce programmed death-ligand-1 (PD-L1) 
mediated immune escape and trastuzumab resistance by the 
circ_0001598/miR-1184/PD-L1 axis [73]. More recently, Ling 
et al. [74] found that circCDYL2 was upregulated in trastu-
zumab-resistant BC tissues and cells, indicating its potential 
role in trastuzumab resistance. Mechanistically, circCDYL2 
inhibited the ubiquitination degradation of GRB7, thus 
sustaining its expression and enhancing its interaction with 
FAK, which subsequently sustained HER2 downstream AKT 
and ERK1/2 signaling. In addition, Wang et al. [75] found 
that a new circRNA, circ-BGN, upregulated in trastuzumab-
resistant BC tissues and cells, which could contribute to 
trastuzumab resistance by directly binding to OTUB1 and 
SLC7A11, enhancing OTUB1-mediated SLC7A11 deubiq-
uitination and thereby inhibiting ferroptosis. Lapatinib is 
an oral small-molecular TKI inhibitor, which commonly 
acts as one of the second-line anti-HER2 therapy drugs to 
treat HER2+ MBC patients. A recent study reported that 
circ-MMP11 could contribute to lapatinib resistance of BC 
cells via the miR-153-3p/ANLN axis [76].

Conclusions and future perspectives

In the treatment of BC, systematic therapies including 
chemotherapy, endocrine therapy, and HER2-targeted 
therapy are important therapeutic approaches. However, 
drug resistance is a major barrier to achieving a cure in BC 
patients. Hence, it is urgent to gain insight into the drug-resis-
tance mechanisms in order to improve the prognosis of BC 
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patients. Genetic alternations, epigenetic alternations, and 
other non-genetic mechanisms such as BCSCs, metabolic 
reprogramming, and TME contribute to drug resistance of 
BC. With the development of single-cell sequencing of CTC 
and next-generation sequencing of matched pre- and post- 
progression tumor biopsies or ctDNA from BC patients with 
drug resistance, new mechanisms of resistance are being 
discovered. Recently, an increasing number of miRNAs and 
lncRNAs have been found to be associated with drug resis-
tance of BC. However, there are few reports on the role of 
circRNAs as master regulators of drug resistance. There-
fore, there is still much to say in the field of drug resistance-
related circRNAs. In this review, we summarize the under-
lying mechanisms of how circRNAs intensify or weaken 
drug resistance, highlighting that circRNAs may function 
as potential systemic treatment-resistance biomarkers and/
or therapeutic targets in BC. Current reports have shown 
that circRNAs contribute to drug resistance in BC mainly by 
acting as sponges of miRNAs, which, thus, regulate several 
signaling pathways involved in drug resistance. Nevertheless, 
there may be many other unknown physiological processes 
by which circRNAs lead to drug resistance. Hence, further 
studies are needed regarding the precise mechanisms of drug 
resistance-related circRNAs. Exogenous expression of tumor 
suppressive circRNAs or knockdown of oncogenic circRNAs 
have been verified to reverse drug resistance of BC cells, so 
treatment targeting abnormally expressed circRNAs alone or 
combined with other systemic treatments may be a promising 
approach to conquer drug resistance. However, circRNAs are 
far from being used in clinical applications. More clinical 
and translational studies are needed before circRNA-based 
treatment can be recommended in clinical application. We 
believe that our understanding of their role in drug resistance 
will broaden in the foreseeable future.
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