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Abstract. This study aims to explore the effect and mechanism of arginyl-fructosyl-glucose (AFG) on 
TGF-β1-induced epithelial-mesenchymal transition (EMT) of renal tubular epithelial cells. HK-2 cells 
were induced by TGF-β1 and then co-cultured with AFG at different concentrations (0, 25, 50, and 
100 μmol/l) for 48 h. The morphology of HK-2 cells was observed under an inverted microscope and 
the expressions of α-SMA, Vimentin, and E-cadherin were assessed by qRT-PCR, Western blot, and 
immunofluorescence. The mRNA expressions of ERK and STAT3 were also examined by qRT-PCR, 
and the protein levels of ERK, STAT3, p-ERK, and p-STAT3 were measured by Western blot. Finally, 
CCK-8 and transwell assays were used to detect cell proliferation and invasion. TGF-β1 treatment 
significantly induced EMT in HK-2 cells. The expressions of p-ERK and p-STAT3 were signally 
increased after TGF-β1 induction, while Mogrol treatment inhibited p-ERK, p-STAT3, α-SMA, and 
Vimentin expression levels, enhanced E-cadherin expression, and suppressed cell proliferation and 
invasion. AFG exposure could also inhibit p-ERK, p-STAT3, α-SMA, and Vimentin expressions, 
promote E-cadherin expression, and markedly inhibit HK-2 cell proliferation and invasion. AFG 
inhibited TGF-β1-induced EMT of renal tubular epithelial cells by regulating phosphorylation of 
ERK and STAT3. 
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Introduction

Chronic kidney disease (CKD) is an important public-health 
issue, with an estimated incidence of 8–16% worldwide (Jha 
et al. 2013). Kidney fibrosis is an inevitable pathophysiologic 
change in CKD progression (Gupta et al. 2020). Epithelial-
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mesenchymal transition (EMT) is one of the most important 
causes of renal interstitial fibrosis (RIF), and in RIF progres-
sion, the EMT process is characterized by the acquisition of 
mesenchymal phenotype and myofibroblast functions by 
renal tubular epithelial cells (Ghosh et al. 2021). Growing 
number of evidences supports that EMT process is a crucial 
event for dealing with fibrotic disorders in CKD (Kang 2018; 
Hu et al. 2021).

Extracellular signal-regulated kinases (ERK) are one 
of the classic transduction pathways of mitogen-activated 
protein kinases (MAPK) family. At present, many studies 
have shown that ERK signaling pathway was closely related 
to renal fibrosis. For example, fraxetin inhibited the progres-
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sion of renal fibrosis by regulating ERK signaling (Hsieh et 
al. 2021). Mulberry leaves inhibited RIF by activating ERK 
signaling (Ji et al. 2019). STAT3 is an important regulatory 
element downstream of ERK cascade, and ERK specifi-
cally phosphorylates tryptophan 727 on STAT3 to regulate 
and enhance the transcriptional activity of STAT3. STAT3 
inhibitor S3I-201 could improve renal dysfunction, reduce 
serum uric acid level, and delay the progression of renal 
fibrosis (Pan et al. 2021). However, the relationship between 
ERK/STAT3 pathway and EMT-induced RIF has not been 
deeply studied.

Red ginseng (Panax ginseng Meyer) shows high efficiency 
of inhibiting inflammation, anti-fibrotic activity, and other 
pharmacological effects in renal disease (Karunasagara et al. 
2020), mainly caused by ginsenosides in red ginseng (Park et 
al. 2017; Wang et al. 2021). Ginsenosides extracted from red 
ginseng could act an anti-proliferative effect by inhibiting the 
phosphorylation of ERK (Lee et al. 2017). Red ginseng and 
its ginsenosides could effectively alleviate chemotherapy-
induced toxicity on kidney, liver, heart, and immune and 
hematopoietic inhibition, which might involve with ERK 
signaling pathway (Wan et al. 2021). During the processing 
of red ginseng, some non-saponins active substances are still 
produced. Arginyl-fructosyl-glucose (AFG) is an impor-
tant non-saponin active substance that belongs to arginine 
derivatives, and shows substantial antioxidant activity and 
anti-inflammatory effect (Liu et al. 2020). At the same time, 
AFG has a strong protective effect on kidney injury (Li et al. 
2019). However, there are fewer studies on the exact role and 
mechanisms of this non-saponin in renal fibrosis.

A large number of studies have shown that TGF-β1 
can induce renal tubular EMT and lead to renal fibrogen-
esis (Zhang et al. 2017; Ma et al. 2018). This study aims to 
investigate whether AFG could regulate the activation of 
ERK/STAT3 signaling pathway to intervene the EMT of 
renal tubular epithelial cells. To this end, TGF-β1 is utilized 
to mimic renal fibrosis in vitro, and then the effects of AFG 
on experimentally-induced EMT in renal epithelial cells 
and ERK/STAT3 signaling pathway activation are evalu-
ated, which may propose a novel therapeutic agent for the 
treatment of RIF. 

Materials and Methods

Cell culture

Human renal tubular epithelial cells (HK-2) were purchased 
from American Type Culture Collection (Manassas, VA, 
USA). Cells were maintained with DMEM/F12 medium 
(Gibco, Grand Island, NY, USA) containing 10% fetal bovine 
serum (FBS), penicillin (100 U/ml), and streptomycin (100 
μg/ml). Culture conditions were set at 37°C and 5% CO2.

Preparation of AFG 

Red ginseng is evaporated from fresh ginseng by Maillard 
reaction, and during this processing, AFG is produced due 
to the reaction of arginine and maltose. By referring to the 
method of Li et al. (2019), AFG was prepared by reacting 
arginine and maltose under anhydrous acidic conditions at 
80°C for 120 min. The purity of AFG was more than 90% 
as measured by high performance liquid chromatography 
(HPLC). 

Cell induction and treatment

When the cells were at 80% confluence, the experiment was 
performed and TGF-β1 induction was based on the method 
of Zhang et al. (2017). Mogrol is an inhibitor of ERK and 
STAT3. HK-2 cells were cultured in serum-free DMEM/F12 
medium and starved for 12 h, and then grouped according 
to different treatment methods as follows: 
(1) Control group: cells were cultured in serum-free DMEM/

F12 medium for 48 h.
(2) TGF-β1 group: cells were cultured in serum-free DMEM/

F12 medium containing aqua sterilisata-dissolved 
TGF-β1 (5 ng/ml, Abcam, Cambridge, UK) for 48 h.

(3) TGF-β1+NaCl group: cells were cultured in serum-free 
DMEM/F12 medium containing TGF-β1 (5 ng/ml) and 
0.9% NaCl solution for 48 h. 

(4) TGF-β1+25AFG group: cells were cultured in serum-free 
DMEM/F12 medium containing TGF-β1 (5 ng/ml) and 
AFG liquor (25 μmol/l, dissolved in 0.9% NaCl solution) 
for 48 h. 

(5) TGF-β1+50AFG group: cells were cultured in serum-free 
DMEM/F12 medium containing TGF-β1 (5 ng/ml) and 
AFG (50 μmol/l, dissolved in 0.9% NaCl solution) for 48 h.

(6) TGF-β1+100AFG group: cells were cultured in serum-
free DMEM/F12 medium containing TGF-β1 (5 ng/ml) 
and AFG (100 μmol/l, dissolved in 0.9% NaCl solution) 
for 48 h.

(7) TGF-β1+DMSO group: cells were cultured in serum-free 
DMEM/F12 medium containing TGF-β1 (5 ng/ml) and 
an equal volume of dimethyl sulfoxide (DMSO, Abcam, 
Cambridge, MA, USA) for 48 h.

(8) TGF-β1+Mogrol group: cells were cultured in serum-
free DMEM/F12 medium containing TGF-β1 (5 ng/ml) 
and Mogrol (250 µmol/l, dissolved in DMSO, Bangjing, 
Shanghai, China) for 48 h. 

Cell morphology 

Cells in each group were observed under a  microscope 
(Olympus CKX41, Olympus Co., Ltd., Tokyo, Japan) before 
or after treatment with TGF-β1 to monitor cell morphology 
and verify the effect of AFG on HK-2 cells. 
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Real time qPCR (qRT-PCR)

Total RNA was extracted using Trizol (15596026, Invitro-
gen, Car, USA) and reverse transcribed into cDNA using 
reverse transcription kit (RR047A, Takara, Japan), with 
a reaction system of 20 μl. The reaction condition was as 
follows: reaction at 37°C for 15 min and at 85°C for 5 s. 
The RNA samples were loaded using SYBR Premix EX 
Taq Kit (RR420A, Takara). The samples were subjected to 
real time fluorescence quantitative PCR (ABI7500, ABI, 
Foster City, CA, USA). The reaction system consisted of 
9 μl SYBR Mix, 0.5 μl forward primer, 0.5 μl reverse primer, 
and 8 μl RNase Free dH2O. The reaction conditions were: 
predenaturation at 95°C for 10 min, denaturation at 95°C 
for 15 s, annealing at 60°C for 1 min, in a total of 40 cycles. 
The Ct values of each well were recorded, with GAPDH 
as the internal reference. Relative expression of genes 
was calculated using 2–ΔΔCt method. ΔΔCt = [Ct (target 
gene) – Ct (housekeeping gene)] experimental group – [Ct 
(target gene) – Ct (housekeeping gene)] control group. 
Each experiment was repeated three times independently, 
and three replicate wells were set for each sample. Related 
primers were designed by Shanghai Sangon Biotech. Primer 
sequences are detailed in Table 1. 

Western blot

After cells were lysed with RIPA lysis buffer (Beyotime), 
BCA detection kit (Beyotime) was used to detect the protein 
concentration. The loading buffer was added and mixed with 
the protein before a 3-min boiling water bath. After that, 
electrophoresis was performed at 80 V for 30 min, and then 
at 120 V for 1–2 h instead after bromophenol blue entered the 
separation gel. The membrane transferring was performed 
in an ice bath with a current of 300 mA for 60 min, and then 
the membrane was rinsed with for 1–2 min and sealed for 60 
min at room temperature or blocked at 4°C overnight. The 
membrane was incubated with primary antibodies against 
GAPDH (ab9485, 1:2500, Abcam), α-SMA (ab124964, 
1:10000, Abcam), Vimentin (ab92547, 1:1000, Abcam), 
E-cadherin (ab40772, 1:10000, Abcam), ERK (ab184699, 
1:10000, Abcam), p-ERK (ab229912, 1:1000, Abcam), STAT3 
(ab68153, 1:1000, Abcam), and p-STAT3 (Cell Signaling 
Technology, Massachusetts, USA) on a shaker at room tem-
perature for 1 h, and washed for 3 times, 10 min each time. 
Then secondary antibody (goat anti-rabbit IgG labeled with 
horseradish peroxidase, 1:5000, Beijing ComWin Biotech 
Co., Ltd., Beijing, China) was added for a 1-h incubation at 
room temperature, followed by washing for three times, 10 
min each time. Finally, chemiluminescence imaging system 
(Bio-Rad) was used for detection after color development. 
Each experiment was repeated three times independently 
and three replicate wells were set for each sample. 

CCK-8 assay 

The transfected cells in each group were inoculated 
onto a  96-well plate with 100  μl diluted cell suspension 
(1 × 105 cells/ml) per well. After the cells were incubated in 
the incubator for respectively 0, 24, 48, 72, and 96 h, 10 µl 
of CCK-8 reagent (Tokyo, Dojindo, Japan) was added into 
each well for a 2-h incubation. The absorbance was measured 
at a wavelength of 450 nm. Each experiment was repeated 
three times independently and three replicate wells were set 
for each sample. 

Transwell assay

For Matrigel activation, the chamber covered with Matrigel 
was taken out from  a  –20°C refrigerator and melted at 
room temperature, and serum-free medium (0.5 ml) was 
added to transwell chamber (Corning, New York, USA) 
and 24-well plate for a 2-h incubation under a condition of 
37°C and 5% CO2 , followed by removal of culture medium. 
Cells in logarithmic growth phase were collected, prepared 
into single cell suspension, and uniformly inoculated in 
a 6-well plate. Cells were cultured in a 5% CO2 incubator 
at 37°C. When the cell confluence reached 70~90%, the 
cells in each group were treated as above stated. Then the 
cells were cultured in a 5% CO2 incubator at 37°C for 24 h. 
After that, the cells were digested with trypsin, washed twice 
with PBS, and resuspended in serum-free DMEM medium 
to adjust cell concentration. Medium (600 μl) containing 
10% FBS was added to the basolateral chamber, and cell 
suspension (100 μl) was added to the apical chamber, fol-
lowed by cell culture for 24 h at 37°C and 5% CO2. Then the 
apical chamber was taken out, with supernatant discarded. 
The non-invaded cells on the upper surface were removed 
with cotton swabs and invaded cells on the lower surface 

Table 1. Primer sequences used in qRT-PCR analysis

Primer Sequences
α-SMA-F CTATGAGGGCTATGCCTTGCC
α-SMA-R GCTCAGCAGTAGTAACGAAGGA
Vimentin-F TGACCGCTTCGCCAACTACAT
Vimentin-R TCCCGCATCTCCTCCTCGTA
E-cadherin-F ATTTTTCCCTCGACACCCGAT
E-cadherin-R TCCCAGGCGTAGACCAAGA
ERK-F CAGTTCTTGACCCCTGGTCC
ERK-R TACATACTGCCGCAGGTCAC
STAT3-F AGCAGCACCTTCAGGATGTC
STAT3-R GCATCTTCTGCCTGGTCACT
GAPDH-F AATGGGCAGCCGTTAGGAAA
GAPDH-R GCGCCCAATACGACCAAATC

F, forward; R, reverse.
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were fixed with 4% paraformaldehyde for 20 min. After 
Wright-Giemsa staining, the cells were photographed using 
a microscope in five randomly selected fields. Each experi-
ment was repeated three times independently.

Immunofluorescence (IF) 

Cells were fixed with paraformaldehyde (4%) in PBS 
(0.1 mol/l), and then sealed with normal goat serum (10%) 
for 1 h. The fixed cells were incubated with primary antibod-
ies against α-SMA (ab124964, 1:250), Vimentin (ab92547, 
1:250), and E-cadherin (ab40772, 1:500, Abcam) at 4°C 
overnight. Subsequently, the secondary antibody IgG was 
added for incubation for 1  h  after the cells were washed 

with PBS. Finally, the cells were stained with 4’,6-diamid-
ino-2-phenylindole (DAPI) and treated with Vectashield 
Mounting Media (Vector Laboratories Inc., Burlingame, 
CA). Images were recorded with a fluorescence microscope 
(Leica, TCSSP2, German) at 400 times magnification. Each 
experiment was repeated three times independently, with 
five fields of vision observed.

Statistical analysis 

Data were analyzed by GraphPad prism7 software, and 
expressed as mean ± standard deviation ( ± SD). T-test and 
one-way analysis of variance were used for comparisons 
between two groups and among groups, respectively. Tukey’s 

Figure 1. TGF-β1 could induce epithelial-mesenchymal transition in HK-2 cells. A. Morphological changes of HK-2 cells observed under 
microscope. The expressions of α-SMA, Vimentin, and E-cadherin were evaluated by qRT-PCR (B), Western blot (C), and immuno-
fluorescence (D). Cell proliferation and invasion were measured by CCK-8 (E) and transwell (F) assays. * p < 0.05, ** p < 0.01 compared 
with Control group. The measurement data were expressed as mean ± SD (n = 15 for immunofluorescence and transwell assays; n = 9 
for other experiments). Comparisons between two groups were performed using t-test. The scale = 50 μm. 
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multiple comparisons test was used for post hoc analysis. 
p < 0.05 was considered significant. All experiments were 
repeated three times.

Results

TGF-β1 induced EMT in HK-2 cells 

To investigate the effect of AFG on TGF-β1-induced renal 
tubular cell EMT, we used TGF-β1 to induce EMT in HK-2 
cells. The microscopic observation result showed that normal 
HK-2 cells were oval and closely connected in Control group, 
while cells were signally longer and loosely spread in TGF-β1 
group (Fig. 1A). The expressions of α-SMA, Vimentin, and 
E-cadherin were measured by qRT-PCR and Western blot. 
The results showed that in TGF-β1 group, the expressions 
of α-SMA and Vimentin were markedly increased but 
E-cadherin expression was markedly decreased (vs. Control 
group) (Fig. 1B and C). 

The results of IF revealed that E-cadherin on cell mem-
brane was continuously linear distributed, and α-SMA and 
Vimentin seldom expressed in Control group. After TGF-β1 
induction, E-cadherin on cell membrane was distributed 
in moth-eaten shape and the expressions of α-SMA and 
Vimentin were signally enhanced (Fig. 1D). CCK-8 and 
transwell results showed that cell proliferation and invasion 
abilities were significantly strengthened in TGF-β1 group 
compared with TGF-β1 group (Fig. 1E and F). These results 
have provided evidence that TGF-β1 could induce EMT in 
HK-2 cells. 

TGF-β1 induced EMT via ERK/STAT3 signaling pathway

To verify the implication of ERK/STAT3 signaling pathway 
in TGF-β1-induced EMT in HK-2 cells, the mRNA levels of 
ERK and STAT3 were firstly detected by qRT-PCR. Result 
revealed that the levels of ERK and STAT3 mRNAs showed 
no marked differences in TGF-β1 group (vs. Control group) 
and TGF-β1+Mogrol group (vs. TGF-β1+DMSO group) 
(Fig. 2A). The protein levels of ERK, STAT3, p-ERK and p-
STAT3 in HK-2 cells were measured by Western blot. The 
results showed that the protein levels of p-ERK and p-STAT3 
were observably increased in TGF-β1 group compared with 
Control group, while those in TGF-β1+Mogrol group were 
inhibited compared with TGF-β1+DMSO group. There 
was no significant difference in the expressions of ERK and 
STAT3 among the groups (Fig. 2B). 

Next, the expressions of α-SMA, Vimentin, and E-cad-
herin were measured by qRT-PCR and Western blot. The 
results showed that the expressions of α-SMA and Vimentin 
were significantly decreased, while E-cadherin expression 
was significantly increased in TGF-β1+Mogrol group (vs. 

TGF-β1+DMSO group) (Fig. 2C and D). Additionally, IF 
results revealed a marked increase of E-cadherin and obvi-
ous decreases of α-SMA and Vimentin in TGF-β1+Mogrol 
group (vs. TGF-β1+DMSO group) (Fig. 2E). CCK-8 and 
transwell results showed that cell proliferation and invasion 
abilities were reduced in TGF-β1+Mogrol group compared 
with TGF-β1+DMSO group (Fig. 2F and G). Above results 
indicated that phosphorylation of ERK and STAT3 was 
an important form of its involvement in related biological 
activities, while the change of total protein was relatively 
constant. TGF-β1 could promote EMT of HK-2 cells through 
phosphorylation of ERK and STAT3.

AFG inhibited phosphorylation of ERK and STAT3 

The chemical structural formula of AFG is shown in Figure 
3A. In our study, the EMT of HK-2 cells were induced by 
5 ng/ml TGF-β1, during which the cells were co-cultured 
with different concentrations of AFG (0, 25, 50, and 
100 μmol/l) for 48 h. 

First, the mRNA levels of ERK and STAT3 were measured 
by qRT-PCR. There was no obvious difference among the 
four groups (Fig. 3B), which suggested that AFG interven-
tion could not affect the mRNA levels of ERK and STAT3. 
Subsequently, the protein levels of ERK, STAT3, p-ERK, 
and p-STAT3 were measured by Western blot. The results 
showed signally increases of the levels of p-ERK and p-
STAT3 and insignificant changes in ERK and STAT3 levels 
in TGF-β1+100AFG group (vs. TGF-β1+NaCl group) (Fig. 
3C). Above results indicated that AFG intervention could 
partially inhibit phosphorylation of ERK and STAT3. 

AFG could inhibit TGF-β1-induced EMT 

After HK-2 cells were induced EMT by 5 ng/ml. TGF-β1 
and co-cultured with different concentrations of AFG (0, 25, 
50, 100 μmol/l), the morphologic changes of the cells were 
observed under an inverted microscope. The results showed 
that cells were spindle-shaped in TGF-β1+NaCl group (Fig. 
4A). In TGF-β1+100AFG group, the morphology of cells 
were markedly improved. Specifically, most of them were 
oval and adhered to the wall, and the number of floating 
cells were signally decreased (Fig. 4A). 

The expressions of α-SMA, Vimentin, and E-cadherin 
were measured by qRT-PCR and Western blot. When com-
pared with TGF-β1+NaCl group, TGF-β1+100AFG group 
showed decreased expressions of α-SMA and Vimentin 
but increased E-cadherin expression. While there was no 
marked statistical difference in the expressions of α-SMA, 
Vimentin, and E-cadherin in TGF-β1+25AFG group and 
TGF-β1+50AFG group, relative to TGF-β1+NaCl group 
(Fig. 4B and C). IF results revealed that E-cadherin expres-
sion was signally increased, while the expressions of α-SMA 
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Figure 2. TGF-β1 could induce HK-2 cell epithelial-mesenchymal transition by ERK/STAT3 signaling pathway. A. The mRNA 
levels of ERK and STAT3 examined by qRT-PCR. B. The protein levels of ERK, STAT3, p-ERK, and p-STAT3 assessed by Western 
blot. The expressions of α-SMA, Vimentin, and E-cadherin were evaluated by qRT-PCR (C), Western blot (D) and immunofluo-
rescence (E). Cell proliferation and invasion were measured by CCK-8 (F) and transwell (G) tests. * p < 0.05, ** p < 0.01, *** p < 
0.001 compared with Control group or TGF-β1+DMSO group. The measurement data were expressed as mean ± SD (n = 15 for 
immunofluorescence and transwell experiments; n = 9 for other experiments). Comparisons between two groups were performed 
using t-test and differences among multiple groups were assessed using one-way analysis of variance. The scale = 50 μm. ns, non 
significant.
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and Vimentin were signally decreased in TGF-β1+100AFG 
group (vs. TGF-β1+NaCl group) (Fig. 4D). CCK-8 and 
transwell results showed that cell proliferation and inva-
sion abilities were obviously reduced in TGF-β1+100AFG 
group compared with TGF-β1+NaCl group (Fig. 4E and F, 
p < 0.05). Above results suggested that AFG could reverse 
TGF-β1-induced EMT in HK-2 cells. 

Discussion

In the current study, we studied the function of AFG as 
an anti-fibrotic modulator in the development of TGF-β1-
induced EMT in renal tubular epithelial cells through the 
ERK/STAT3 signaling pathway. Firstly, functional experi-
ments proved that TGF-β1 could activate ERK/STAT3 sign-
aling pathway to promote EMT in renal tubular epithelial 
cells, AFG could inhibit the phosphorylation of ERK and 
STAT3. Moreover, our findings suggested that AFG could 
alleviate TGF-β1-induced EMT in renal tubular epithelial 
cells. Our results may offer novel insights into the treatment 
and prevention of RIF. 

Transforming growth factor-β (TGF-β), the prototype 
of the TGF-β family of growth and differentiation factors, 
is a potent fibrogenic cytokine implicated in pathological 
changes in various organs including the kidney (Morikawa 
et al. 2016). Although EMT can be stimulated by several 

inducers (Ghosh et al. 2021), a plenty of works have identi-
fied that TGF-β1 is sufficient to induce EMT in experimental 
models of CKD (Yu et al. 2019; Wang et al. 2020). It has been 
reported as the principal driver of tissue scarring leading to 
interstitial renal fibrosis and affected p53 phosphorylation 
in renal fibrogenesis (Higgins et al. 2018). In our study, we 
firstly used TGF-β1 to induce EMT in renal tubular epithelial 
cells HK-2, and the results microscopic observations and 
functional experiments demonstrated the transformation of 
epithelial cells toward a mesenchymal state. Moreover, our 
results also verified that the promoting effects of TGF-β1 on 
the EMT and the proliferation and migration abilities of the 
renal tubular epithelial cells were achieved by inducing the 
phosphorylation of ERK and STAT3. In a previous study, 
overexpression of ERK could restrain renalase-mediated 
inhibition on TGF-β1-induced EMT and fibrosis, leading 
to the development of RIF (Wu et al. 2017).

ERK signaling pathway can be activated by a variety of 
stimuli, and plays profound and pervasive roles in develop-
ment, physiology, and diseases (de la Cova et al. 2017). ERK 
acts as a  pro-fibrotic factor important for inflammatory 
responses in renal fibrosis (Higgins et al. 2017). ERK has 
been shown to participate in EMT progression, and the in-
hibition of ERK contributes to ameliorating renal interstitial 
fibrosis by suppressing tubular EMT (Qin et al. 2015; Cheng 
et al. 2016). In addition to ERK, STAT3 was also studied as 
a downstream factor in our experiment, and the expressions 

Figure 3. Arginyl-fructosyl-glucose inhibited 
the phosphorylation of ERK and STAT3 in 
HK-2 cells. A. The chemical structural formula 
of arginyl-fructosyl-glucose. B. The mRNA lev-
els of ERK and STAT3 examined by qRT-PCR. 
C. The protein levels of ERK, STAT3, p-ERK, 
and p-STAT3 measured by Western blot. * p < 
0.05, ** p < 0.01, compared with TGF-β1+NaCl 
group. The measurement data were expressed 
as mean ±  SD. Differences among multiple 
groups were assessed using one-way analysis 
of variance (n = 9). ns, non significant.
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of p-ERK and p-STAT3 were remarkably increased in TGF-
β1-induced renal tubular epithelial cells. In a previous report, 
complement C3 generated by macrophages promotes renal 
fibrogenesis through increasing pro-inflammatory cytokines 
and renal recruitment of inflammatory cells via mediating 

the phosphorylation of ERK, STAT3, and STAT5 (Liu et 
al. 2018). Our results suggested that AFG was capable of 
inhibiting the activation of ERK/STAT3 signaling pathway, 
leading to reductions in EMT process, proliferation, and 
migration of TGF-β1-induced renal tubular epithelial cells. 

Figure 4. Arginyl-fructosyl-glucose inhibited TGF-β1-induced epithelial-mesenchymal transition in HK-2 cells. A. The morphology of 
HK-2 cells was observed under an inverted microscope. The expressions of α-SMA, Vimentin, and E-cadherin were measured by qRT-
PCR (B), Western blot (C), and immunofluorescence (D). Cell proliferation and invasion were evaluated by CCK-8 (E) and transwell 
(F) assays. * p < 0.05, ** p < 0.01 compared with TGF-β1+NaCl group. The measurement data were expressed as mean ± SD (n = 15 
for immunofluorescence and transwell tests; n = 9 for other experiments). Comparisons among multiple groups were performed using 
one-way analysis of variance or repeated analysis of variance. The scale = 50 μm. 
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In cisplatin (CDDP)-induced acute kidney injury (AKI), 
AFG could inhibit oxidative stress, inflammatory response, 
and apoptosis, and had a protective effect on kidney (Li et al. 
2019). Ginsenoside Rg1 (G-Rg1), isolated and purified from 
Panax ginseng, was reported to be beneficial for ameliorat-
ing renal fibrosis through suppressing the EMT process by 
targeting Klotho/TGF-β1/Smad signaling (Li et al. 2018). 
Ginsenoside Rb1 might restore cardiac and mitochondrial 
function and protect against cardiac remodeling via inhibit-
ing the TGF-β1/Smad and ERK signaling pathways (Zheng et 
al. 2017). Ginsenoside Rh2 could also reduce the activation of 
STAT3 to function its anti-fibrotic effect in cardiomyocytes 
(Lo et al. 2017). Our findings confirmed, for the first time, 
that a  non-saponin active substance AFG in red ginseng 
could restrain the EMT process, growth, and migration of 
renal tubular epithelial cells through inhibiting the activation 
of the ERK/STAT3 signaling pathway.

Collectively, these data showed that TGF-β1 could 
regulate ERK/STAT3 signaling pathway to promote EMT 
in renal tubular epithelial cells. In addition, we identified 
that ERK/STAT3 was an essential signaling pathway, thereby 
deepening our molecular understanding of how TGF-β1 
induces EMT. Moreover, AFG has been proven to have the 
inhibiting effect on TGF-β1-induced EMT. To conclusion, 
our findings demonstrated that AFG played a  significant 
role in TGF-β1-induced EMT development of renal tubular 
epithelial cells, modulated by the ERK/STAT3 signaling path-
way. A new insight is brought by our findings, concerning 
the prevention and treatment of RIF. 
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