
Indexed and abstracted in Science Citation Index Expanded and in Journal Citation Reports/Science Edition

Bratisl Med J 2022; 123 (9)

678 – 684

DOI: 10.4149/BLL_2022_108

CLINICAL STUDY
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ABSTRACT
INTRODUCTION: Multiple sclerosis (MS) is an infl ammatory demyelinating disease leading not only to 
physical disability but also to cognitive dysfunction. The aim of our study was to test cognitive functions of 
MS patients with mild relapsing-remitting form and to fi nd out the relationship between cognitive functions and 
brain volumetry.
METHODS: 52 patients (RRMSp) and 23 age-related healthy participants (CON) were enrolled. Mild disability 
was defi ned by mean EDSS 2.4 (≤ 4.0), and by median of disease duration 5.2 years. Cognitive status was 
tested using Single Digit Modality Test (SDMT). Brain volumetry was processed in FreeSurfer 2.0.0.
RESULTS: RRMSp patients showed signifi cantly lower SDMT score than CON. SDMT results correlated 
positively with volume of thalamus, putamen and nc. caudate, and negatively with optic chiasma volume. 
Compared with CON, RRMSp presented with signifi cantly lower volume in left and right nc. accumbent, 
cuneus and insular GM, right putamen, total brain cortical grey matter (GM), white matters hypointensities, 
and 3rd ventricular widths.
CONCLUSION: To our best knowledge, this is the fi rst study that presents results showing a correlation of 
lower SDMT with higher optic chiasma volume, due to its subclinical chronic demyelination. We confi rmed 
that GM atrophy is involved in cognitive functions in MS (Tab. 3, Fig. 2, Ref. 73). Text in PDF www.elis.sk
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Introduction

Multiple sclerosis (MS) is an infl ammatory demyelinating 
disease of the central nervous system (CNS) leading not only to 
physical disability but also to cognitive dysfunction (1, 2). Patients 
diagnosed with MS can develop cognitive defi cits even in the early 
stages of the disease (2, 3). Several cognitive domains have been 
identifi ed to be specifi c for MS, of which slowed cognitive process-
ing was found to be the core symptom of MS (4). Processing speed 
is a basic cognitive function required by, and therefore infl uencing, 

downstream processes such as learning, memory, word retrieval, 
and executive functions (5). Research in MS clearly supports reli-
ability and validity of Single Digit Modality Test (SDMT) to test 
cognitive functions (5) due to its sensitivity to recognise slowed 
processing or information speed (4). 

Numerous studies have tested a relationship between cogni-
tive dysfunction (CD) in MS and Magnetic Resonance Imaging 
(MRI) parameters, namely brain volumetry (7–10). However, the 
studies have shown controversial results. Some authors presented 
correlation of CD with global brain atrophy (7, 9–11) while others 
showed superiority of subcortical grey matter atrophy in develop-
ment of CD (12–16). The results indicate that the underlying pro-
cesses remain unknown. 

The aim of our study was to test cognitive functions of MS 
patients with mild relapsing-remitting form of the disease and to 
fi nd out the relationship between cognitive functions and brain 
volumetry. We also planned to compare the results with those ob-
tained from healthy volunteers (CON). We hypothesized that cog-
nitive dysfunction correlates with brain atrophy, which might have 
a greater diagnostic value than conventional MRI in predicting 
overall disease progression, and segmented brain measurements 
would become new practical volumetric biomarkers.
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Patients and methods

Local ethics approval for this study was obtained from the 
Ethics Committee of Jessenius Faculty of Medicine in Martin, 
Comenius University in Bratislava

Patients and control participants 
Patients fulfi lling criteria for defi nite MS according to Mc-

Donald 2017 (17) were randomly selected from the Multiple 
Sclerosis Centre in Nitra, Slovakia, and they were included in 
the study after signing a written consent. In total 52 patients (11 
males a 41 females) with relapsing-remitting MS (RRMSp) and 
23 healthy participants (2 males, 20 females) were enrolled. The 
inclusion criteria were the age between 18 and 65 years, the ab-
sence of clinical relapse as well as corticoids treatment within 3 
months before the study entry, and EDSS ≤ 4.0. Exclusion criteria 

were EDSS ≥ 4.0; current or past disorders 
other than MS (for patients), which could 
affect cognitive performance at SDMT; no 
concomitant treatments with psychoactive 
drugs and no acute psychiatric disease; un-
willingness to cooperate. 

We collected information (Tab. 1) about 
the age, disease duration, immunomodula-
tory treatment (IMT), clinical and cognitive 
disability using SDMT. Out of 52 patients, 
13 patients were tested before receiving any 
treatment and 39 were on treatment with 
different IMT agents (5 – terifl unomid, 2 – 
intereferon beta Ia, 4 – glatiramer acetate, 16 
– dimethyl fumarate, 3 – fi ngolimod, 4 – na-
talizumab, 2 – ocrelizumab, 3 – kladribin). 
The treatment (following national guide-
lines www.health.gov) had lasted for ≥12 
months before the examination and the pa-

tients remained on the same treatment. Clinical disability, assessed 
by Expanded Disability Status Scale (EDSS), was performed by 
neurologists trained in evaluating EDSS in MS patients. Cognitive 
status was tested using SDMT, written form, at the same time as 
EDSS and MRI examination were performed. 

MRI examination and volumetry using FreeSurfer 
a) Image acquisition 
All subjects were scanned on a 1.5 Tesla MRI unit (MAG-

NETOM Avantofi t, Siemens Healthcare, GmbH, Erlangen, Ger-
many) using a 20-channel Head/Neck coil for signal reception. 
The imaging protocol consisted of a head scout, 2D sagittal and 
axial T2-w TSE scans, a sagittal 3D FLAIR (SPACE sequence), 
an axial diffusion weighted scan, a sagittal 3D T1-w MPRAGE 
sequence and a sagittal 3D Double Inversion Recovery scan (DIR, 
SPACE sequence).

RRMSp (52) CON (23) p 
Age 34.8 ±1.3 37.1±1.9 0.33
EDSS 2.4 (1.0–4.0) NA NA
Disease duration (years) 5.2 (0.5–10) NA NA
SDMT 47.1±1.2 55.2±1.8 0.001
L Nc Accumbens 403.5±12.9 469.4±19.4 0.008
R Nc Accumbens 451.6±10.8 494.2±16.3 0.04
L Cuneus GM 2444.3±88.7 2875.7±133.5 0.01
R Cuneus GM 2675.8±99.8 3196.1±150.2 0.01
L Insula GM 6384.7±166.9 7111.3±250.9 0.03
R Insula GM 6359.2±174.6 7065.0 ±262.5 0.03
R Putamen 4343.6±65.5 4704.3±98.4 0.004
3rd Ventricle 1253.9±62.8 903.5±94.4 0.001
WM Hypointensities 29642.5±5175.4 4552.2±7781.8 0.0000008
Total Cortical GM 397006.7±13496.3 461825.0±20293.3 0.009
Total GM 563424.4±14201.4 624663.5±21353.8 0.02
RRMSp = relapsing-remitting MS patients, CON = healthy controls, EDSS = Expanded Disability Status Scale, 
SDMT = Single Digit Modality Scale, L = Left, R = Right, GM = grey matter, WM = white matter, NA = not 
applicable

Tab 1. Differences between relapsing-remitting multiple sclerosis patients and healthy controls.

Fig. 1. OPTIC CHIASMA.
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b) MR volumetry
For MR volumetry, the 3D T1-weighted MRI (MPRAGE; 

Magnetization Prepared RApid Gradient Echo) in sagittal direc-
tion was performed with following parameters: repetition time-
TR/echo time-TE/inversion time-TI = 1900/2.4/900 ms, 176 slices 
per slab with the slice thickness of 1.2 mm and gap 0 mm, size of 
matrix 192x256 and pixel 1.3x1.0 mm2, fl ip angle 8°, one average, 
2 GRAPPA-GeneRalized Autocalibrating Partial Parallel Acquisi-
tion factor, and scan time of 3 min 22 s. 

The T1-weighted MRI from all study participants were ana-
lyzed cross-sectionally and processed in FreeSurfer 2.0.0 (Harvard 
University, Boston, MA, USA). FreeSurfer enables to estimate 
volumes of the (i) brain structures in the right and left hemispheres 
(lateral ventricles, inferior lateral ventricles, cerebellum – WM and 
cortex, thalamus, caudate nucleus, putamen, globus pallidum, hip-
pocampus, amygdala, nucleus accumbens, ventral diencephalon, 
cuneus, insula, choroid plexus, (ii) GM/WM segments with hemi-
sphere distribution (WM-hemispherical and total, GM-cortical/
subcortical/total, WM/non-WM hypointensities), (iii) specifi c 
areas of the brain such as ventricles (3rd/4th/5th), vessels-left/right, 
brain stem, optic chiasma, cerebrospinal fl uid, corpus callosum 
– posterior/mid-posterior/central/mid-anterior/anterior and (iiii) 
brain volume (total with and without ventricles, supratentorial-
total and without ventricles, estimated intracranial). (Table 2). No 
additional pre-processing or manual intervention was performed 
to avoid introducing biases in the tissue segmentations.

Statistical analyses
All statistical tests were performed in NCSS (version 9.0, LLC. 

Kaysville, Utah, USA). Differences in demographic and clinical 

parameters (age, SDMT, EDSS, disease duration) as well as volu-
metry measures between patients and controls were evaluated 
using Kruskal-Wallis (ANOVA) test. The correlation of volumetry 
ratios with SDMT was performed using linear regression analysis. 
The p ˂ 0.5 was considered signifi cant. 

Results 

Demographics and differences in tested parameters 
RRMS patients showed signifi cantly lower SDMT score than 

CON, indicating slower psychomotor speed and more intensive 
cognitive decline, although they did not differ in age (Tab. 1).

Volumetry measures showed in RRMSp signifi cantly lower 
volume than in CON in several subcortical GM nuclei (left and 
right nucleus accumbent, cuneus and insular GM, and right puta-
men), total brain cortical and total GM. Total number of white mat-
ters hypointensities and 3rd ventricular widths were signifi cantly 
higher in RRMSp than in CON. The groups did not differ in total 
brain volume (Tab. 1). 

Correlation of SDMT with brain volumetry measures
In RRMSp, SDMT correlated adversely with optic chiasma 

(OCH) volume but not with age (Tab. 2). OCH volume signifi cantly 
depended on subclinical demyelination in OCH but not with age 
(Tab. 3). SDMT also correlated with right putamen and thalamus, 
and with left caudate nucleus (Tab. 2). 

In CON we did not prove correlation of SDMT with any of 
the volumetric measures.

Reduction of cortical grey matter was the only age-related 
result in RRMSp (R2 = 0.09, R = 0.31, p = 0.006).

Fig. 2.  Volumetry.
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Discussion

Cognitive dysfunction measured by SDMT and its correlation 
with volumetric data

SDMT is one of the Brief Repeatable Battery of Neuropsy-
chological tests, which is most frequently used both in clinical 
practice and in research (4,18). SDMT has been proven to be the 
most sensitive test to evaluate sustained attention and capacity of 
concentration, as well as visual processing speed (19–21). This 
study proves signifi cant differences in performance of SDMT 
between RRMSp and CON, in accordance with previous studies
(4, 21, 22). In agreement with other authors and our previous re-
search, SDMT is capable to discriminate between RRMSp and 
CON very well (23–26). 

SDMT results of our RRMSp correlated positively with vo-
lume of thalamus, putamen and nc. caudate, and negatively with 
optic chiasma volume.

Correlation of SDMT with optic chiasma
To our best knowledge, this is the fi rst study that presents 

correlation of lower SDMT with higher optic chiasma volume. 
Optic chiasma is a small structure, and our results might raise 
suspicion of technical error. However, credibility and accuracy 
of MR-volumetry of optic chiasma has been confi rmed in a 
recent large MRI study (27). The accuracy (28, 29) and scan-
rescan precision (30, 31) for Free Surfer-generated surfaces and 
thickness estimates have been reported to be well below 1 mm. 

These facts support reliability of the optic chiasma measurements 
in our study. 

We hypothesized that the increased volume of optic chiasma 
could be caused by its chronic subclinical demyelination, but the 
lesions are not easily visible on MR imaging. Fat-suppressed T2-
weighted FSE images, especially STIR T2- weighted images, is 
useful in detecting a signal-intensity abnormality in subclinical 
optic nerve and chiasma demyelination but routine T2-weighted 
images without fat suppression and contrast-enhanced T1-weighted 
FSE images do not show any signal abnormality in the affected 
optic nerve (32). We used T2space-dark-fl uid-sag-p2-sag-MPR-tra 
sequence for evaluation of demyelinated lesions of optic chiasma, 
in agreement with published recommendations (32). We found 
signifi cant positive correlation of signal-intensity abnormalities 
of optic chiasma with its higher volume, even though none of our 
RRMSp presented with acute optic neuritis or new visual relapse. 
We conclude that adverse correlation of SDMT with optic chiasma 
volume pinpoints the role of subclinical demyelination of optic 
chiasma in visual processing speed in RRMS patients.

The relationship between subclinical demyelination of optic 
chiasma in our RRMSp and lower performance of SDMT is sup-
ported by previously reported data. Generally, a decline on the 
SDMT has been noted during acute infl ammatory phases of MS 
(24). SDMT performance depends on good visuospatial orienta-
tion (33), which is based on normal visual functions (34). In the 
latter work, the authors tested MS patients who reported normal 
vision. but exhibited mild decline of visual acuity that correlated 
with lower score of SDMT (34). Visual, oculomotor, and oral mo-
tor abilities contribute signifi cantly to performance on the SDMT 
and other cognitive tests (35, 36). Therefore, these sensory and 
motor functions must be considered when interpreting SDMT 
scores (35, 36). Unfortunately, our study protocol did not include 
test of visual acuity, as we realised its importance when evaluat-
ing our results. More precise examination of visual functions in 
evaluation of cognitive processes would bring more information 
and we recommend to use it in future research. 

Correlation of SDMT with subcortical grey matter nuclei
Reduced GM volume was detected in RRMSp although the 

patients were not intensively disabled, and their disease duration 
was not long. From all subcortical GM nuclei, compared with 
CON, RRMSp only showed lower volume of putamen. In corti-
cal grey matter we found reduction of nc. accumbens, insular and 
cuneal GM. In contrast with our research, in other study not only 
putamen but also other GM nuclei volume using Free Surfer soft-
ware signifi cantly differed between patients and controls: bilateral 
thalamus, caudate nucleus, putamen, hippocampus, amygdala 
(37). So far, several studies revealed diffuse cerebral and cortical 
atrophy in MS patients even despite their short disease duration 
(38–40). Calabrese and colleagues presented atrophy of frontal 
cortex except other structures (thalamus and cerebellum) to be an 
independent predictor of progression of CIS to defi nite MS (41). 

Considering putamen, our fi ndings of reduction of right puta-
men volume is in accordance with other authors comparing sub-
cortical GM volume in MS and healthy controls. In a retrospective 

SDMT  RRMSp (52) CON (23)
L Caudate Nc R2=0.05

R=0.23
P=0.04

NS

R Thalamus R2=0.05
R=0.23
P=0.03

NS

R Putamen R2 =0.28
R=0.53
P=0.019

NS

Optic chiasma R2=0.07
R=–0.28
P=0.014

NS

RRMSp = relapsing-remitting MS patients, CON = healthy controls, SDMT = Sin-
gle Digit Modality Scale, L = Left, R = Right, nc = nucleus, NS = non-signifi cant

Tab. 2. Signifi cant correlations of volumetric data and SDMT in RRMS 
patients.

Optic chiasma  RRMSp (52) CON (23)
Presence of subclinical
demyelination 

R2=0.45
R=0.65

P=0.0001

NS

Age R2=0.01
R=0.11
P=0.1

NS

RRMSp = relapsing-remitting MS patients, CON = healthy controls, L = Left, R = 
Right, NS = non-signifi cant

Tab. 3. Optic chiasma characteristics.
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study of Krämer et al, reduced volume of putamen was found at 
the time of appearance of fi rst MS symptoms. Atrophy was more 
evident by the fi rst year of the disease than in advanced stages of 
the disease (42). Atrophy of putamen was also detected in non-
treated CIS patients (14, 43), and in patients with different phe-
notypes of MS (14, 44–46).

Atrophy of putamen strongly determined our RRMSp against 
CON, and it correlated with SDMT. The same results of correlation 
were presented by Batista et al (47). Putamen is a part of the basal 
ganglia. Their role in cognition is suggested by the existence of 
circuits connecting the basal ganglia to non-motor regions in the 
frontal lobe (dorsolateral prefrontal cortex, lateral orbitofrontal 
cortex, and anterior cingular cortex) (48, 49). Therefore, a role of 
putamen in development of slowing of processing speed could be 
explained by demyelination of many of fronto-striatal circuits in 
MS (47, 49). Association of basal ganglia damage with cognitive 
defi cits is supposed to be similar (but not identical) to those ob-
served in focal frontal lesions. These include defi cits in working 
memory, long-term memory retrieval, verbal fl uency performance, 
and attention, as well as impairments in executive functions like 
concept formation, mental set shifting, and inhibition of responses 
(50). Putamen oversees proper performance not only of motor but 
also cognitive functions in MS (43, 47, 51). 

Except putamen, caudate nucleus correlated also with SDMT 
in our research. The deep GM nuclei receive inputs from intralami-
nar nuclei of the thalamus and several cortical regions (including 
frontal, inferotemporal and posterior parietal cortex) to participate 
in parallel and partially segregated motor, oculomotor, cognitive 
and limbic circuits (49). We suggest that MS causes destruction of 
several cortico-basal ganglionic “loops”, linking the basal ganglia 
demyelination on MS cognitive dysfunction (53). 

Atrophy of the thalamus, caudate nucleus and other DGM 
nuclei has been linked with clinical disease progression (12, 54, 
55). Comparing our CON and RRMSp, we did not fi nd differences 
in volume of the thalamus. Recent research identifi ed thalamic 
volume to be a candidate MRI-based marker, associated with MS-
related neurodegeneration (56), as supported by pathological stud-
ies (57, 58). Thalamus volumetric correlates of cognitive decline 
have been reported by many authors (12, 59, 60), as well as our 
study. Several authors observed that global thalamic and putamen 
volumes are related to SDMT scores (47, 60). Bisseco et al pre-
sented thalamic atrophy as an independent and strong contributor 
to MS-related attention-processing speed defi cit, also controlling 
for age and neocortical atrophy (47, 60–62). Other authors also 
supported the dominancy of thalamus atrophy in development of 
cognitive decline in MS (7, 14, 63). 

Differences in volumetric data between RRMSp and CON
Nc accumbens is a region in the basal forebrain rostral to the 

preoptic area of the hypothalamus (64). Generally, the nucleus ac-
cumbens has a signifi cant role in the cognitive processing of mo-
tivation, aversion, reward (pleasure and positive reinforcement), 
and reinforcement learning (e.g. Pavlovian-instrumental transfer) 
(65). However, we did not prove a relationship between Nc. ac-
cumbens volume and cognitive processes in MS. We suppose that 

SDMT is not sensitive enough to test behavioural abnormities asso-
ciated with Nc. accumbens atrophy. 

Reduction of insular cortex in our RRMSp also did not corre-
late with SDMT. The insular cortex functions as an integral brain 
hub, connecting different functional systems underlying sensory, 
emotional, motivational, and cognitive processing. Insular cortex 
pathology could help explain complexity of cognitive and emo-
tional problems associated with MS, as insular cortex is believed 
to have an impact on fl exible behaviours, such as decision-mak-
ing, estimation of risks, and self-awareness. So far, it´s role was 
described in psychiatric disorders including, but not limited to, 
anxiety disorders, addiction, depression, schizophrenia, and au-
tism (66). Several neuropathological studies in MS revealed that 
the insular cortex and the temporobasal cortex are more affected 
than others (57, 58). However, there is no direct study confi rm-
ing the role of insular cortex in MS-related cognitive problems. 

Other cortical structure found reduced in our RRMSp was 
cuneus GM. Similar results of reduction of cortical areas in MS 
patients including cuneus were published by Rudko et al., who 
demonstrated reduction in the superior temporal and posterior 
cingulate cortices, as well as in the cuneus and precentral gyrus 
as the most prevalent along the outer cortical surface, using multi-
surface magnetization transfer ratio imaging (67). The study was 
not targeted to test cognitive functions. Currently, it is not clear 
which psychological tests could correctly identify damage of cu-
neus GM, and which of them would be able to differentiate among 
damage in Nc. accumbens, insula or cuneal GM. 

Atrophy of brain subcortical structures in our RRMSp was in-
directly proved by increased widths of the third ventricle (3WV) 
that differed from CON. Value of 3VW measures in the assessment 
of brain atrophy has been proven (68–72). Another of our results, 
volume of WM hypointensities strongly discriminated RRMSp 
against CON but did not correlate with SDMT. 

 
Conclusion

To our best knowledge, this is the fi rst study that presents 
results showing a correlation of lower SDMT with higher optic 
chiasma volume, and that optic chiasma volume, due to its sub-
clinical demyelination in MS, is strongly associated with decline 
of cognitive functions measured by SDMT. We confi rmed that GM 
atrophy is involved in cognitive functions in MS.
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