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Abstract. Heart failure (HF) is the leading cause of death and public health problems in the global 
population. This study aimed to identify and validate ferroptosis-related biomarkers associated with 
HF in clinical medicine using bioinformatics and machine learning strategies. Weighted co-expression 
network analysis (WGCNA) was applied to screen the module genes and analyze their biological 
functions and pathways. Ferroptosis-associated genes (FAG) in HF were determined and then machine 
learning algorithms were used for screening. Next, multiple external independent microarrays were 
used to verify molecular biosignature. Simultaneously, CIBERSORT was applied to estimate the im-
mune infiltration landscape. Combined with the results of the WGCNA, 25 FAGs were determined 
and 6 FAMBs were selected by machine learning strategies. In addition, Peroxiredoxin 6 (PRDX6) 
was finally selected as the key ferroptosis-associated molecular biological feature based on multiple 
verifications of independent data sets. From the results of the infiltration and enrichment analysis, 
we believed that PRDX6, as a protective biomarker related to ferroptosis in HF, may help provide 
new ideas in the immunotherapy of HF.
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Introduction

Heart failure (HF) is a common factor in the death of car-
diovascular disease; cardiovascular disease is a major threat 
to the health of global population. The reality is that due to 
insufficient heart output, the body cannot meet metabolic 
needs, and the quality-of-life survival for those suffering HF 
remains poor (Kim et al. 2021). As a global epidemic, HF 
affects 26 million adults worldwide. Studies have proved on 
the basis of available information that the cost of HF treat-
ment in the next 10 years will increase by 127% (Mozaffarian 
et al. 2016). As of 2030, an estimated 8 million people in the 
United States would have HF. Concurrently; China has 4.2 
million patients with HF with a prevalence of 1.3% (Hu et 
al. 2012). HF diagnostic markers such as natriuretic peptides 
provide the possibility to determine HF, but they are not 
stable enough at normal temperature. It is easily interfered 
by the age of the patient, a variety of diseases and drugs, and 
there are some shortcomings that cannot be ignored. In the 
era of big data, we still hope to discover new key molecular 
biological characteristics of HF. Access to new molecular 
markers of HF could bring benefits for faster and more ef-
ficient diagnosis of HF.

Ferroptosis is a new type of programmed cell death that is 
different from apoptosis, cell necrosis, and autophagy (Mou 
et al. 2019). Ferroptosis is characterized by iron dependence 
and reactive oxygen species (ROS) dependence, mainly 
focusing on cytological changes. Such changes include loss 
of the mitochondrial cristae, rupture of the mitochondrial 
membrane, and membrane condensation (Latunde 2017; Yu 
et al. 2017). In the process of biological changes, the activ-
ity of peroxidase is changed, and the antioxidant capacity 
of cells is gradually attenuated. When the accumulation of 
ROS causes cell oxidative death, ferroptosis occurs. In recent 
years, ferroptosis has not only made considerable progress in 
tumors but has also made discoveries in the cardiovascular 
field (Hu et al. 2021; Yu et al. 2021). Many investigations 
have proved that ferroptosis plays a critical role in cardio-
myopathy, myocardial infarction, HF, atherosclerosis, etc. 
(Liu et al. 2018; Fang et al. 2019; Bai et al. 2020; Song et al. 
2021). Studies have shown that the ferroptosis regulator 
Solute Carrier Family 7 Member 11 (SLC7A11), which is 
abundantly enriched in cardiomyocytes, can prevent HF 
caused by cardiac hypertrophy and cardiomyopathy (Fang et 
al. 2020; Zhang et al. 2021). In addition, studies have found 
that silencing toll like receptor 4 (TLR4) and NADPH oxidase 
4 (NOX4) significantly delays ferroptosis in HF rats, suggest-
ing that TLR4-NOX4 may be a potential therapeutic target 
for HF by inhibiting ferroptosis (Chen et al. 2019). These 
studies help focus our attention on the close connection 
between ferroptosis and HF. This makes it more important 
to discover the potential molecular biomarkers between 
ferroptosis and HF.

The application of integrated bioinformatics methods to 
biological research helps to discover more sensitive and ef-
ficient diagnosis and treatment strategies. In this study, we 
analyzed data sets related to HF through bioinformatics and 
used machine learning strategies to screen and determine the 
key ferroptosis-associated molecular biomarkers. Immune 
cell infiltration is a novel method for assessing the abun-
dance of immune cells in diseases. We used CIBERSORT 
to assess the infiltration of immune cells in HF. Combining 
the results of gene targets and immune cell infiltration will 
help understand the pathophysiological process of diseases 
and discover new ideas for immunomodulatory therapy. Our 
research results help to discover new ferroptosis targets for 
HF and provide new prevention and treatment strategies for 
individualized clinical treatment of HF.

Materials and Methods

HF microarray data and RNA-seq data preparation

We screened the required HF data set from the Gene 
Expression Omnibus (GEO) database on the public plat-
form. The selection criteria were as follows: 1. the data set 
excludes cancer samples; 2. the data set excludes complica-
tions such as diabetes, chronic kidney disease, and chronic 
obstructive pulmonary disease; and 3. the data set includes 
at least 6 samples. Based on the above standards, we ob-
tained the GSE57338 human heart tissue sample microarray 
data sets, and the GSE71613, GSE161472, and GSE135055 
human heart tissue high throughput sequencing data sets 
(Table S1 in Supplementary Material). GSE57338 included 
human left ventricular tissues from 136 normal controls 
and 177 HF samples. GSE71613 included 4 control samples 
and 4 left ventricular failure tissue samples. GSE161472 in-
cluded 37 control samples and 47 HF samples with reduced 
ejection fractions. GSE135055 included the left ventricular 
myocardium of 9 normal controls and 21 patients with 
HF. In addition, we also obtained the C57BL/6 mouse 
microarray gene set GSE36074. This data set included 
5 tissue samples in the Sham operation group, 7 tissue 
samples in the cardiac hypertrophy treatment group, and 
7 tissue samples in the HF treatment group. The clinical 
information for GSE57338 includes the sex and age of the 
sample, and whether the patients have HF. The information 
of whether the cause of the patient’s HF is dilated cardio-
myopathy (DCM) or ischemic (ISCH) is also presented 
in GSE57338. GSE135055 clinical information included 
NYHA HF classification, including 2 cases of NYHA Class 
II, 7 cases of Class III, and 12 cases of Class IV. New York 
heart function classification (NYHA classification): I (Nor-
mal): no symptoms of HF; II: symptoms of HF with slight 
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activity; III: significantly limited activity. Heart failure 
symptoms with mild activity; IV: obvious symptoms of HF 
at rest. GSE36074 had corresponding mouse experimental 
characteristic data (left ventricular weight change, right 
ventricle weight, lung weight, tibia length, and ltindex). 
The ltindex is defined as the ratio of lung weight to tibia 
length. The large sample data set GSE57338 of 313 cases was 
used as the main analysis data set, whereas other external 
independent data sets GSE71613, GSE161472, GSE135055, 
and GSE36074 were used to verify the results. The required 
data were preprocessed, including background correction 
and log2 conversion, and the processed data set was used 
for subsequent analysis. The research design and analysis 
flowchart are presented in Figure 1.

Co-expression module formation

The weighted gene co-expression network analysis (WGC-
NA) is a method to find highly correlated gene modules. 

We used WGCNA to find highly relevant gene modules in 
the HF gene set to facilitate the identification of candidate 
biomarkers. We used the “WGCNA” package in R for the 
result analysis. First, the GSE57338 microarray data were 
checked for missing values, and then the samples were 
clustered and analyzed. The pickSoftThreshold function 
determined the soft threshold power β. Subsequently, we 
built a topological overlap matrix (TOM) to measure the 
average network connectivity of genes. Dynamic shearing 
divided the gene into multiple gene modules. After confirm-
ing that the cutting height was set to 0.4, similar modules 
were used to perform clustering and merging. Among the 
modules, the modules with the highest correlation with HF 
clinical information (HF, DCM, and ISCH) were considered 
the most critical. The characteristic genes in these modules 
were identified for further analysis. Finally, the saliency 
scatters plot shows the degree of correlation between the 
gene module membership and the gene significance cor-
relation (GS).

Figure 1. Research design and analy-
sis flow chart. GSE57338 is used 
for weighted gene co-expression 
network analysis of heart failure 
(HF) data set, enrichment analysis, 
and immune cell infiltration. Fer-
roptosis related genes are collected 
from the FerrDb database and other 
previous references. Use machine 
learning algorithms to determine 
Ferroptosis-associated molecular 
biomarkers (FAMB). Validate FAMB 
through the external data set screen-
ing of GSE161472, GSE71613 and 
GSE135055. The mouse data set 
GSE36074 is used for further verifica-
tion of FAMB. Finally, the combina-
tion of FAMB and immune cell infil-
tration will help to discover new ideas 
for immunomodulatory therapy.
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 Figure 2. WGCNA identifies key modules. A. HF sample dendrogram with a heat map of traits. Each red vertical line represents 
a sample in a gene set. B. Scale-free fitting index graph and average connectivity graph. C. Suitable cut height dendrogram (cutting 
height was set to 0.4). D. Gene cluster dendrogram after merging. E. Modular feature correlation between modular features and clinical 
features. F. The saliency scatter plot of clinical features (DCM, ISCH, and HF) and lightgreen module. G. The saliency scatter plot of 
clinical features (DCM, ISCH, and HF) and darkgreen module.

Modular gene function enrichment

We selected the genes in the highly relevant gene modules 
obtained by WGCNA analysis for Gene Ontology (GO) 
enrichment analyses. An adjusted p-value of <0.05 was set 
as the critical standard for GO. The gene set enrichment 
analysis (GSEA) is an enrichment analysis method that 
maximizes the biological significance of genes by calculat-
ing enrichment scores. GSEA was performed to reveal the 
relevant pathways of interest. The R packages “clusterPro-
filer,” “org.Hs.eg.db,” and “org.Mm.eg.db” were selected to 
perform GSEA feature enrichment. The critical standard 
was set to an adjusted p-value of <0.05 and an absolute 
value of NES of >1. 

Machine learning algorithm

Overall, 259 ferroptosis-associated genes (FAG) were ob-
tained after collating from the FerrDb database (http://zhou-
nan.org/ferrdb) and previous literature (Stockwell et al. 2017; 
Bebber et al. 2020; Dai et al. 2020). All the ferroptosis-related 
genes are provided in Table S2. The clinical information 
related to gene and ferroptosis-associated gene informa-
tion of the WGCNA module was integrated, and the FAG 
expression data collection in HF was obtained. In the era of 
smart data, we used more novel algorithms to screen FAG 
expression data sets to obtain ferroptosis-associated molecu-
lar biomarkers (FAMB). The machine learning algorithm 
Least Absolute Shrinkage and Selection Operator (LASSO) 
constructs a gene screening model based on the gene expres-
sion in GSE57338. Two algorithms, Logistic Regression (LR) 
and Random Forest (RF), perform 5-fold cross-validation 
on LASSO, and the receiver operating characteristic (ROC) 
curve is used to evaluate and screen efficiency. At the same 
time, Support Vector Machine Recursive Feature Elimination 
(SVM-RFE) was used to filter FAG. Finally, the results of 
LASSO and SVM-RFE were integrated to obtain the FAMB 
screened by the algorithm.

Immune cell infiltration estimation

A variety of immune cells are involved in the pathophysi-
ological process of HF that plays an important role in cardiac 
hypertrophy and ventricular remodeling. We used immune 
cell infiltration to evaluate the association between immune 
cells and potential FAMB. The tissue immune infiltration 

landscape is implemented by CIBERSORT, and the propor-
tion of 22 immune cells is estimated from gene expression 
data so that the abundance of multiple cell types in the 
mixed immune cell population can be obtained. After that, 
we performed correlation analysis on the estimated multiple 
immune cell types to find out whether there was a possible 
strong correlation between immune cells. Simultaneously, 
we explored whether immune cells significantly increase or 
decrease in disease. We also hope to explore the relationship 
between clinical information and immune cells. Further-
more, the relationship between immune cells and potential 
FAMB has also been studied.

External independent data set for FAMB verification

Multiple external independent data sets validate FAMB to 
obtain more accurate results. We validated FAMB expression 
in the RNA-seq dataset GSE161472 of 84 myocardial tissue 
samples and GSE71613 of 8 tissue samples. In addition, 
large-sample data set verification can improve accuracy. 
Genes with the same trend in the two data sets showed 
higher expression stability. Concurrently, the R  package 
“pROC” was used to perform the diagnostic evaluation of 
the area under the ROC (AUC) of GSE161472. Furthermore, 
the FAMB was verified in the data set GSE135055 using the 
New York classification of HF. After aortic band treatment, 
the mouse HF data set GSE36074 contains experimental 
animal information, such as left ventricular weight change, 
right ventricle weight, lung weight, tibia length, and ltindex. 
Herein, left ventricular weight change is defined as ending 
left ventricular weight minus starting left ventricular weight, 
whereas ltindex is defined as the ratio of lung weight to tibia 
length. Immune cell subtypes, GSEA analysis, FAMB, and 
the correlation of experimental animal characteristics were 
analyzed together.

Statistical analysis

The statistical analysis in the article was performed using 
R software (version 4.0.2; https://www.r-project.org/). Use 
Spearman’s correlation coefficient to analyze the association 
between continuous variables. Between the two groups, we 
used t-test (normal distribution) and Benjamini & Hochberg 
method correction or Mann-Whitney test (non-normal dis-
tribution) to evaluate. The p-value of < 0.05 was considered 
statistically significant.
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Results

WGCNA in HF

WGCNA conducts genetic screening based on some clini-
cal features of the GSE57338 microarray data. The clinical 
features include ISCH, DCM, HF, age, and sex (Fig. 2A). The 
final soft threshold power β was set to 6 (no scale = 0.85) (Fig. 
2B). When the shearing height MEDissThres was 0.4 (Fig. 
2C), similar modules were clustered and merged (Fig. 2D). 
According to the clinical characteristics, 20 modules were 
identified. Among the modules displayed by the heat map, 
the module feature gene possessing the highest correlation 
with clinical information was used for further analysis. The 
results show that the lightgreen and darkgreen modules have 
the highest correlation with clinical information (DCM, 
ISCH, and HF) (upregulation and downregulation) (Fig. 2E). 
The correlation between the lightgreen module and clinical 
information (for DCM, ISCH, and HF) was −0.4, −0.48, and 
−0.8. The correlation between the darkgreen module and 
clinical information (for DCM, ISCH, and HF) is 0.3, 0.38, 
and 0.62, respectively. Simultaneously, we also found that 20 
modular genes have a low correlation with sex and age. The 
six saliency scatter plots show that the correlation between 
module membership and gene significance is relatively high. 
The specific correlation coefficients are as follows. Lightgreen 
module: DCM (Cor = 0.66, p < 0.001), ISCH (Cor = 0.84, p < 
0.001), and HF (Cor = 0.90, p < 0.001) (Fig. 2F). Darkgreen 
module: DCM (Cor = 0.48, p < 0.001), ISCH (Cor = 0.67, p < 
0.001), and HF (Cor = 0.67, p < 0.001) (Fig. 2G). Therefore, 
we choose the genes in these two modules to further identify 
ferroptosis-associated markers.

Enrichment analysis and biological significance

GO enrichment analysis divides gene function in disease 
into three potential parts: biological processes (BP), cell 
component (CC), and molecular function (MF). These 
three parts can evaluate the location of the gene, the bio-
logical mechanism that the gene participates in, and the 
type of reaction catalyzed at the molecular level of the gene. 
We selected genes in two related gene modules obtained 
through WGCNA analysis for GO enrichment analysis. 
GO enrichment analysis found that the most significant 
changes were mainly concentrated in various BP such as 
virus response, extracellular structure, and T cell regula-
tion. The MF partly focuses on protein ribose binding 
and so on. The CC is concentrated in a protein complex, 
collagen trimer, and other parts (Fig. 3A). GSEA found 
that the MAPK signaling pathway, PI3K-Akt signaling 
pathway, B cell receptor signaling pathway, cellular senes-
cence, phagosomes, and other pathways related to HF are 
involved (Fig. 3B). 

Screening of FAMB in HF

The genes in the most significant upregulated and down-
regulated modules of WGCNA and 259 ferroptosis-associated 
genes were integrated to obtain 25 HF-related FAG sets. The 
screening of FAMB is generated from 25 FAGs. After LASSO 
dimensionality reduction screening, nine FAGs were obtained 
(Fig. 3C and D). Two algorithms, namely, LR and RF, were used 
to construct predictive models. It was verified that the AUC of 
the two algorithms reached 0.968 and 0.958, respectively (Fig. 
3E), suggesting that LASSO screening is meaningful. Seven 
FAGs were more suitable after SVM-RFE screening (Fig. 3F). 
By integrating the FAG screened by two machine learning 
algorithms, we procured six FAMBs (Fig. 3G; Table S3). These 
six FAMBs, namely, STEP3 metalloreductase (STEAP3), acti-
vating transcription factor 4 (ATF4), neurofibromin 2 (NF2), 
peroxiredoxin 6 (PRDX6), regulator of G protein signaling 4 
(RGS4), and solute carrier family 40 member 1 (SLC40A1), 
had significant potential analytical value.

HF-related tissue immune infiltration landscape

CIBERSORT was used to evaluate the immune cell landscape 
of the 313 samples data set GSE57338 and was able to estimate 
the relative distribution ratio of immune cell subtypes in HF 
and normal control tissues. Based on the clinical character-
istics of GSE57338 and the difference in FAMB expressions, 
a heat map of 22 immune cells was drawn (Fig. 4A). Next, we 
analyzed the correlation between immune cells. We found that 
T cells CD4 memory resting has the most significant negative 
correlation with CD8 T cells, naïve B cells, and regulatory 
T cells (Tregs), whereas the most significant positive correla-
tion was between Tregs and naïve B cells (Fig. 4B). Comparing 
22 kinds of immune cells in HF and normal tissues, it was 
found that CD8 T cells (p = 0.002) and mast cells resting (p < 
0.001) were significantly increased in the disease, macrophages 
M2 (p < 0.001), T cells CD4 memory resting (p = 0.017), Tregs 
(p = 0.047), and monocytes (p < 0.001) were significantly 
reduced in the disease group (Fig. 4C). Finally, we analyzed 
the correlation between clinical features of HF and immune 
cells and found that HF and nine immune cell subtypes (naïve 
CD4 T cells, CD8 T cells, macrophages M0, mast cells rest-
ing, neutrophils, monocytes, macrophages M2, T cells CD4 
memory resting, and Tregs) are relevant. Mast cells resting has 
the most significant positive correlation with HF (Cor = 0.25, 
p < 0.001), and neutrophils have the most significant negative 
correlation with HF (Cor = −0.23, p < 0.001) (Fig. 4D).

External verification of FAMB

Six FAMBs (namely, STEAP3, ATF4, NF2, PRDX6, RGS4, and 
SLC40A1) were verified in an external independent data set. 
Compared with normal controls in GSE161472, STEAP3 (p < 
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Figure 3. Pathway enrichment and FAMB screening. A. Biological significance in GO. Blue represents biological processes (BP), orange 
represents cell component (CC), and green represents molecular function (MF). B. Five pathways related to HF obtained from GSEA 
enrichment. C. Fraction deviance by LASSO. D. Appropriate min λ value (min λ = 9). E. Logistic regression (LR) and random forest 
(RF) are used to perform 5-fold cross-validation on the screening model constructed by LASSO. Receiver operating characteristic (ROC) 
curve shows verification efficiency. F. Seven FAMBs were screened by SVM-RFE. G. Six FAMBs after integration.
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0.0001), ATF4 (p = 0.0006), PRDX6 (p < 0.0001), and RGS4 (p = 
0.0022) were statistically significant in HF disease (Fig. 5A). In 
GSE71613, compared with normal control samples, the dif-
ferences in STEAP3 (p = 0.0121), SLC40A1 (p = 0.0045), and 
PRDX6 (p = 0.0424) between the HF sample and the normal 
control sample were statistically significant (Fig. 5B). The 
verification results of STEAP3 and PRDX6 were better in the 

two data sets. Therefore, STEAP3 and PRDX6 were selected for 
further analysis. In GSE161472, ROC curve analysis can effec-
tively distinguish FAMB between HF and normal control. In 
the results, we found that the AUC of STEAP and PRDX6 were 
0.781 and 0.765 (Fig. 5C). In addition, we verified the expres-
sion of STEAP and PRDX6 in the data set GSE135055 with the 
New York classification of HF, and we found that the expression 

Figure 5. FAMB verification results. A. FAMB verification in GSE161472 data set. Green represents normal control samples, red repre-
sents HF samples. B. FAMB verification in GSE71613 data set. Blue represents normal control samples, yellow represents HF samples. 
C. FAMB ROC curve of GSE161472. D. FAMB verification in GSE135055. Red represents normal control, green represents NYHA II, 
blue represents NYHA III, and purple represents NYHA IV.
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of PRDX6 in each group of NYHA was lower than that in the 
normal control (Fig. 5D). There was no statistical significance 
between STEAP3 HF and the normal control group. Therefore, 
combining the validation analysis of multiple data sets, we be-
lieve that PRDX6 is more suitable for the subsequent analysis 
because it shows significant differences in multiple data sets.

FAMB verification in mice experiments

In the mouse data set, we found that the expression of PRDX6 
in the cardiac hypertrophy group and the HF group was 

significantly lower than that in the Sham group, which is 
consistent with our previous verification results (Fig. 6A). 
Left ventricular weight change, lung weight, and ltindex are 
positively correlated with the degree of cardiac hypertrophy 
and HF in mice. The pathophysiological process of HF is 
accompanied by an increase in left ventricular weight, lung 
weight, and the ratio of lung weight to tibia length. Analysis 
of the characteristics of PRDX6 and C57BL/6 mice found 
that PRDX6 and left ventricular weight change (R = −0.72, 
p < 0.001), lung weight (R = −0.57, p = 0.011), and ltindex 
(R = −0.54, p = 0.016) were negatively correlated, and there 

Figure 6. PRDX6 and feature correlation. A. The expression of 
PRDX6 reduced in Treated group (GSE36074). B. Correlation analy-
sis of PRDX6 and experimental animal characteristics. The red and 
blue shaded parts represent the marginal density of PRDX6 samples 
and experimental animal characteristics, and the gray shaded parts 
represent the confidence interval. C. Correlation between PRDX6 
and immune cell subtypes. Immune cells (statistically significant) 
are marked in red.
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was no statistically significant correlation with right ventricle 
weight (R = −0.45, p = 0.054) and tibia length (R = 0.03, p = 
0.880) (Fig. 6B). It shows that PRDX6 in mouse tissues is 
negatively correlated with the degree of HF.

In the left ventricular tissue samples of the HF data set, we 
found that PRDX6 were correlated with 22 immune cell sub-
types. PRDX6, which is considered the most suitable FAMB, 
has a greater correlation with CD8 T cells, macrophages M2, 
macrophages M0, macrophages M1, neutrophils, T  cells 
CD4 memory resting, and mast cells resting. PRDX6 is 
positively correlated with macrophages M2 (Cor = 0.26, 
p < 0.001), neutrophils (Cor = 0.20, p < 0.001), and T cells 
CD4 memory resting (Cor = 0.14, p < 0.001), whereas it is 
negatively correlated with macrophages M0 (Cor = −0.13, 
p = 0.013), macrophages M1 (Cor = −0.11, p = 0.041), mast 
cells resting (Cor = −0.19, p < 0.001), and CD8 T cells (Cor 
= −0.12, p = 0.030) (Fig. 6C).

CIBERSORT implements the tissue immune infiltra-
tion landscape and eliminates immune cell types with 
zero expression. The heat map shows the difference in the 
content of immune cells in samples classified according 
to the information of experimental animals and PRDX6 
expression (Fig. 7A). GSEA analysis found that chemical 
carcinogenesis−reactive oxygen species, MAPK signaling 
pathway, PI3K-Akt signaling pathway, oxidative phospho-
rylation, TGF-beta signaling pathway, dilated cardiomyo-
pathy, and other pathways related to HF and ferroptosis 
were enriched (Fig. 7B). There are differences in activated 
NK cells (p = 0.044), monocytes (p = 0.034), macrophages 
M0 (p = 0.005), macrophages M2 (p = 0.002), and dendritic 
cells resting (p < 0.001) between the Sham group and the 
Treated group (Fig. 7C). Analysis of the correlation between 
PRDX6 and macrophages found that PRDX6 was negatively 
correlated with macrophages M0 (R = −0.64, p = 0.002) and 
positively correlated with macrophages M2 (R = 0.58, p = 
0.008) (Fig. 7D). 

Discussion

Heart failure, as the outcome of various cardiovascular dis-
eases, has become one of the critical threats to the health of 
the aging population. Heart failure is one of the main causes 
of death among the elderly in the Western world (Florio et 
al. 2020; Triposkiadis et al. 2020). Patients with HF are often 
accompanied by severe symptoms, restricted activities, and 
reduced quality of life. Moreover, HF will continue to be one 
of the health problems that humans need to address in the 
future (Butler et al. 2020). In recent years, some biomark-
ers, echocardiography, and cardiac catheterization have 
improved the diagnosis and prognosis of HF (Henning et 
al. 2020). However, early discovery of new key molecular 
biological characteristics of HF can still provide significant 

support for the pathophysiological characteristics of HF, 
reduce mortality, and improve prognosis.

The new concept of programmed cell death, ferroptosis, 
proposed in 2012, has attracted our attention. This novel 
type of iron-dependent cell death cannot be simply explained 
by H2O2-dependent and iron-catalyzed ROS production 
(Dixon et al. 2012). At present, it is found in research that 
the main biochemical characteristics of ferroptosis are iron 
overload caused by iron homeostasis or lipid peroxidation 
caused by the accumulation of lipid ROS (Wu et al. 2021). 
The decrease in the activity of glutathione peroxidase (GPX4) 
breaks the metabolic reaction of lipid oxides. Moreover, 
Fe2+ produces ROS and promotes ferroptosis. In ferroptosis, 
a large number of cell metabolism processes are involved. In 
addition, mitochondria are considered to be the key sites for 
specific ferroptosis. A large number of studies have found 
that ferroptosis is closely related to the pathological process 
of tumors and ischemic diseases (Liang et al. 2019; Li K et 
al. 2021). Ferroptosis is related to acute kidney injury (Fried-
mann et al. 2021), stroke (Alim et al. 2019; Wan et al. 2019), 
Parkinson’s disease (Guiney et al. 2017), diabetes (Li S et al. 
2021), etc. Concurrently, the latest research also found that 
ferroptosis, as a new therapeutic target for cardiovascular 
disease, affects cardiomyopathy (Zhang et al. 2021), myocar-
dial infarction (Lillo et al. 2021), HF (Ning et al. 2021), etc.

 Advances in machine learning are key productivity tools 
in the modern world (Goecks et al. 2020). Machine learning 
uses certain modeling and prediction methods to identify 
patterns in high-throughput sequencing data sets and then 
learn to explore new areas of prediction. A large number of 
diagnostic models based on machine learning are used in 
the clinical field. Studies have reported that a joint diagnos-
tic model based on random forest has been constructed to 
analyze the biomarkers of HF (Tian et al. 2020).

In the present study, WGCNA analysis combined with 
a machine learning dimensionality reduction method was 
used to identify potential ferroptosis-associated molecular 
biomarkers in HF. Based on independent external verifica-
tion of multiple microarray data sets and RNA-seq data 
sets, PRDX6 was selected for further analysis. PRDX6 is 
closely related to clinical characteristics and HF charac-
teristics in mice experiments, with the expression levels 
significantly reduced in the disease groups in different 
data sets. Subsequently, through CIBERSORT analysis 
of the immune infiltration landscape, we also found that 
PRDX6 is related to a variety of immune cells, which may 
play a critical role in the pathophysiology of HF through 
immune-related pathways. This study determined the value 
of the ferroptosis-associated genes PRDX6 in HF, indicating 
that it can be used as a report on the potential of ferroptosis-
associated molecular biomarkers in HF. Although there 
are studies on the determination of HF biomarkers based 
on gene expression data from public databases, no studies 
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Figure 7. Immune infiltration and correlation verification. A. Results of immune infiltration in animal experiments. B. Six pathways 
enriched by GSEA. C. Immune subcellular difference between Sham group and Treated group. Red represents the Sham group, blue 
represents the Treated group, * p < 0.05, ** p < 0.01, *** p < 0.001. D. The connection between PRDX6 and immune cells obtained from 
GSE36074. PRDX6 is positively correlated with macrophage M2 and negatively correlated with macrophage M0.

A

B

C

D
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have been found to analyze ferroptosis-associated genes 
in HF using bioinformatics (Huang et al. 2018). Similarly, 
previous studies only used differentially expressed genes 
(DEG) to simply screen for biomarkers, which are pos-
sible confounding factors and not closely related to clinical 
features. Weighted gene co-expression network analysis is 
used to identify highly coordinated gene sets related to HF 
clinical information (Langfelder et al. 2018). As a widely 
used bioinformatics method, WGCNA can better remove 
the influence of confounding factors on biomarkers in HF. 
The enrichment analysis of the characteristic genes in the 
modules determined by WGCNA found that the virus 
response, extracellular structure, T cell regulation, protein 
ribose binding, protein complex, collagen trimer and other 
parts are more concentrated. GSEA found that the MAPK 
signaling pathway, PI3K-Akt signaling pathway, B cell re-
ceptor signaling pathway, cellular senescence, phagosomes, 
and other pathways related to HF are involved. Studies have 
reported the potential role of the MAPK signaling pathway 
and the PI3K-Akt signaling pathway in HF (Mutlak et al. 
2021; Qin et al. 2021). The FAG collection related to HF 
was obtained by integrating the characteristic genes in the 
module with 259 ferroptosis-associated genes discovered 
in previous studies. To obtain FAMB, we used machine 
learning algorithms to screen the 25 FAGs obtained from 
the previous integration. By integrating the nine FAGs 
obtained after LASSO screening and the seven FAGs ob-
tained after SVM-RFE screening, we identified six FAMBs 
(namely, STEAP3, ATF4, NF2, PRDX6, RGS4, and SLC40A1). 
Through CIBERSORT, our research analyzed the differences 
in immune infiltrating cells between HF tissues and normal 
control tissues. In addition, we analyzed the relationship 
between immune infiltrating cells and clinical features of 
HF. Comparison of HF and normal tissues revealed that 
a total of 9 immune cells are unbalanced (CD8 T cells, mast 
cells resting, macrophages M2, T cells CD4 memory rest-
ing, regulatory T cells, monocytes, neutrophils, naive CD4 
T cells, and macrophages M0). The role of monocytes and 
macrophages in HF has received a great deal of attention 
(Glezeva et al. 2015a; Duncan et al. 2020). Research reports 
have found that macrophage M2 receptors are reduced in 
the peripheral blood of patients with HF and mouse models 
(Glezeva et al. 2015b; Zhang et al. 2021). There are also dif-
ferences in T lymphocyte subsets (CD8T cells, T cells CD4 
memory resting, T cells regulatory, and naive CD4 T cells) 
in the tissues of patients with HF. HF is associated with 
the accumulation of T lymphocytes and CD4 T cells in the 
heart tissue (Laroumanie et al. 2014; Youn et al. 2019). CD4 
T cells can promote the transition from cardiac hypertro-
phy to HF under pressure overload. Similarly, the findings 
of the current study also support the correlation between 
clinical features of HF and macrophage subpopulations and 
T lymphocyte subpopulations. To explore the value of the 

six FAMBs, we further verified the RNA-seq data sets and 
finally believed that PRDX6 was of excellent importance. 
This was verified on a dataset with NYHA classification and 
C57BL/6 experimental mouse information. Peroxiredoxin 6 
(PRDX6) is a member of the nonselenium peroxidase family, 
and it can play a role in regulating phospholipid conversion 
and preventing oxidative damage. Studies have found that 
PRDX6 can play a critical role in the repair of peroxidized 
cell membranes through two mechanisms (Fisher et al. 2017, 
2018). Moreover, PRDX6 and GPX4 have similar enzymatic 
activities. Because of the core position of GPX4 in ferropto-
sis, the role of PRDX6 in ferroptosis is worth exploring (Lu 
et al. 2019). Previous studies have shown that peroxidase 
can be used as a potential target for cardiovascular disease 
(Jeong et al. 2021). A study in mice found that Peroxire-
doxin 1 can prevent cardiac hypertrophy and HF caused by 
pressure overload by activating Nrf2/HO-1 signaling (Tang 
et al. 2020). Two recent basic studies on cardiovascular 
diseases have found that Peroxiredoxin 6 overexpression 
regulates doxorubicin-induced myocardial injury in rats 
(Guo et al. 2020). Overexpression of PRDX6 can prevent 
Ang II-induced inflammation and endothelial dysfunction 
in human umbilical vein endothelial cells (Li et al. 2020). 
Similarly, in the subsequent correlation analysis, we found 
that PRDX6 was significantly negatively correlated with ex-
perimental features related to HF in mice. These studies are 
consistent with the conclusions of the current study. PRDX6, 
as a ferroptosis-related gene, may have a protective effect on 
myocardial damage during the progression of HF. Subse-
quently, we conducted a correlation analysis between PRDX6 
and immune cell subtypes and found that it is also related to 
macrophage subpopulations and T lymphocyte subpopula-
tions. In the subsequent estimation of immune infiltration, 
we found that activated NK cells, monocytes, macrophages 
M0, macrophages M2, and dendritic cells resting have 
significant differences between the mouse treatment group 
and the Sham group. Combined with the previous results, 
correlation analysis shows that PRDX6 and macrophages 
M2 are positively correlated, whereas macrophages M0 are 
negatively correlated with PRDX6. Studies have found that 
more and more pathophysiological processes involve fer-
roptosis, accompanied by dysregulated immune responses 
(Chen et al. 2021). The relationship between ferroptosis and 
immune cells has also become a hot topic. For example, in 
atherosclerosis, ferroptosis can occur in a variety of cells, 
such as macrophages (Ouyang et al. 2021). PRDX6 plays 
an important role in protecting cells from ferroptosis, and 
simultaneously, M2 in macrophages may have an inhibitory 
effect on lipid peroxidation produced by ferroptosis (Li and 
Huang 2021). Therefore, our research on ferroptosis-related 
biomarkers will help to discover new therapeutic targets, 
and when combined with immune cell analysis, it will help 
to provide new ideas for immunotherapy.
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There are still several limitations in this study. First, our 
expression verification is performed on the tissues, and 
FAMB for serum or plasma verification and screening is 
still needed to be performed. Second, the functional study 
of PRDX6 and ferroptosis in HF still needs experimental 
validation. Finally, a single biomarker lacks sufficient accu-
racy. Therefore, in future studies, we need to combine blood 
biochemical indicators to improve the verification of FAMB.

Conclusion

In this study, integrated bioinformatics and machine learn-
ing strategies identified PRDX6 as a key molecular biological 
feature related to ferroptosis in HF. Ferroptosis-associated 
molecular markers combined with immune cell analysis can 
help provide new ideas for immunotherapy in HF.
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Supplementary Table

S u p p l e m e n t a r y  M ate r i a l

Table S1. Gene set information

Gene Set Species Data set type Tissue data
Number of samples

Disease group Control group
GSE57338 Human microarray data heart ventricle 177 136
GSE71613 Human High throughput data heart ventricle 4 4
GSE161472 Human High throughput data heart ventricle 47 37
GSE135055 Human High throughput data heart ventricle 21 9
GSE36074 Mouse microarray data heart ventricle 14 5

Table S2. 259 ferroptosis-associated genes (FAG) were obtained after collating from the FerrDb database (http://zhounan.org/ferrdb) 
and previous literature

(continued)

Gene Symbol Role
RPL8 driver
ATP5MC3 driver
CS driver
EMC2 driver
NOX1 driver
CYBB driver
NOX3 driver
NOX5 driver
DUOX1 driver
DUOX2 driver
G6PD driver
PGD driver
VDAC2 driver
PIK3CA driver
FLT3 driver

Gene Symbol Role
SCP2 driver
TP53 driver
LPCAT3 driver
NRAS driver
KRAS driver
HRAS driver
TFR2 driver
GOT1 driver
CARS1 driver
ATG7 driver
NCOA4 driver
ALOX12B driver
ALOX15B driver
ALOXE3 driver
PHKG2 driver

Gene Symbol Role
ACO1 driver
SLC38A1 driver
GLS2 driver
G6PDX driver
ULK1 driver
ATG3 driver
ATG4D driver
ATG5 driver
BECN1 driver
MAP1LC3A driver
GABARAPL2 driver
GABARAPL1 driver
ATG16L1 driver
WIPI1 driver
WIPI2 driver
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Table S2. (continued)

(continued)

Gene Symbol Role
SNX4 driver
ATG13 driver
ULK2 driver
SAT1 driver
EGFR driver
MAPK3 driver
MAPK1 driver
BID driver
ZEB1 driver
KEAP1 driver
DPP4 driver
ALOX15 driver
CDKN2A driver
PEBP1 driver
SOCS1 driver
CDO1 driver
MYB driver
MAPK8 driver
MAPK9 driver
SLC1A5 driver
CHAC1 driver
MAPK14 driver
LINC00472 driver
PRKAA2 driver
PRKAA1 driver
ABCC1 driver
MIR6852 driver
ACVR1B driver
TGFBR1 driver
BAP1 driver
EPAS1 driver
HILPDA driver
HIF1A driver
ALOX12 driver
ACSL4 driver
HMOX1 driver
IFNG driver
ANO6 driver
LPIN1 driver
HMGB1 driver
TNFAIP3 driver
TLR4 driver
NOX4 driver
ATF3 driver
ATM driver
YY1AP1 driver
EGLN2 driver
MIOX driver

Gene Symbol Role
TAZ driver
MTDH driver
IDH1 driver
SIRT1 driver
FBXW7 driver
PANX1 driver
DNAJB6 driver
BACH1 driver
LONP1 driver
PTGS2 marker
DUSP1 marker
NOS2 marker
NCF2 marker
MT3 marker
UBC marker
ALB marker
TXNRD1 marker
SRXN1 marker
GPX2 marker
BNIP3 marker
OXSR1 marker
SELENOS marker
ANGPTL7 marker
DDIT4 marker
LOC284561 marker
ASNS marker
TSC22D3 marker
DDIT3 marker
JDP2 marker
SESN2 marker
SLC1A4 marker
PCK2 marker
TXNIP marker
VLDLR marker
GPT2 marker
PSAT1 marker
LURAP1L marker
SLC7A5 marker
HERPUD1 marker
XBP1 marker
CBS marker
ZNF419 marker
KLHL24 marker
TRIB3 marker
ZFP69B marker
ATP6V1G2 marker
VEGFA marker
GDF15 marker

Gene Symbol Role
TUBE1 marker
ARRDC3 marker
CEBPG marker
SNORA16A marker
RGS4 marker
BLOC1S5-TXNDC5 marker
LOC390705 marker
KIM-1 marker
IL6 marker
CXCL2 marker
RELA marker
HSD17B11 marker
AGPAT3 marker
SETD1B marker
FTL marker
MAFG marker
IL33 marker
SLC40A1 marker
TF marker
TFRC marker
FTH1 marker
HAMP marker
STEAP3 marker
DRD5 marker
DRD4 marker
MAP3K5 marker
SLC2A1 marker
SLC2A3 marker
SLC2A6 marker
SLC2A8 marker
SLC2A12 marker
GLUT13 marker
SLC2A14 marker
EIF2AK4 marker
EIF2S1 marker
ATF4 marker
ALOX5 marker
ACSF2 marker
IREB2 marker
GPX4 marker
NFE2L2 marker
ELAVL1 marker
SLC3A2 marker
TFAP2C marker
SP1 marker
HBA1 marker
NNMT marker
PLIN4 marker
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Table S3. Results of LASSO and SVM-RFE

LASSO
1 LPCAT3
2 RGS4
3 SLC40A1
4 ATF4
5 NF2
6 PHKG2
7 PRDX6
8 SLC2A1
9 STEAP3

Table S2. (continued)

SVM-RFE

FeatureName FeatureID AvgRank
1 STEAP3 24 2
2 ATF4 16 3.2
3 NF2 19 4.4
4 PRDX6 22 5.2
5 ZEB1 15 5.6
6 RGS4 13 6.2
7 SLC40A1 14 6.6
8 MYB 11 12
9 GPX2 18 12.6

Gene Symbol Role
HIC1 marker
STMN1 marker
RRM2 marker
CAPG marker
HNF4A marker
NGB marker
YWHAE marker
GABPB1 marker
AURKA marker
MIR4715 marker
RIPK1 marker
PRDX1 marker
MIR30B marker
SLC7A11 suppressor
AKR1C1 suppressor
AKR1C2 suppressor
AKR1C3 suppressor
RB1 suppressor
HSPB1 suppressor
HSF1 suppressor
GCLC suppressor
SQSTM1 suppressor
NQO1 suppressor
MUC1 suppressor

Gene Symbol Role
MT1G suppressor
CISD1 suppressor
FANCD2 suppressor
FTMT suppressor
HELLS suppressor
FADS2 suppressor
SRC suppressor
STAT3 suppressor
PML suppressor
MTOR suppressor
NFS1 suppressor
TP63 suppressor
CDKN1A suppressor
MIR137 suppressor
ENPP2 suppressor
FH suppressor
CISD2 suppressor
MIR9-1 suppressor
MIR9-2 suppressor
MIR9-3 suppressor
ISCU suppressor
ACSL3 suppressor
OTUB1 suppressor
CD44 suppressor

Gene Symbol Role
LINC00336 suppressor
BRD4 suppressor
PRDX6 suppressor
MIR17 suppressor
SCD suppressor
NF2 suppressor
ARNTL suppressor
JUN suppressor
CA9 suppressor
TMBIM4 suppressor
HSPA5 suppressor
PLIN2 suppressor
MIR212 suppressor
Fer1HCH suppressor
AIFM2 suppressor
LAMP2 suppressor
ZFP36 suppressor
PROM2 suppressor
CHMP5 suppressor
CHMP6 suppressor
CAV1 suppressor
GCH1 suppressor


