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Chemotherapy-induced peripheral neuropathy is one of the most frequent dose-limiting side effects, observed in patients 
receiving antineoplastic agents, persisting for up to two years after completing treatment, greatly affecting both the course of 
chemotherapy and patients’ quality of life. Approximately 20 to 85% of patients treated with neurotoxic chemotherapy will 
develop peripheral neuropathy and there is considerable variability in its severity among patients. The main symptoms are 
numbness, paresthesia, and burning pain in a “glove and stocking” distribution. The prevalence of chemotherapy-induced 
peripheral neuropathy will likely increase as cancer survival rates continue to improve. Currently, there are only a few thera-
peutic options available for the prevention or successful therapy because the mechanisms of chemotherapy-induced periph-
eral neuropathy remain unclear. A better understanding of the risk factors and underlying mechanisms of chemotherapy-
induced peripheral neuropathy is needed to develop effective preventive and therapeutic strategies. 
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Chemotherapy-induced peripheral neuropathy (CIPN) is 
generally classified as a series of neuromuscular symptoms, 
both sensory and motor, that result from peripheral nerve 
damage caused by exposure to a neurotoxic chemothera-
peutic agent, including taxanes, platinum compounds, vinca 
alkaloids, and others (Table 1). The exact incidence and 
prevalence of CIPN vary between chemotherapeutic drugs, 
their combinations, and studies. It is estimated that at least 
20% of patients receiving neurotoxic antineoplastic drugs 
will develop some degree of CIPN. The characteristics of 
CIPN depend on the particular chemotherapeutic drug used, 
as well as the amount of dose [1]. Symptoms may be mild or 
severe, acute, transient, or chronic, and there is considerable 
variability in their severity among patients depending on the 
drug regime and dose of the drugs [1, 2]. In clinical practice, 
the recognition of this heterogeneous symptomology relies 
mainly on the results reported by patients, which are supported 
by clinical examination and neurophysiological studies [3]. 
The exact cause of CIPN still remains unclear despite great 
progress in the characterization of CIPN. Various preclinical 
studies have suggested the possible involvement of oxidative 

stress, humoral factors, ion channels and receptors, as well as 
infiltrating macrophages in the development or maintenance 
of CIPN [4]. Unfortunately, to date, there is only minimal 
evidence of the efficacy of substances that would appear to 
be effective in prevention, as well as in the treatment of CIPN 
[5]. Preventive and therapeutic approaches remain extremely 
limited, mostly with inconsistent results, and require further 
study. None of the known therapies will reverse neuropathy, 
although some substances can effectively alleviate pain. In 
this review, we provide an overview of the results of studies 
on current clinical models of peripheral neuropathy and 
ongoing research to better understand CIPN and develop 
potential treatment options.

Clinical features

In some patients, CIPN symptoms may occur gradu-
ally over a prolonged period, but it is not uncommon that 
symptoms to appear suddenly and intensely [2]. Patients 
affected by CIPN clinically present a variable involve-
ment of sensory, motor, and autonomic function. Sensory 
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symptoms may include sharp pain or numbness, pins and 
needles sensation, hyperalgesia, tingling, burning, ataxia, 
loss of deep tendon reflex, loss of proprioception sense, and 
a reduced sense of touch and vibration. The development of 
the symptomatology follows a “glove and stocking” distribu-
tion, respectively, due to the vulnerability of the long nerves. 
Motor symptoms may include itching, muscle cramps and 
muscle weakness, thinning of muscles, balance disturbances, 
and difficulty performing fine motor skills. However, motor 
symptoms are considerably less frequent because of the 
inability of the neurotoxic agents to cross the blood-brain 
barrier in concentrations responsible for harm [1, 2]. The 
autonomic system may also be affected, resulting in nausea 
and vomiting after eating, diarrhea, constipation, urinary 
retention, sexual dysfunction, or altered blood pressure [2, 
6]. It is very common that CIPN symptoms intensify after the 
neurotoxic agent has been discontinued. This is known as the 
coasting effect, and it is the result of the accumulation of the 
neurotoxic agent within the body. All these CIPN symptoms 
negatively alter a patient’s ability to perform common activi-
ties, such as sleeping, driving, standing, exercising, walking, 
or cooking [7, 8].

Prevalence and risk factors

In general, the prevalence and incidence of CIPN vary 
depending on the chemotherapeutic drug used, the dose, 
the duration of treatment, and the route of administration 
[1]. Most studies report that more than 60% of patients are 
affected in the first month after stopping treatment. However, 
in many patients, CIPN symptoms persist for more than 6 
months after cessation of therapy [9], even in some cases, 
such as oxaliplatin treatment in colorectal cancer patients, 
42% to 84% of patients had CIPN symptoms 2 years after 
treatment [10]. In addition, there are studies examining 
breast cancer patients who persist with CIPN-related 
symptoms 1 to 3 years after chemotherapy [11]. Although 
the overall severity of neuropathy symptoms decreases and 
sensory nerve conduction improves over time, recovery is 
often protracted and incomplete.

A number of risk factors involved in an increased risk 
of developing CIPN have been identified, although causal 
associations are less clear. Several specific diseases are consid-
ered to be serious risk factors for peripheral neuropathy. 
Examples include diabetes, hypothyroidism, renal insuffi-

Table 1. Chemotherapeutic agents associated with peripheral neuropathies.
Class Agent Mechanism of action Incidence

of CIPN (%)
Mechanism of CIPN Symptoms Ref.

Platinum
compounds

Cisplatin alkylation of DNA 14–63 inflammation, ROS produc-
tion, mitochondrial dysfunc-
tion, protease activation

predominantly sensory 
neuropathy, painful pares-
thesia, numbness, tingling, 
impaired vibration sense

[141–143]

Oxaliplatin alkylation of DNA 18–100 altered ion channels, mito-
chondrial dysfunction, loss 
of sensory neurons, ROS 
production

acute sensory symptoms and 
chronic sensory neuropathy, 
acute cold-induced pares-
thesia, cramps, numbness, 
functional disability

[179–181]

Carboplatin alkylation of DNA 4–6 ROS production, mitochon-
drial dysfunction

numbness, tingling, weak-
ness, and tremor, gait ataxia

[182, 183]

Taxanes Paclitaxel microtubule stabilizer 20–50 microtubule impairment, loss 
of axon transport function, in-
flammation, ROS production, 
mitochondrial dysfunction

predominantly sensory neu-
ropathy, painful paresthesia, 
numbness, decreased vibra-
tion or proprioception

[15, 25, 184]

Docetaxel microtubule stabilizer 11–64 microtubule impairment, loss 
of axon transport function, in-
flammation, ROS production, 
mitochondrial dysfunction

predominantly sensory neu-
ropathy, painful paresthesia, 
numbness

[185, 186]

Cabazitaxel microtubule stabilizer 5–8 microtubule impairment, loss 
of axon transport function

predominantly sensory 
neuropathy, numbness

[187]

Vinca alkaloid Vincristine prevention
microtubule  

polymerization

35–45 microtubule impairment, loss 
of axon transport function, 
altered ion channels, neuroin-
flammation

sensory neuropathy, hypoes-
thesia, tingling paresthesia, 
muscle cramps, autonomic 
neuropathy

[188]

Immunomodulatory
drug

Thalidomide immunomodulatory 
effect

≤83 ROS production sensory neuropathy, muscle 
cramps, and mild distal 
weakness

[28, 41]

Proteasome
inhibitor

Bortezomib proteasome 26S
inhibitor

≤50 increased sphingolipid 
metabolism, inflammation, 
mitochondrial damage, ROS 
production

painful, small-fiber sensory 
neuropathy, autonomic neu-
ropathy painful paresthesia, 
burning sensation

[22, 28]

Halichondrin B
analog

Eribulin microtubule inhibitor ≤28 microtubule impairment the lowest incidence of 
severe neuropathy

[189–191]
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ciency, and also pre-existing neuropathy. In addition, there 
are numerous other factors contributing to the individual risk 
of CIPN, such as alcohol misuse, vitamin deficiencies, raised 
body mass index (BMI), smoking, infections, autoimmune 
diseases, such as rheumatoid arthritis or lupus, and family 
history of neuropathy [12]. Some of the studies on animal 
rodent models have focused on the prevalence of genetic risk 
factors in CIPN development [13, 14]. The authors suggest 
that polymorphisms of crucial enzymes and transporters, 
important for pharmacologic processes of chemotherapeu-
tics, such as glutathione transferases, ATP binding cassette 
transporters, cytochrome P450 enzymes and others, may 
explain the fundamental basis of CIPN and may be involved 
in the development of various symptoms of CIPN [15–17]. 
As noted above, all of these genetic risk factors may affect 
the absorption and metabolism of some chemotherapeutic 
agents, which could be related to the formation of CIPN. The 
studies with risk factors and genetic polymorphisms associ-
ated with CIPN are discussed and summarized in Table 2.

Pathophysiology

The pathophysiology of CIPN has been analyzed by various 
studies and reviews [18–21]. Although the exact mechanism 
is still not fully understood, the underlying mechanisms of 
CIPN are considered to be multifactorial with different points 

of involvement. Neurotoxicity of different chemotherapeutic 
drugs is mediated by interference with a variety of molecules 
and cellular structures. Chemotherapeutic drugs exert their 
neurotoxic effects on sensory cell bodies in the dorsal root 
ganglia (DRG), which is called neuronopathy, on myelin 
sheets, causing myelinopathy, and on axonal components, 
resulting in axonopathy. Other possible mechanisms include 
ion channels’ dysfunctions, destruction of the microtubules, 
mitochondrial damage, and damage of the surrounding blood 
vessels [22–25]. While some of the neurotoxic mechanisms 
have been known for a long time and have been extensively 
studied, other entities such as immunological processes and 
neuroinflammation have been recently discovered.

The sensory cell bodies in the DRG are a vulnerable 
structure because they are located outside the protective 
blood-nerve barrier and thus easily come into contact with 
various neurotoxic drugs, such as chemotherapeutic agents 
[26]. DRGs are responsible for transmitting afferent signals 
through sensory nerve fibers to the posterior grey column 
[27], so a possible explanation for the prevailing CIPN 
sensory symptoms may be damage to the DRG. Neurotoxic 
mechanisms of platinum derivates, taxanes, vinca alkaloids, 
thalidomides, and bortezomib are involved in DRG damage.

Other drugs, such as bortezomib, affect the myelin layer 
and cause demyelinating damage [28]. The myelin layer 
enables saltatory conduction [27], the damage of which 

Table 2. Some of the risk factors and genetic polymorphisms associated with an increased risk of CIPN.
Comments: Ref.

Risk factors
associated with CIPN

older age lower chance to recover after CIPN [1, 9, 192]
comorbid health conditions e.g., diabetes, HIV, decreased creatinine clearance, thermal hyperalgesia [9, 193, 194]
estrogen decline estrogen protects against CIPN development [192]
tobacco use long-term heavy smoking reduces peripheral blood flow, likely exacerbating PIN [193]
preexisting neuropathy increases the risk of serious symptoms [195]
raised BMI related to the pro-inflammatory state associated with obesity [1, 9]
low serum albumin reflects the lower general health status [1, 9]
NfL in plasma or serum 
samples

neuroaxonal damage in peripheral nerves results in the release of NfL into the 
extracellular space and peripheral blood

[77, 196]

hypertension microvascular complications associated with hypertension may contribute to 
CIPN

[197]

use of beta-blockers opportunity to modify the effect of medication [198]
Genetic  
polymorphisms
associated with CIPN

GSTP1 associates with a decreased risk of OIN [15, 199, 200]
CYP2C8 associates with decreased metabolism of paclitaxel and thus increase the risk of 

developing neuropathy
[17, 201]

OCT2 knockout of OCT2 prevents the development of cold and mechanical hypersensi-
tivity following oxaliplatin therapy

[202, 203]

ABCC2 associates with OIN [200, 204]
AGXT correlated with the severity of CIPN in patients on oxaliplatin therapy [17]
SCN4A associates with an increased incidence of acute OIN [205]
SCN10A associates with an increased incidence of acute OIN [205]
SCN9A protects against severe OIN [206, 207]

Abbreviations: PIN-paclitaxel-induced neuropathy; OIN-oxaliplatin-induced neuropathy; NfL-Neurofilament light chain; GSTP1-glutathione S-transferase 
P1; OCT2-organic cation transporter 2; ABCC2-ATP binding cassette subfamily C member 2; AGXT-alanine glyoxylate aminotransferase; SCN4A-sodium 
channel protein type 4 subunit alpha; SCN10A-sodium channel protein type 10 subunit alpha; SCN9A-sodium channel protein type 9 subunit alpha
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to increased expression of C-C chemokine ligand 2 (CCL2) 
[44]. CCL2 and its receptor, C-C chemokine receptor 2 
(CCR2), are key players in the attraction of monocytes to 
sites of injury and inflammation [45], leading to increased 
concentrations of Interleukin-1 (IL-1) and Tumor necrosis 
factor alpha (TNFα) in the DRG. These pro-inflammatory 
cytokines produce hyperalgesia to thermal and mechanical 
stimuli [46, 47], lower spinal and DRG neurons’ threshold 
of activation, induce spontaneous discharges [48, 49], and 
also increase the release of bradykinin, serotonin, and hista-
mine that further augment pro-inflammatory processes [50]. 
Moreover, TNFα also specifically suppresses the signaling 
of spinal GABA neurons, leading to central disinhibition of 
pain signaling [51].

Unlike traditional chemotherapy, a promising new class 
of anticancer drugs specifically targets the immune response 
instead of cancer cells. Immune checkpoint inhibitors (ICIs) 
play an important role in downregulating the immune 
response and modulating its intensity [52, 53]. Specifically, 
ICIs induce increased differentiation of T cells to a Th1/Th17 
response, that promotes a pro-inflammatory profile, and 
reduced production of the Th2 cytokines IL-5 and IL-13 [54, 
55]. Potential cross-reactivity between tumor neo-antigens 
and self-antigens is probably responsible for immuno-
therapy-related neurological complications [56]. Especially 
the direct binding of ICIs to antigens expressed in normal 
tissue seems to induce antibody-dependent toxicity and 
complement-mediated inflammation [57].

Subsequently, common degenerative pathways leading 
to the activation of apoptotic signaling cascades and altera-
tion of neuronal excitability are triggered, which may in 
turn lead to epidermal fiber loss [58]. In addition to changes 
in peripheral neurons, long-term changes in the central 
nervous system can result in chronic pain, characteristic of 
CIPN [20]. Regardless of which of the possible underlying 
mechanisms is involved in the pathophysiology of CIPN, 
these stimuli lead to impaired communication between the 
peripheral and central nervous systems, causing the above 
symptoms and functional changes.

Assessment and diagnosis of CIPN

There is currently no widely standardized assessment 
approach for the diagnosis of CIPN; however, the number 
of diagnostic guidelines for neuropathic pain, in general, 
may be also useful in CIPN. As some chemotherapeutic 
drugs may induce polyneuropathy-like symptoms, differ-
ential diagnoses should be considered to ensure appro-
priate treatment of patients with CIPN [1]. CIPN must be 
differentiated from other types of neurosensory manifes-
tations such as toxic, diabetic, or paraneoplastic sensory 
neuropathy. Due to the complex nature of the pathogen-
esis and the resulting clinical manifestation of CIPN, the 
diagnosis is very complex. Hundreds of different diagnostic 
approaches have recently been identified in the literature 

consequently causes a painful, reversible, length-dependent 
small fiber axonal sensory neuropathy and impairs the trans-
mission of electrical stimuli [22].

Another possible mechanism is direct axonal toxicity [29]. 
Platinum derivatives impair the function of the ion channels, 
which inhibits the transmission of electrical stimuli and 
information in the synaptic cleft [30–32]. Conversely, this 
damage can also lead to peripheral nerve hyperexcitability 
[33].

Some neurotoxic chemotherapeutics damage the micro-
tubules that supply the axons, causing them to degen-
erate gradually [34–36]. Microtubules are responsible for 
substance transport within the nerve cell, and drugs such as 
taxanes, vinca alkaloids, and also bortezomib that destroy 
the microtubules, lead to restrictions in the axonal transport 
processes as well as the energy supply. Restriction in energy 
supply leads ultimately to cell death [23].

Chemotherapy drugs also exert their toxicity on mitochon-
dria, which are the major source of reactive oxygen species 
(ROS). Mitochondrial dysfunction leads to increased genera-
tion of ROS and, consequently, to the generation of oxidative 
stress. Gamper and Ooi reviewed the evidence for ROS and 
reactive nitrogen species (RNS) involvement in neuropathic 
pain and their multiple effects on neuronal excitability [37]. 
Recent studies have measured ROS and RNS concentra-
tions using in vivo CIPN models to understand the cellular 
location of oxidative stress during CIPN. Increased RNS 
levels were indicated in the spinal cord of paclitaxel-treated 
rats [38], and increased ROS and RNS concentrations were 
also seen in lumbar DRG after oxaliplatin treatment [39]. 
Paclitaxel is associated with structural change processes in 
the axonal mitochondria [40].

Damage to the surrounding blood vessels by thalidomide 
leads to restricted substances transport and thus to an under-
supply of the axons [41]. Impaired angiogenesis due to its 
antiangiogenic effects is considered to be a significant factor 
influencing the development of CIPN [24].

A recent new animal model study suggests that the neuro-
toxicity of paclitaxel may depend on interactions between 
cutaneous nerve endings and epidermal basal keratinocytes 
via the matrix metalloproteinase 13 (MMP-13) [25]. Exces-
sive MMP-13 activity may lead to increased collagen degra-
dation, which could alter the mechanical properties of the 
skin, given the collagen-rich network within the extracellular 
matrix that is essential to maintain tissue integrity [42]. Skin 
disruptions due to increased MMP-13 activity may promote 
axon degeneration.

Chemotherapy agents also engage the innate immune 
system to induce peripheral neuropathy. Activation of key 
mediators, the toll-like receptors (TLRs) by chemothera-
peutics increases pro-inflammatory cytokine expression 
in the peripheral and central nervous systems. TLR4 and 
its immediate downstream signals are increased in the rats’ 
DRG with paclitaxel-induced hyperalgesia [43]. Paclitaxel-
induced increased signaling of TLR4 in DRG neurons leads 
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that differ in patient validity, sensitivity, and compliance 
of the patients [59]. International guidelines recommend 
the use of screening questionnaires to identify potential 
patients. However, clinical examination is also an important 
and useful tool of assessment. These guidelines also recom-
mend neurological examination of cancer patients prior to 
potentially neurotoxic cancer therapies in order to identify 
high-risk patients [5]. Patients with pre-existing peripheral 
nervous system dysfunctions are predisposed to the forma-
tion of CIPN [21]. Once CIPN is suspected in predisposed 
patients, further diagnosis is made based on anamnesis, 
patients’ documentation of neurotoxic complaints, and 
clinical presentation [60]. Quantitative sensory testing 
(QST) in clinical routine is a feasible tool to evaluate CIPN 
amongst cancer patients and may have clinical utility in 
the early assessment of CIPN [61]. Impaired thermal sense 
is best assessed with warm and cold objects, tactile senses 
with a cotton swab or wooden stick, and vibration sense 
with a tuning fork [62]. Other screening tools include 
painDETECT®, which contains nine sensory symptom items 
and was designed to detect and document pain in clinical 
practice [63], or DN4 (Neuropathic Pain in 4 Questions), 
which includes patient questions as well as items based 
on clinical examination [64]. The FACT/GOG-Ntx and 
European Organisation for the Research and Treatment of 
Cancer Quality of Life (EORTC QLQ-CIPN20) question-
naires are the most commonly used [65, 66]. The question-
naires measure the subjectively perceived impact of CIPN 
symptoms on patients’ daily lives and their health-related 
quality of life over 7 days. EORTC QLQ-CIPN20 contains 
20 items divided into three subgroups assessing sensory, 
motor, and autonomic symptoms. Each item is scored on 
a Likert scale ranging from 1 (which means not at all) to 
4 (which means very much). After that, the score is trans-
formed to a 0–100 scale, with higher scores representing 
more complaints. The reduced version of CIPN20 – 
CIPN15 provides a shortened length of the questionnaire 
without affecting its reliability. It no longer includes hearing 
loss, use of car pedals and 3 autonomous items, as well as 
CIPN16, which also excludes questions about autonomic 
symptoms and hearing loss [67, 68]. The Treatment-
induced Neuropathy Assessment Scale (TNAS) is a 13-item 
rating scale based on a 0–10 rating system. The TNAS 
examines difficulty with walking and strength, as well as the 
occurrence of sensory symptoms [69]. Patient reporting of 
CIPN symptoms has also been recorded through electronic 
platforms such as the Neuropathy Screening Question 
(NSQ), which examines the presence of sensory symptoms 
recorded in the previous seven days on a scale from 0 to 10. 
Compared to sensory CIPN20, the NSQ subscale showed 
sufficient sensitivity and high specificity in detecting CIPN 
symptoms [70]. In patients with normal or negative results 
from other diagnostic tools, skin biopsies may be performed 
to support the diagnosis, as CIPN is also in some patients 
the result of small nerve fiber dysfunction [71]. In addition, 

nerve conduction studies (NCSs), electromyography, and 
quantitative sensory testing may support the clinical evalu-
ation of CIPN [60]. NCSs are considered the most effective 
non-invasive method for determining the type of neuronal 
damage [72]. Briefly, the nerve is electrically stimulated 
percutaneously and the resulting electrical excitation propa-
gation is derived distally from the stimulation site above 
the innervation area. However, NCSs only reflect neuronal 
damage of the large myelinated nerve fibers and not the 
small non-myelinated nerve fibers. If these are affected, the 
results show normal values [65]. Corneal confocal micros-
copy (CCM) is a new non-invasive ophthalmic imaging 
technique that can detect small nerve fibers in the cornea 
and is used for the diagnosis and prognosis of small nerve 
fiber loss in patients with diabetes and other neuropathies 
[73–75]. Chiang et al. studied cancer patients with various 
etiology receiving paclitaxel or oxaliplatin within the past 3 
to 24 months. Their study showed a significant reduction in 
corneal nerve fiber number and density, as well as corneal 
nerve fiber lengths in patients with neuropathy compared 
to patients without neuropathy. Their results suggest that 
CCM may have diagnostic and prognostic value in CIPN 
[76]. Moreover, the biochemical analysis could provide a 
relevant advantage in the clinical management of cancer 
patients undergoing chemotherapy. Meregalli et al. recently 
investigated the utility of serum neurofilament light chain 
(NfL) as a biomarker of CIPN in rats treated with vincris-
tine, cisplatin as well as paclitaxel. The authors described 
significantly increased serum NfL values during drug 
administration, up to a 4-fold increase after treatment 
compared to controls. In particular, an increase in NfL was 
correlated with axonopathy and intraepidermal nerve fibers 
(IENF) loss investigated behaviorally, neurophysiologically, 
and pathologically [77].

The apparent lack of consistency in the assessment of 
CIPN has implications for imprecise epidemiological studies. 
This problem has been identified in several systematic 
reviews, which have simultaneously emphasized the need for 
more consistent and uniform approaches to assessment and 
diagnosis to provide a detailed and accurate understanding 
of CIPN.

Prevention

Several research studies have focused on the investiga-
tion of pharmaceutical and non-pharmaceutical preventive 
measures in prophylactic interventions to prevent CIPN-
associated functional loss, so far without satisfactory results. 
Although a number of preventive therapies and drugs 
have been tested in the past for potential benefit in CIPN 
symptoms, many strategies are currently proving ineffec-
tive. Such therapies without clinically meaningful benefits 
include drugs successfully used in other indications, such 
as acetyl-L-carnitine [78], alpha-lipoic acid [79], pregabalin 
[80], vitamin E [81], vitamin B [82], calcium and magnesium 
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[83], and electroacupuncture [84]. Overview of the pharma-
cological and non-pharmacological preventive options are 
listed below and summarized in Table 3.

Targeting manganese superoxide dismutase (MnSOD) 
has proven to be a promising strategy for preventing CIPN 
symptoms. A mangafodipir derivative, calmangafodipir, is 
the mitochondrial mimetic MnSOD, which can reduce tissue 
ROS levels. However, preclinical and clinical CIPN data have 
confirmed that these compounds have significant neuropro-
tective and preventive activity. Calmangafodipir was studied 
in a placebo-controlled clinical trial in patients receiving 
oxaliplatin-based chemotherapy. The results of this study 
confirm the protective effect of calmangafodipir against 
chemotherapeutic-induced small fiber neuropathy [85].

El-Fatatry et al. evaluated metformin as a means of 
preventing oxaliplatin-induced PN compared to a control 
group. Metformin is a widely used antidiabetic drug that 
activates adenosine monophosphate-activated protein 
kinase. Due to its antioxidant properties, it reduces ROS, 
nitric oxide, and other markers of oxidative stress. Metformin 
protects against CIPN due to its neuroprotective effect. The 
authors reported that at the end of the 12th cycle of chemo-
therapy, neuropathy was lower in the metformin group 
compared to the control group. Due to the small sample size, 
more confirmatory studies are needed before recommending 
this approach for oxaliplatin-induced PN [86].

Gabapentin and pregabalin are effective in the treatment 
of many forms of neuropathic pain, but their role in the 
prevention and treatment of CIPN is not clearly established. 
A randomized placebo-controlled study of gabapentin has 
been identified. The rate of grade 2 and 3 neuropathy was 

significantly lower in the gabapentin group compared to the 
placebo, suggesting that gabapentin given prophylactically 
with paclitaxel is effective both objectively and subjectively 
in moderate and high-grade neuropathies [87].

Dose-adjustment approaches have traditionally been the 
gold standard for the non-pharmacological management of 
CIPN symptoms. They can help reduce the severity of CIPN 
symptoms while maintaining treatment effectiveness [88]. 
Several clinical trials have focused on dose reductions in 
patients with neurotoxic symptoms. Beijers et al. have aimed 
to study the influence of cumulative dose, dose schedule, and 
dose reductions of adjuvant oxaliplatin on the long-term 
severity and prevalence of CIPN among colorectal cancer 
patients. Patients who received a cumulative oxaliplatin dose 
had a significantly worse sensory score compared to those 
who received a low cumulative dose [89].

Cooling of hands and feet during chemotherapy admin-
istration may prevent some of the CIPN symptoms [89, 90]. 
Beijers et al. have investigated the efficacy of wearing frozen 
gloves (FGs) to prevent CIPN. Wearing FGs during treat-
ment might reduce some neuropathy symptoms, mostly 
in the fingers and hands, potentially resulting in a better 
patient quality of life [90]. The authors of the study also 
found that these observations are mainly clinically impor-
tant in the short term but have no clinical significance in 
the long term.

Tsuyuki et al. have developed a surgical glove (SG) 
compression therapy to investigate the efficacy and safety of 
compression therapy for the prevention of CIPN. Compres-
sion with too small SGs significantly reduced the overall 
incidence of CIPN symptoms by decreasing the micro-

Table 3. Selected agents evaluated for prevention of CIPN.
Agent Limitations of Studies/Agents Ref.

Beneficial calmangafodipir recommended in small fiber neuropathy [85]
metformin small trial [86]
gabapentin not specified [87, 208]
dose adjustment not specified [89]
frozen gloves higher price, skin disorders [90]
compression therapy non-randomized study [91]
cryo-compression therapy small trial [92]
rTMS not specified [96]
PDD recommended in oxaliplatin-based chemotherapy [99]
henna not specified [101]
functional exercises (mobility, sensorimotor, 
and vibration training), endurance training

not specified [93–95]

No proven benefit/
Harmful

acetyl-L-Carnitine worsen neuropathy [78]
alpha-lipoic acid no statistical difference with the control group, many side effects [79]
pregabalin negative trial [80]
vitamin E no statistical difference with the control group [81]
vitamin B no statistical difference with the control group [82]
calcium and magnesium no statistical difference with the control group [83]
electroacupuncture slower recovery than the control group [84]

Abbreviations: rTMS-repetitive transcranial magnetic stimulation; PDD-polyamine-deprived diet
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vascular flow to each fingertip and reducing each fingertip 
temperature by 1.6–2.2 °C, without any dermatological 
adverse effects related to the use of SGs [91]. The authors 
suggest some advantages over the use of frozen gloves with 
respect to the higher price and variable skin disorders attrib-
uted to cryotherapy, such as cold intolerance and cold-related 
injuries. However, this preventive approach addressed in 
this study is still considered less effective, probably due to 
methodological shortcomings in the study design, such as a 
non-randomized study and the use of subjective methods to 
assess PN.

Another research group conducted evidence of a concept 
study in cancer patients receiving taxanes. Both cryotherapy 
and compression therapy were given to the patients during 
chemotherapy administration. They revealed the mainte-
nance of motor nerve conduction amplitudes compared to 
baseline. Compared to patients treated with cryotherapy 
alone, patients appear to have performed better with combi-
nation (cryo-compression) therapy [92].

Another preventive approach that should be considered 
before initiating a potential neurotoxic anticancer treat-
ment is regular functional exercises (mobility, sensorimotor, 
and vibration training). Recent studies suggest that physical 
activity may reduce CIPN symptoms and functional impair-
ment [93, 94]. Balducci et al. have shown that endurance 
training can prevent the development of CIPN [95].

The use of repetitive transcranial magnetic stimulation 
(rTMS) in neurological conditions has also been studied. 
rTMS is a noninvasive multisession treatment that uses 
magnetic fields to stimulate nerve cells in a specific area 
of the brain through electromagnetic induction, usually to 
improve symptoms of bad mood or depression. rTMS has 
been designed to alter brain activity by introducing small 
magnetic pulses into the scalp that encourage the brain to 
change activity. In this study, patients were randomized to 
be treated by rTMS for 30 min over 10 days in comparison 
with standard care. The authors of the study examined how 
rTMS works in improving CIPN in cancer patients. It has 
been proposed that rTMS is a safe and well-tolerated treat-
ment option that can be also effective for patients suffering 
from headaches, pain, or other neurological conditions such 
as CIPN [96].

The non-pharmacological studies also aimed to determine 
whether specific nutritional therapy can prevent acute CIPN 
symptoms in patients receiving anticancer treatment. A 
randomized, controlled, single-blind trial aimed to evaluate 
the efficacy of a polyamine-deprived diet (PDD) compared 
with a normal polyamine-containing diet for the prevention 
of CIPN in patients treated with oxaliplatin-based chemo-
therapy. PDD containing less than 10 mg/kg polyamines 
reduces pain hypersensitivity in animals [97]. Polyamines 
are positive modulators of NR2B-containing N-methyl-d-
aspartate (NMDA) receptors involved in central sensitiza-
tion after peripheral nerve injury [98]. As polyamines as 
such may play a facilitating role in nociceptive neurotrans-

mission and chronic pain, the main hypothesis of this study 
was that reduced polyamine intake may improve nocicep-
tive symptoms by reducing NMDA receptor activity and 
subsequently improve cold pain threshold, neuropathic pain 
symptoms, and other comorbidities, such as anxiety and 
depression. A study demonstrated the preventive effect of 
PDD on CIPN on both acute and chronic symptoms of heat 
hyperesthesia, especially cold hyperesthesia [99].

Among herbal extracts, henna is used to treat diabetic skin 
ulcers with a small loss of nerve fibers [100], also commonly 
found in neuropathies occurring after the administration of 
anticancer drugs. Arslan et al. investigated the effect of henna 
on CIPN in women treated with oxaliplatin. Henna was 
applied topically twice a day to the palms, fingers, and soles, 
and routine treatment and care were provided to control 
patients. The results of the study showed that henna applica-
tion has a beneficial effect on CIPN and could be a promising 
approach in CIPN management [101].

Future preventive approaches. Numerous literature 
reports have indicated that activation of the Wallerian-like 
degeneration pathway driven by sterile alpha and TIR motif-
containing protein 1 (SARM1) is responsible for axonopathy 
in CIPN [102–104]. SARM1 is a central driver of axonal 
degeneration following chemical, inflammatory, mechanical, 
or metabolic damage to the axon [105]. Bosanac et al. identi-
fied a new series of effective and selective irreversible isothia-
zole inhibitors of SARM1 enzymatic activity that protected 
rodents and human axons in vitro. In their CIPN mouse 
model, the irreversible SARM1 inhibitors prevented loss of 
axonal function and provided partial protection of axonal 
function assessed by sensory nerve action potential ampli-
tude and mechanical allodynia [106].

In vitro and in vivo studies have shown that the tyrosine 
kinase inhibitors, nilotinib and dasatinib, may offer a poten-
tial neuroprotective strategy for paclitaxel- and oxaliplatin-
induced PN without negatively affecting their antitumor 
activity. As new-purpose drugs, nilotinib and dasatinib are 
currently being tested in an ongoing phase Ib/II trial in 
patients with stage I–III breast cancer and in an ongoing 
phase Ib trial in patients with metastatic gastrointestinal 
cancer [107].

Ganglioside-monosialic acid (GM-1) performs an impor-
tant function in the processes of neurogenesis, neural devel-
opment and differentiation, cell recognition, and signal 
transduction [108]. Su et al. evaluated a placebo-controlled, 
double-blind trial of intravenous GM-1 administered to 
prevent taxane-induced PN in breast cancer patients. GM-1 
treatment resulted in a statistically significant reduction in 
the severity and incidence of CIPN after 4 cycles of taxane-
containing chemotherapy [109]. GM-1 appears to be well 
tolerated and does not reduce the anticancer effects of the 
chemotherapy agent [110]. Despite this very positive report, 
a confirmatory study is needed to approve these findings and 
the efficacy of GM-1 in the prevention of peripheral neurop-
athy induced by different types of chemotherapeutics.
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MMPs play important roles in the development and 
maintenance of neuropathic pain, including mechanical 
allodynia [111]. Recent studies have demonstrated that 
MMPs are activated in DRGs leading to neuroinflammation 
and neuropathic pain [111, 112]. Tonello et al. showed that 
intrathecal injections of a monoclonal antibody targeting 
MMP-9 significantly prevent and reverse paclitaxel-induced 
mechanical allodynia in male and female mice, by decreasing 
oxidative stress and neuroinflammatory mediators IL-6 
and tTNF α, as well as preventing paclitaxel-induced loss of 
IENF [113]. These findings suggest MMPs as a new target 
in paclitaxel-induced PN. Andecaliximab is a human-
ized anti-MMP-9 monoclonal antibody for the treatment 
of gastric cancer and ulcerative colitis [114] and may serve 
as a dual therapeutic approach, on the one hand, to treat 
tumor progression and on the other hand to reduce CIPN 
symptoms.

EQ-6 (6-(5-amino)-ethoxy-2,2,4-trimethyl-1,2-dihy-
droquinoline hydrochloride), a novel analog of the known 
antioxidant ethoxyquin, prevents axonal degeneration in 
primary DRG neurons and epidermal nerve fiber loss in vitro 
and in a murine model of paclitaxel-induced CIPN, respec-
tively. Cetinkaya-Fisgin et al. demonstrated that this axonal 
protection is associated with preserved levels of nicotinamide 
adenine dinucleotide, a key metabolite in the programmed 
pathway of axonal degeneration [115].

Additional studies are still needed to confirm the benefits 
of these novel agents in the prevention of CIPN before they 
can be introduced into clinical practice. Many aspects of 
complementary approaches still need to be considered in 
terms of their safety, drug interactions, and cost-effective-
ness.

Treatment strategies

Consistent with the above information about preven-
tive strategies, there is currently no clearly effective treat-
ment for CIPN. Therefore, after the onset of CIPN, the first 
step remains modification of the schedule, which could be 
aligned with the potential increased risk of cancer recurrence 
and mortality. Symptomatic therapy approaches focus on 
managing symptoms by reducing pain, improving physical 
functioning, and positively influencing the quality of life. 
Overview of the pharmacological and non-pharmacological 
treatment options are listed below and therapy recommenda-
tions for CIPN by leading guidelines of expert societies are 
summarized in Table 4.

Antidepressants. The antidepressant duloxetine, which 
acts as serotonin and norepinephrine reuptake inhibitor, can 
effectively alleviate the symptoms of CIPN without reducing 
the antitumor activity of antineoplastic agents [116, 117]. In 
patients with peripheral neuropathy following anticancer 
drugs, duloxetine was administered due to its proven efficacy 
in neuropathic pain of other origins [118–121]. Duloxetine 
was found to have a better effect in reducing the severity 

of neuropathic pain and the degree of motor neuropathy 
compared to other therapeutic approaches and was also 
reported to have fewer side effects compared to other drugs 
in this indication, such as venlafaxine. In addition, patients 
treated with oxaliplatin are more likely to benefit from dulox-
etine than patients with paclitaxel-induced PN, suggesting 
that the effect of duloxetine may be closely related to the 
specific molecular mechanisms underlying oxaliplatin-
induced PN [122]. A large, randomized trial demonstrated 
a moderate clinical benefit in patients with painful CIPN 
treated with duloxetine vs. placebo, with a higher rate of pain 
reduction (59% vs. 38%) [123]. Matsuoka et al. investigated 
the efficacy of duloxetine for CINP patients unresponsive or 
intolerant to the opioid-pregabalin combination. In a multi-
center, randomized, double-blind, placebo-controlled trial, 
they found that the addition of duloxetine to opioid-pregab-
alin therapy may have a clinical benefit in reducing refractory 
CINP, but further studies are needed to verify the efficacy of 
the addition of duloxetine [124]. However, another research 
group [125] on the contrary reported that pregabalin has 
higher CIPN-attenuating efficacy than duloxetine, improved 
sensory neuropathy more significantly than duloxetine, 
and was also more beneficial in improving neurotoxicity 
questionnaire scores. Since the efficacy of duloxetine was not 
confirmed in approximately 40% of patients [122] and up to 
14.7% of patients in a Japanese study discontinued dulox-
etine due to adverse effects such as fatigue and nausea [126], 
there is a greater need to offer additional strategies for the 
treatment of CIPN. Saito et al. reported a case report of a 
patient with eribulin-induced PN who received duloxetine 
in combination with the selective α2δ ligand, mirogabalin 
[127]. As the mechanisms of mirogabalin and duloxetine 
attenuating CIPN are different, the authors suggested that 
the additive and synergistic effects of this combination influ-
enced the results of their study. The combined therapy of 
duloxetine with other substances with analgetic effect may 
represent a promising strategy, especially in patients intol-
erant to high doses of duloxetine or patients unresponsive to 
previous treatment.

In a randomized clinical trial, another serotonin-norepi-
nephrine reuptake inhibitor venlafaxine demonstrated 
clinical activity against oxaliplatin-induced acute neurosen-
sory toxicity. Thus, venlafaxine can be used in individual cases 
in the treatment of CIPN, as there are studies that indicate 
a significant benefit compared to placebo, although with 
several side effects, including asthenia and nausea [128, 129].

Amitriptyline, a tricyclic antidepressant that enhances 
noradrenergic and serotonergic neurotransmission by 
blocking the noradrenaline and serotonin transporters at 
presynaptic terminals, represents the gold standard in the 
treatment of various pain syndromes from neuropathic pain 
through fibromyalgia to migraine and tension headaches 
[130]. A double-blinded, randomized, placebo-controlled 
study evaluated the effectiveness of low-dose amitripty-
line in relieving chemotherapy-induced symptoms. The 
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study revealed negative results or only a mild improvement 
in CIPN symptoms and showed that amitriptyline did not 
improve sensory neuropathic symptoms. No statistical 
significance was achieved, probably due to the small number 
of patients and the too low dose of amitriptyline. Amitripty-
line in low doses was well tolerated, nevertheless, potential 
side effects, drug interactions, and cardiac toxicity in higher 
doses should be considered in the risk-benefit analysis [131]. 
Additionally, Rossignol et al. investigated the effect of 10% 
amitriptyline cream on neuropathic pain. Given the limited 
efficacy of systemic venlafaxine in CIPN and its safety profile, 
topical amitriptyline 10% appears to be a good candidate for 
first-line treatment of CIPN, allowing the continuation of 
chemotherapy at effective doses [132].

Anticonvulsants. Gabapentin is a commonly used antiep-
ileptic drug, structurally related to the neurotransmitter 
gamma-aminobutyric acid (GABA). In recent years, its effec-
tiveness in the treatment of several neuropathic syndromes 
has been demonstrated. Nerve excitability that occurs after 
nerve injury is thought to be mediated by upregulation of 
the α2δ1 subunit of voltage-gated calcium channels in DRG 
neurons [133]. When gabapentin inhibits the α2δ1 subunit, 
it reduces calcium influx and neurotransmitter release from 
nerve endings, and thus theoretically provides a basis for 
reducing nociception in neuropathic syndromes [134]. Rao 
et al. investigated the efficacy of gabapentin administration in 
cancer patients in a double-blind, placebo-controlled study 
in patients with CIPN. They did not reveal any improvement 

Table 4. Selected agents evaluated for treatment of CIPN.
Agent Frequent side effects Recommendation Limitations Ref.
Pharmacological approaches
Duloxetine nausea, dry mouth, somnolence, head-

ache, anxiety
recommended not specified [122, 123]

Venlafaxine nausea, dry mouth, somnolence, head-
ache, anxiety, hypertension

recommended not specified [128, 129]

Amitriptyline drowsiness, fatigue, dizziness, hypoten-
sion, weight gain

not recommended small trials,
negative study results

[131]

Gabapentin somnolence, dizziness, vertigo not recommended negative trial [135]
Pregabalin drowsiness, somnolence, peripheral 

edema, weight gain
recommended many side effects [136]

Lamotrigine headache, drowsiness, dizziness not recommended negative trial [209]
Carbamazepine hyponatremia, drug interactions not recommended small trials,

many side effects
[137, 210]

Oxycodone sedation, dizziness, headache, constipa-
tion, nausea, itch, dependency, abuse

recommended-as a 3rd option high risk of tolerance [138]

Naproxen confusion, headache, tiredness, drowsi-
ness, dizziness

recommended with gabapen-
tin and pregabalin

recommended only in combination [211]

Indomethacin-prega-
balin

fewer side effects than monotherapy potential therapeutic advan-
tages

recommended only in combination [212]

Meloxicam-pregabalin fewer side effects than monotherapy potential therapeutic advan-
tages

recommended only in combination [212]

Nabiximols psychosis-inducing potential not recommended negative trial, many side effects [147]
Topical therapies
CBD oil/cream not specified recommended small sample size [163, 164]
10% amitriptyline 
cream

skin irritation recommended small sample size, lack of a control 
group

[132]

Lidocaine patch burning, erythema, pruritus, or skin ir-
ritations at the application site

recommended-as a 2nd option in case of localized neuropathic 
pain, or oral drug intolerance

[213, 214]

Capsaicin patch pain or erythema, burning sensation at 
the application site

recommended in case of localized neuropathic 
pain

[168]

Baclofen,
amitriptyline,
and ketamine gel

not specified not recommended not statistically significant trial 
compared toa  placebo

[172]

1% menthol cream not specified recommended in case of localized neuropathic 
pain

[174]

Non-Pharmacological approaches
Acupuncture not specified recommended not specified [176, 177]
Exercise no side effects recommended not specified [175]
Scrambler therapy contact dermatitis recommended small trials [178]
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in pain intensity or sensory neuropathy in patients taking 
gabapentin [135].

Amino acid derivate of GABA, pregabalin, binds to 
α2δ subunits of voltage-gated calcium channels, reduces 
calcium influx and neurotransmitter release. Mishra et al. 
showed in their study that pregabalin has better effective-
ness than gabapentin as well as a placebo in the therapy of 
cancer patients with CIPN [136]. Although gabapentin and 
pregabalin have been shown to be effective in the treatment 
of polyneuropathies in many studies as well as in clinical 
practice, there is limited scientific evidence on the efficacy of 
these agents in the treatment of anti-cancer drugs-induced 
peripheral neuropathy. Moreover, side effects after their use 
include frequent dizziness, drowsiness, and somnolence 
[136].

The anticonvulsant drug carbamazepine is currently the 
best-studied treatment and drug of choice in the treatment 
of trigeminal neuralgia. Carbamazepine acts by inhibiting 
voltage-gated sodium channels, thereby reducing nerve 
membrane excitability and potentiating GABA receptors, 
which may be relevant for its efficacy in neuropathic pain. 
However, due to little evidence and frequent side effects such 
as sedation, dizziness, nausea, vomiting, diplopia, memory 
problems, ataxia, elevated liver enzymes, and hyponatremia, 
carbamazepine cannot be recommended for the treatment of 
neuropathic pain [137].

Analgesics. According to several recommendations, 
low- and high-efficacy opioids may be considered as a third 
option in the treatment of neuropathic pain of any origin, 
although side effects, development of tolerance, and misuse 
may be limiting. Overall, the response of neuropathic 
pain to opioid treatment is low, but oxycodone adminis-
tration during chemotherapy has been associated with a 
reduced incidence of CIPN [138]. Non-opioid analgesics 
such as non-steroidal anti-inflammatory drugs (NSAIDs), 
metamizole, or paracetamol have low efficacy in the treat-
ment of neuropathic pain and their long-term use is associ-
ated with various potential side effects such as nephrotox-
icity or hepatotoxicity. However, peripheral nerve damage 
and neuropathic pain may result from increased tissue 
pressure due to swelling of the legs and arms and have been 
described as a consequence of chronic venous insufficiency. 
Only in these cases, NSAID treatment may be effective and 
recommended in reducing swelling and corresponding 
pain [139].

Other drugs. Olodanrigan (EMA401) is a highly selec-
tive, orally active angiotensin II type 2 receptor antagonist. It 
was developed for the therapy of neuropathic pain and in a 
few past years was tested in clinical trials for effectiveness in 
CIPN patients [140–142]. Olodanrigan (EMA401) analgesic 
action appears to involve inhibition of DRG neuron hyper-
excitability. However, the clinical studies performed so far 
in patients with CIPN have not yielded reproducible conclu-
sions and are therefore unconvincing and difficult to inter-
pret [143].

Oxaliplatin treatment alters the activities of voltage-gated 
ion channels and ligand-gated ion channels, such as transient 
receptor potential (TRP) channels and their cold-responsive 
subtypes, TRP melastatin 8 and TRP ankyrin 1, which also 
contribute to oxaliplatin-induced hypersensitivity to cold 
[144]. Acetazolamide and topiramate are known inhibitors 
of carbonic anhydrase, which facilitates intracellular pH 
homeostasis. These agents inhibit the lowering of cytosolic 
pH and TRP ankyrin 1 sensitization by oxaliplatin without 
affecting the tumor-killing effect, potentially preventing 
oxaliplatin-induced cold allodynia [141].

Cannabinoids suppress central [145] and peripheral 
[146] sensitization, which is thought to be involved in 
pathological pain. This suggests a possible mechanism 
underlying the effectiveness of cannabinoids in suppressing 
CIPN. Nabiximols, an oral mucosal cannabinoid spray, has 
been evaluated to relieve CIPN symptoms. In this clinical 
study, the authors found no indication of differences in 
neuropathy scores between the active drugs and placebo, 
but patients taking nabiximols suffered from various side 
effects such as dizziness, nausea, fatigue, and dry mouth, 
which significantly reduced interest in this approach. In 
general, cannabinoids are not recommended for the treat-
ment of neuropathic pain of any origin because efficacy is 
low and the rate of side effects such as addiction is high. 
Cannabinoid therapy may be considered for multimodal 
pain therapy in individual cases and when other thera-
peutic options fail [147].

The well-known anti-inflammatory and anti-nociceptive 
effects of PEA (palmitoylethanolamide) are considered a 
beneficial strategy in the management of the oxaliplatin- 
[148] and paclitaxel- [149] induced CIPN model, as well as in 
osteoarthritis [150] and fibromyalgia studies [151]. Cristiano 
et al. demonstrated that um-PEA (ultramicronized PEA) 
reduced the development of hypersensitivity with an effect 
associated with the reduction of the spinal cord and hippo-
campal pro-inflammatory cytokines, as well as antidepres-
sant and anxiolytic effects [152].

Recently, the importance of the ceramide-S1P rheostat 
regulating neuronal function and neuroimmune interactions 
in the development of neuropathic pain has been studied. 
In this context, hope has been raised for a new treatment of 
neuropathic pain disorders with fingolimod, an S1P receptor 
modulator currently being investigated in several trials for 
the management of CIPN [153, 154].

Sigma-1 receptor (S1R) is a transmembrane protein found 
in the endoplasmic reticulum, specifically at the mitochon-
dria-associated endoplasmic reticulum membrane, which 
plays a key role in neuroprotection against CIPN [155]. 
MR309, a novel selective S1R antagonist, was tested in a 
phase II, randomized, placebo-controlled trial in amelio-
rating oxaliplatin-induced PN [156]. MR309 treatment was 
associated with significantly reduced severe chronic neurop-
athy with an acceptable safety profile and showed a potential 
neuroprotective role for chronic oxaliplatin-induced PN.
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Exchange proteins regulated by cAMP (Epacs) are 
cAMP-binding proteins known to play a pivotal role in 
mechanical allodynia induced by nerve injury and inflam-
mation [157]. Pooja et al. demonstrated reduced paclitaxel-
induced mechanical allodynia, astrocyte activation, and 
intraepidermal nerve fiber loss, in Epac1-knockout mice as 
compared to wild-type mice. Moreover, the Epac-inhibitor 
ESI-09 reversed paclitaxel-induced mechanical allodynia, 
suppressed spinal cord astrocyte activation in the spinal 
cord, and protected against IENF loss, as well as blocked 
paclitaxel-induced abnormal spontaneous discharges in 
DRG neurons in wild-type mice, which indicates Epac1 in 
nociceptors as a novel potential target for the treatment of 
CIPN [158].

Paclitaxel induces Schwann cells’ dedifferentiation, 
thereby impairing the ability of Schwann cells to form 
myelin [159]. On the contrary, intracellular cyclic adenosine 
monophosphate (cAMP) plays an essential role in Schwann 
cells’ differentiation [160, 161], and therefore phospho-
diesterase (PDE) inhibitors that increase intracellular 
cAMP could attenuate paclitaxel-induced dedifferentiation 
of Schwann cells. Cilostazol, a selective PDE3 inhibitor, 
potently inhibited paclitaxel-induced dedifferentiation of 
cultured Schwann cells through cAMP/Epac signaling and 
attenuated mechanical hypersensitivity and Schwann cells’ 
dedifferentiation in the sciatic nerve in a murine model of 
paclitaxel-related CIPN [162]. Koyanagi et al. concluded 
that cilostazol suppresses paclitaxel-related CIPN without 
limiting the anticancer effect of paclitaxel, thus representing 
a new strategy for the treatment of other demyelinating 
peripheral neuropathies as well [162].

Topical therapies. As many systemic treatment options 
are still unconvincing, have great interaction potential when 
co-administered with chemotherapeutic agents and their 
dose needs to be slowly titrated from a low starting dose to 
the therapeutic dose providing the best efficacy and limited 
side effects, topical treatment is of particular importance in 
this context. Topical treatment options for neuropathic pain 
include cannabinoids, lidocaine, and capsaicin patches, and 
various gel formulations.

Although the systemic use of cannabinoids in the treat-
ment of CIPN is not recommended due to several limita-
tions, recently the benefits of topical cannabidiol (CBD) in 
the form of oil, creams, or ointments have been increasingly 
discussed. Xu et al. conducted a double-blind, random-
ized, placebo-controlled study to investigate the efficacy of 
topically applied CBD oil in the symptomatic treatment of 
chronic pain in peripheral neuropathy of the lower extremi-
ties. The authors demonstrated a statistically significant 
reduction in intense and sharp pain, as well as cold and 
itchy sensations [163]. D’Andre et al. presented a case series 
of patients with CIPN who used topical creams containing 
the cannabinoids delta-nine-tetrahydrocannabinol (THC) 
and/or CBD. They suggested that cannabinoids may be 
helpful for patients with chemotherapy-induced peripheral 

neuropathy. Patients described a partial decrease in painful 
CIPN symptoms with the onset of perceived benefit in 
about 10 to 15 minutes. Given that there is great heteroge-
neity in the compounds observed in cannabis, as well as in 
the concentration and type of cannabis in available topical 
creams, a randomized placebo-controlled trial of a standard-
ized product is needed to determine the true utility of this 
approach for the treatment of CIPN [164].

Lidocaine, an anesthetic drug that has been used for local 
nerve block and epidural anesthesia in a wide variety of 
superficial and invasive procedures since 1948, was recog-
nized in the 1980s as a drug to relieve peripheral neuropathic 
pain [165]. The main mechanism of action is the blockade 
of voltage-gated sodium channels, which are considered to 
be the main target of lidocaine. Lidocaine can reduce peak 
sodium channel currents and accelerate the inactivation 
process to reduce neuronal excitability and thus preventing 
and reducing pain. The lidocaine patch is approved for the 
treatment of postherpetic neuralgia but can also be used 
to treat localized neuropathic pain of other origins such as 
CIPN [166]. However, randomized clinical trial demon-
strating efficacy in CIPN is still lacking, and therefore 
lidocaine patches are used as a second option in the treat-
ment of peripheral neuropathic pain, especially in the case of 
oral drug intolerance.

Capsaicin is a naturally occurring substance derived 
from plants of the genus Capsicum, approved as second-
line therapy for the topical treatment of neuropathic pain. 
Capsaicin is known to act on the cation channel with TRP, 
a member of the vanilloid subfamily 1, which is involved in 
somatic and visceral peripheral inflammation, modulation 
of nociceptive inputs to spinal cord and brainstem centers, 
and integration of various painful stimuli [167]. Capsaicin 
8% patch is the only topical skin application that provides 
effective pain relief with good tolerability, a favorable safety 
profile, and a low risk of systemic side effects. The effect is 
comparable to established oral drugs and capsaicin can be 
used as monotherapy or in combination with other pharma-
ceutical products for the treatment of pain. Anand et al. 
demonstrated a significant reduction in spontaneous, touch-
induced, cold-induced, and overall pain in cancer patients 
treated with a 30-minute application of a capsaicin 8%-foot 
patch [168].

Barton et al. performed a clinical study to evaluate 
the effect of three topical analgesics on CIPN symptoms. 
Baclofen, amitriptyline, and ketamine have complementary 
mechanisms of action that elicit three different pathways 
that may provide additive or synergistic relief from neuro-
pathic symptoms. Baclofen is a GABA receptor agonist [169], 
amitriptyline affects adenosine A receptors and sodium 
channels [170], and ketamine inhibits NMDA receptors 
[171]. Topical gel treatment with baclofen (0.8%), amitripty-
line (3%), and ketamine (1.5%) was beneficial in a random-
ized, double-blind clinical trial compared to a placebo, but the 
overall effect was mild and not clinically relevant. A clinical 
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study with this topical cream twice daily for 6 days in cancer 
patients with CIPN was well tolerated, with no evidence of 
systemic toxicity, but revealed no significant effect on pain, 
numbness, or tingling [172].

Significant reduction of pain and functional improve-
ment in patients with CIPN was detected upon topical 
therapy with 1% menthol cream twice daily. A new potential 
therapeutic approach demonstrated that endogenous neural 
circuitry underlying cooling-induced analgesia may repre-
sent a novel target for intervention. Specific molecular recep-
tors for cooling have been identified in sensory nerves with 
evidence for their upregulation in neuropathic pain models 
[173]. Authors identified that activation of one of these, the 
TRP melastatin 8 ion channel, by topical agents, such as 
menthol, produced significant analgesia. Fallon et al. indicate 
the therapeutic potential of topical menthol for CIPN-related 
pain. Authors however recommend further systematic evalu-
ation of efficacy, because of a small cohort of patients and 
non-blinded study [174].

Non-pharmacological approaches. Current data suggest 
that exercise is an affordable, safe, and promising supportive 
measure for cancer patients with CIPN. A study examining a 
10-week home muscle strengthening and balancing program 
compared to regular care found a significant reduction in 
neuropathic pain in patients in the exercise group compared 
to those in the regular care group [175].

Studies evaluating the efficacy of acupuncture and 
electroacupuncture in the treatment of CIPN over the 
control group found significant improvements in clinical 
neurological evaluation, improved pain interference, neuro-
toxicity-related symptoms, as well as improved physical and 
functional well-being during the 20-week evaluation [176, 
177].

Scrambler therapy (ST) is an electrocutaneous pain relief 
treatment that appears to be effective in reducing chronic 
neuropathic pain without any significant side effects. Treat-
ment is performed with standard electrocardiographic skin 
electrodes placed above and below the pain site, and the ST 
device directs electrical signals across the field to simulate 
pain-free information. In a randomized clinical trial, the 
effect of a 30-minute ST session for two weeks was evaluated 
compared to patients with standard care. ST-treated patients 
showed improved pain, tingling, and numbness compared to 
controls [178].

In conclusion, various types of anticancer drugs are 
commonly used to treat cancer, either alone or in combi-
nation with other drugs. Peripheral neuropathy is the most 
common, dose-limiting side effect of anticancer treatment 
that adversely affects patients’ quality of life and chemo-
therapy progress. The ideal treatment strategy for CIPN 
should act as a multi-targeting agent to increase its protective 
efficacy against neuropathy without reducing the antitumor 
efficacy of chemotherapy. Although there are several 
promising potential therapies for the prevention and treat-
ment of CIPN, and several potential drugs are still in clinical 

trials, the need to improve the effectiveness of individual 
clinical approaches remains very substantial. In this review, 
we discussed the preventive and therapeutic properties 
of various agents and their pharmacological potential as 
drugs in the treatment of chemotherapy-induced periph-
eral neuropathy. We focused on both pharmacological and 
non-pharmacological approaches, demonstrating the high 
safety of therapy without serious side effects and promising 
potential in previously published studies. Furthermore, 
the prevention and treatment of CIPN remain unmet, and 
further quality research is essential to achieve effective and 
reliable results and to improve the rational discovery of new 
therapeutic and preventive approaches with the potential to 
prevent or weaken the development of CIPN.
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